t7x/deps/curl/lib/vquic/curl_ngtcp2.c
2023-12-06 17:43:39 -05:00

2821 lines
83 KiB
C

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al.
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* SPDX-License-Identifier: curl
*
***************************************************************************/
#include "curl_setup.h"
#if defined(USE_NGTCP2) && defined(USE_NGHTTP3)
#include <ngtcp2/ngtcp2.h>
#include <nghttp3/nghttp3.h>
#ifdef USE_OPENSSL
#include <openssl/err.h>
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
#include <ngtcp2/ngtcp2_crypto_boringssl.h>
#else
#include <ngtcp2/ngtcp2_crypto_quictls.h>
#endif
#include "vtls/openssl.h"
#elif defined(USE_GNUTLS)
#include <ngtcp2/ngtcp2_crypto_gnutls.h>
#include "vtls/gtls.h"
#elif defined(USE_WOLFSSL)
#include <ngtcp2/ngtcp2_crypto_wolfssl.h>
#include "vtls/wolfssl.h"
#endif
#include "urldata.h"
#include "sendf.h"
#include "strdup.h"
#include "rand.h"
#include "multiif.h"
#include "strcase.h"
#include "cfilters.h"
#include "cf-socket.h"
#include "connect.h"
#include "progress.h"
#include "strerror.h"
#include "dynbuf.h"
#include "http1.h"
#include "select.h"
#include "inet_pton.h"
#include "vquic.h"
#include "vquic_int.h"
#include "vtls/keylog.h"
#include "vtls/vtls.h"
#include "curl_ngtcp2.h"
#include "warnless.h"
/* The last 3 #include files should be in this order */
#include "curl_printf.h"
#include "curl_memory.h"
#include "memdebug.h"
#define H3_ALPN_H3_29 "\x5h3-29"
#define H3_ALPN_H3 "\x2h3"
#define QUIC_MAX_STREAMS (256*1024)
#define QUIC_MAX_DATA (1*1024*1024)
#define QUIC_HANDSHAKE_TIMEOUT (10*NGTCP2_SECONDS)
/* A stream window is the maximum amount we need to buffer for
* each active transfer. We use HTTP/3 flow control and only ACK
* when we take things out of the buffer.
* Chunk size is large enough to take a full DATA frame */
#define H3_STREAM_WINDOW_SIZE (128 * 1024)
#define H3_STREAM_CHUNK_SIZE (16 * 1024)
/* The pool keeps spares around and half of a full stream windows
* seems good. More does not seem to improve performance.
* The benefit of the pool is that stream buffer to not keep
* spares. So memory consumption goes down when streams run empty,
* have a large upload done, etc. */
#define H3_STREAM_POOL_SPARES \
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE ) / 2
/* Receive and Send max number of chunks just follows from the
* chunk size and window size */
#define H3_STREAM_RECV_CHUNKS \
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE)
#define H3_STREAM_SEND_CHUNKS \
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE)
#ifdef USE_OPENSSL
#define QUIC_CIPHERS \
"TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_" \
"POLY1305_SHA256:TLS_AES_128_CCM_SHA256"
#define QUIC_GROUPS "P-256:X25519:P-384:P-521"
#elif defined(USE_GNUTLS)
#define QUIC_PRIORITY \
"NORMAL:-VERS-ALL:+VERS-TLS1.3:-CIPHER-ALL:+AES-128-GCM:+AES-256-GCM:" \
"+CHACHA20-POLY1305:+AES-128-CCM:-GROUP-ALL:+GROUP-SECP256R1:" \
"+GROUP-X25519:+GROUP-SECP384R1:+GROUP-SECP521R1:" \
"%DISABLE_TLS13_COMPAT_MODE"
#elif defined(USE_WOLFSSL)
#define QUIC_CIPHERS \
"TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_" \
"POLY1305_SHA256:TLS_AES_128_CCM_SHA256"
#define QUIC_GROUPS "P-256:P-384:P-521"
#endif
/*
* Store ngtcp2 version info in this buffer.
*/
void Curl_ngtcp2_ver(char *p, size_t len)
{
const ngtcp2_info *ng2 = ngtcp2_version(0);
const nghttp3_info *ht3 = nghttp3_version(0);
(void)msnprintf(p, len, "ngtcp2/%s nghttp3/%s",
ng2->version_str, ht3->version_str);
}
struct cf_ngtcp2_ctx {
struct cf_quic_ctx q;
struct ssl_peer peer;
ngtcp2_path connected_path;
ngtcp2_conn *qconn;
ngtcp2_cid dcid;
ngtcp2_cid scid;
uint32_t version;
ngtcp2_settings settings;
ngtcp2_transport_params transport_params;
ngtcp2_ccerr last_error;
ngtcp2_crypto_conn_ref conn_ref;
#ifdef USE_OPENSSL
SSL_CTX *sslctx;
SSL *ssl;
#elif defined(USE_GNUTLS)
struct gtls_instance *gtls;
#elif defined(USE_WOLFSSL)
WOLFSSL_CTX *sslctx;
WOLFSSL *ssl;
#endif
struct cf_call_data call_data;
nghttp3_conn *h3conn;
nghttp3_settings h3settings;
struct curltime started_at; /* time the current attempt started */
struct curltime handshake_at; /* time connect handshake finished */
struct curltime first_byte_at; /* when first byte was recvd */
struct curltime reconnect_at; /* time the next attempt should start */
struct bufc_pool stream_bufcp; /* chunk pool for streams */
size_t max_stream_window; /* max flow window for one stream */
uint64_t max_idle_ms; /* max idle time for QUIC connection */
int qlogfd;
BIT(got_first_byte); /* if first byte was received */
#ifdef USE_OPENSSL
BIT(x509_store_setup); /* if x509 store has been set up */
#endif
};
/* How to access `call_data` from a cf_ngtcp2 filter */
#undef CF_CTX_CALL_DATA
#define CF_CTX_CALL_DATA(cf) \
((struct cf_ngtcp2_ctx *)(cf)->ctx)->call_data
/**
* All about the H3 internals of a stream
*/
struct h3_stream_ctx {
int64_t id; /* HTTP/3 protocol identifier */
struct bufq sendbuf; /* h3 request body */
struct bufq recvbuf; /* h3 response body */
struct h1_req_parser h1; /* h1 request parsing */
size_t sendbuf_len_in_flight; /* sendbuf amount "in flight" */
size_t upload_blocked_len; /* the amount written last and EGAINed */
size_t recv_buf_nonflow; /* buffered bytes, not counting for flow control */
uint64_t error3; /* HTTP/3 stream error code */
curl_off_t upload_left; /* number of request bytes left to upload */
int status_code; /* HTTP status code */
bool resp_hds_complete; /* we have a complete, final response */
bool closed; /* TRUE on stream close */
bool reset; /* TRUE on stream reset */
bool send_closed; /* stream is local closed */
BIT(quic_flow_blocked); /* stream is blocked by QUIC flow control */
};
#define H3_STREAM_CTX(d) ((struct h3_stream_ctx *)(((d) && (d)->req.p.http)? \
((struct HTTP *)(d)->req.p.http)->h3_ctx \
: NULL))
#define H3_STREAM_LCTX(d) ((struct HTTP *)(d)->req.p.http)->h3_ctx
#define H3_STREAM_ID(d) (H3_STREAM_CTX(d)? \
H3_STREAM_CTX(d)->id : -2)
static CURLcode h3_data_setup(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
if(!data || !data->req.p.http) {
failf(data, "initialization failure, transfer not http initialized");
return CURLE_FAILED_INIT;
}
if(stream)
return CURLE_OK;
stream = calloc(1, sizeof(*stream));
if(!stream)
return CURLE_OUT_OF_MEMORY;
stream->id = -1;
/* on send, we control how much we put into the buffer */
Curl_bufq_initp(&stream->sendbuf, &ctx->stream_bufcp,
H3_STREAM_SEND_CHUNKS, BUFQ_OPT_NONE);
stream->sendbuf_len_in_flight = 0;
/* on recv, we need a flexible buffer limit since we also write
* headers to it that are not counted against the nghttp3 flow limits. */
Curl_bufq_initp(&stream->recvbuf, &ctx->stream_bufcp,
H3_STREAM_RECV_CHUNKS, BUFQ_OPT_SOFT_LIMIT);
stream->recv_buf_nonflow = 0;
Curl_h1_req_parse_init(&stream->h1, H1_PARSE_DEFAULT_MAX_LINE_LEN);
H3_STREAM_LCTX(data) = stream;
return CURLE_OK;
}
static void h3_data_done(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
(void)cf;
if(stream) {
CURL_TRC_CF(data, cf, "[%"PRId64"] easy handle is done", stream->id);
if(ctx->h3conn && !stream->closed) {
nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream->id);
nghttp3_conn_close_stream(ctx->h3conn, stream->id,
NGHTTP3_H3_REQUEST_CANCELLED);
nghttp3_conn_set_stream_user_data(ctx->h3conn, stream->id, NULL);
stream->closed = TRUE;
}
Curl_bufq_free(&stream->sendbuf);
Curl_bufq_free(&stream->recvbuf);
Curl_h1_req_parse_free(&stream->h1);
free(stream);
H3_STREAM_LCTX(data) = NULL;
}
}
static struct Curl_easy *get_stream_easy(struct Curl_cfilter *cf,
struct Curl_easy *data,
int64_t stream_id)
{
struct Curl_easy *sdata;
(void)cf;
if(H3_STREAM_ID(data) == stream_id) {
return data;
}
else {
DEBUGASSERT(data->multi);
for(sdata = data->multi->easyp; sdata; sdata = sdata->next) {
if((sdata->conn == data->conn) && H3_STREAM_ID(sdata) == stream_id) {
return sdata;
}
}
}
return NULL;
}
static void h3_drain_stream(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
unsigned char bits;
(void)cf;
bits = CURL_CSELECT_IN;
if(stream && stream->upload_left && !stream->send_closed)
bits |= CURL_CSELECT_OUT;
if(data->state.dselect_bits != bits) {
data->state.dselect_bits = bits;
Curl_expire(data, 0, EXPIRE_RUN_NOW);
}
}
/* ngtcp2 default congestion controller does not perform pacing. Limit
the maximum packet burst to MAX_PKT_BURST packets. */
#define MAX_PKT_BURST 10
struct pkt_io_ctx {
struct Curl_cfilter *cf;
struct Curl_easy *data;
ngtcp2_tstamp ts;
size_t pkt_count;
ngtcp2_path_storage ps;
};
static void pktx_update_time(struct pkt_io_ctx *pktx,
struct Curl_cfilter *cf)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
vquic_ctx_update_time(&ctx->q);
pktx->ts = ctx->q.last_op.tv_sec * NGTCP2_SECONDS +
ctx->q.last_op.tv_usec * NGTCP2_MICROSECONDS;
}
static void pktx_init(struct pkt_io_ctx *pktx,
struct Curl_cfilter *cf,
struct Curl_easy *data)
{
pktx->cf = cf;
pktx->data = data;
pktx->pkt_count = 0;
ngtcp2_path_storage_zero(&pktx->ps);
pktx_update_time(pktx, cf);
}
static CURLcode cf_progress_ingress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx);
static CURLcode cf_progress_egress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx);
static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id,
uint64_t datalen, void *user_data,
void *stream_user_data);
static ngtcp2_conn *get_conn(ngtcp2_crypto_conn_ref *conn_ref)
{
struct Curl_cfilter *cf = conn_ref->user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
return ctx->qconn;
}
#ifdef DEBUG_NGTCP2
static void quic_printf(void *user_data, const char *fmt, ...)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
(void)ctx; /* TODO: need an easy handle to infof() message */
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "\n");
}
#endif
static void qlog_callback(void *user_data, uint32_t flags,
const void *data, size_t datalen)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
(void)flags;
if(ctx->qlogfd != -1) {
ssize_t rc = write(ctx->qlogfd, data, datalen);
if(rc == -1) {
/* on write error, stop further write attempts */
close(ctx->qlogfd);
ctx->qlogfd = -1;
}
}
}
static void quic_settings(struct cf_ngtcp2_ctx *ctx,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
ngtcp2_settings *s = &ctx->settings;
ngtcp2_transport_params *t = &ctx->transport_params;
ngtcp2_settings_default(s);
ngtcp2_transport_params_default(t);
#ifdef DEBUG_NGTCP2
s->log_printf = quic_printf;
#else
s->log_printf = NULL;
#endif
(void)data;
s->initial_ts = pktx->ts;
s->handshake_timeout = QUIC_HANDSHAKE_TIMEOUT;
s->max_window = 100 * ctx->max_stream_window;
s->max_stream_window = ctx->max_stream_window;
t->initial_max_data = 10 * ctx->max_stream_window;
t->initial_max_stream_data_bidi_local = ctx->max_stream_window;
t->initial_max_stream_data_bidi_remote = ctx->max_stream_window;
t->initial_max_stream_data_uni = ctx->max_stream_window;
t->initial_max_streams_bidi = QUIC_MAX_STREAMS;
t->initial_max_streams_uni = QUIC_MAX_STREAMS;
t->max_idle_timeout = (ctx->max_idle_ms * NGTCP2_MILLISECONDS);
if(ctx->qlogfd != -1) {
s->qlog_write = qlog_callback;
}
}
#ifdef USE_OPENSSL
static void keylog_callback(const SSL *ssl, const char *line)
{
(void)ssl;
Curl_tls_keylog_write_line(line);
}
#elif defined(USE_GNUTLS)
static int keylog_callback(gnutls_session_t session, const char *label,
const gnutls_datum_t *secret)
{
gnutls_datum_t crandom;
gnutls_datum_t srandom;
gnutls_session_get_random(session, &crandom, &srandom);
if(crandom.size != 32) {
return -1;
}
Curl_tls_keylog_write(label, crandom.data, secret->data, secret->size);
return 0;
}
#elif defined(USE_WOLFSSL)
#if defined(HAVE_SECRET_CALLBACK)
static void keylog_callback(const WOLFSSL *ssl, const char *line)
{
(void)ssl;
Curl_tls_keylog_write_line(line);
}
#endif
#endif
static int init_ngh3_conn(struct Curl_cfilter *cf);
#ifdef USE_OPENSSL
static CURLcode quic_ssl_ctx(SSL_CTX **pssl_ctx,
struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct ssl_primary_config *conn_config;
CURLcode result = CURLE_FAILED_INIT;
SSL_CTX *ssl_ctx = SSL_CTX_new(TLS_method());
if(!ssl_ctx) {
result = CURLE_OUT_OF_MEMORY;
goto out;
}
conn_config = Curl_ssl_cf_get_primary_config(cf);
if(!conn_config) {
result = CURLE_FAILED_INIT;
goto out;
}
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
if(ngtcp2_crypto_boringssl_configure_client_context(ssl_ctx) != 0) {
failf(data, "ngtcp2_crypto_boringssl_configure_client_context failed");
goto out;
}
#else
if(ngtcp2_crypto_quictls_configure_client_context(ssl_ctx) != 0) {
failf(data, "ngtcp2_crypto_quictls_configure_client_context failed");
goto out;
}
#endif
SSL_CTX_set_default_verify_paths(ssl_ctx);
{
const char *curves = conn_config->curves ?
conn_config->curves : QUIC_GROUPS;
if(!SSL_CTX_set1_curves_list(ssl_ctx, curves)) {
failf(data, "failed setting curves list for QUIC: '%s'", curves);
return CURLE_SSL_CIPHER;
}
}
#ifndef OPENSSL_IS_BORINGSSL
{
const char *ciphers13 = conn_config->cipher_list13 ?
conn_config->cipher_list13 : QUIC_CIPHERS;
if(SSL_CTX_set_ciphersuites(ssl_ctx, ciphers13) != 1) {
failf(data, "failed setting QUIC cipher suite: %s", ciphers13);
return CURLE_SSL_CIPHER;
}
infof(data, "QUIC cipher selection: %s", ciphers13);
}
#endif
/* Open the file if a TLS or QUIC backend has not done this before. */
Curl_tls_keylog_open();
if(Curl_tls_keylog_enabled()) {
SSL_CTX_set_keylog_callback(ssl_ctx, keylog_callback);
}
/* OpenSSL always tries to verify the peer, this only says whether it should
* fail to connect if the verification fails, or if it should continue
* anyway. In the latter case the result of the verification is checked with
* SSL_get_verify_result() below. */
SSL_CTX_set_verify(ssl_ctx, conn_config->verifypeer ?
SSL_VERIFY_PEER : SSL_VERIFY_NONE, NULL);
/* give application a chance to interfere with SSL set up. */
if(data->set.ssl.fsslctx) {
/* When a user callback is installed to modify the SSL_CTX,
* we need to do the full initialization before calling it.
* See: #11800 */
if(!ctx->x509_store_setup) {
result = Curl_ssl_setup_x509_store(cf, data, ssl_ctx);
if(result)
goto out;
ctx->x509_store_setup = TRUE;
}
Curl_set_in_callback(data, true);
result = (*data->set.ssl.fsslctx)(data, ssl_ctx,
data->set.ssl.fsslctxp);
Curl_set_in_callback(data, false);
if(result) {
failf(data, "error signaled by ssl ctx callback");
goto out;
}
}
result = CURLE_OK;
out:
*pssl_ctx = result? NULL : ssl_ctx;
if(result && ssl_ctx)
SSL_CTX_free(ssl_ctx);
return result;
}
static CURLcode quic_set_client_cert(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
SSL_CTX *ssl_ctx = ctx->sslctx;
const struct ssl_config_data *ssl_config;
ssl_config = Curl_ssl_cf_get_config(cf, data);
DEBUGASSERT(ssl_config);
if(ssl_config->primary.clientcert || ssl_config->primary.cert_blob
|| ssl_config->cert_type) {
return Curl_ossl_set_client_cert(
data, ssl_ctx, ssl_config->primary.clientcert,
ssl_config->primary.cert_blob, ssl_config->cert_type,
ssl_config->key, ssl_config->key_blob,
ssl_config->key_type, ssl_config->key_passwd);
}
return CURLE_OK;
}
/** SSL callbacks ***/
static CURLcode quic_init_ssl(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
const uint8_t *alpn = NULL;
size_t alpnlen = 0;
DEBUGASSERT(!ctx->ssl);
ctx->ssl = SSL_new(ctx->sslctx);
SSL_set_app_data(ctx->ssl, &ctx->conn_ref);
SSL_set_connect_state(ctx->ssl);
SSL_set_quic_use_legacy_codepoint(ctx->ssl, 0);
alpn = (const uint8_t *)H3_ALPN_H3_29 H3_ALPN_H3;
alpnlen = sizeof(H3_ALPN_H3_29) - 1 + sizeof(H3_ALPN_H3) - 1;
if(alpn)
SSL_set_alpn_protos(ctx->ssl, alpn, (int)alpnlen);
/* set SNI */
if(ctx->peer.sni) {
if(!SSL_set_tlsext_host_name(ctx->ssl, ctx->peer.sni)) {
failf(data, "Failed set SNI");
SSL_free(ctx->ssl);
ctx->ssl = NULL;
return CURLE_QUIC_CONNECT_ERROR;
}
}
return CURLE_OK;
}
#elif defined(USE_GNUTLS)
static CURLcode quic_init_ssl(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct ssl_primary_config *conn_config;
CURLcode result;
gnutls_datum_t alpn[2];
/* this will need some attention when HTTPS proxy over QUIC get fixed */
long * const pverifyresult = &data->set.ssl.certverifyresult;
int rc;
conn_config = Curl_ssl_cf_get_primary_config(cf);
if(!conn_config)
return CURLE_FAILED_INIT;
DEBUGASSERT(ctx->gtls == NULL);
ctx->gtls = calloc(1, sizeof(*(ctx->gtls)));
if(!ctx->gtls)
return CURLE_OUT_OF_MEMORY;
result = gtls_client_init(data, conn_config, &data->set.ssl,
&ctx->peer, ctx->gtls, pverifyresult);
if(result)
return result;
gnutls_session_set_ptr(ctx->gtls->session, &ctx->conn_ref);
if(ngtcp2_crypto_gnutls_configure_client_session(ctx->gtls->session) != 0) {
CURL_TRC_CF(data, cf,
"ngtcp2_crypto_gnutls_configure_client_session failed\n");
return CURLE_QUIC_CONNECT_ERROR;
}
rc = gnutls_priority_set_direct(ctx->gtls->session, QUIC_PRIORITY, NULL);
if(rc < 0) {
CURL_TRC_CF(data, cf, "gnutls_priority_set_direct failed: %s\n",
gnutls_strerror(rc));
return CURLE_QUIC_CONNECT_ERROR;
}
/* Open the file if a TLS or QUIC backend has not done this before. */
Curl_tls_keylog_open();
if(Curl_tls_keylog_enabled()) {
gnutls_session_set_keylog_function(ctx->gtls->session, keylog_callback);
}
/* strip the first byte (the length) from NGHTTP3_ALPN_H3 */
alpn[0].data = (unsigned char *)H3_ALPN_H3_29 + 1;
alpn[0].size = sizeof(H3_ALPN_H3_29) - 2;
alpn[1].data = (unsigned char *)H3_ALPN_H3 + 1;
alpn[1].size = sizeof(H3_ALPN_H3) - 2;
gnutls_alpn_set_protocols(ctx->gtls->session,
alpn, 2, GNUTLS_ALPN_MANDATORY);
return CURLE_OK;
}
#elif defined(USE_WOLFSSL)
static CURLcode quic_ssl_ctx(WOLFSSL_CTX **pssl_ctx,
struct Curl_cfilter *cf, struct Curl_easy *data)
{
CURLcode result = CURLE_FAILED_INIT;
struct ssl_primary_config *conn_config;
WOLFSSL_CTX *ssl_ctx = NULL;
conn_config = Curl_ssl_cf_get_primary_config(cf);
if(!conn_config) {
result = CURLE_FAILED_INIT;
goto out;
}
ssl_ctx = wolfSSL_CTX_new(wolfTLSv1_3_client_method());
if(!ssl_ctx) {
result = CURLE_OUT_OF_MEMORY;
goto out;
}
if(ngtcp2_crypto_wolfssl_configure_client_context(ssl_ctx) != 0) {
failf(data, "ngtcp2_crypto_wolfssl_configure_client_context failed");
result = CURLE_FAILED_INIT;
goto out;
}
wolfSSL_CTX_set_default_verify_paths(ssl_ctx);
if(wolfSSL_CTX_set_cipher_list(ssl_ctx, conn_config->cipher_list13 ?
conn_config->cipher_list13 :
QUIC_CIPHERS) != 1) {
char error_buffer[256];
ERR_error_string_n(ERR_get_error(), error_buffer, sizeof(error_buffer));
failf(data, "wolfSSL failed to set ciphers: %s", error_buffer);
goto out;
}
if(wolfSSL_CTX_set1_groups_list(ssl_ctx, conn_config->curves ?
conn_config->curves :
(char *)QUIC_GROUPS) != 1) {
failf(data, "wolfSSL failed to set curves");
goto out;
}
/* Open the file if a TLS or QUIC backend has not done this before. */
Curl_tls_keylog_open();
if(Curl_tls_keylog_enabled()) {
#if defined(HAVE_SECRET_CALLBACK)
wolfSSL_CTX_set_keylog_callback(ssl_ctx, keylog_callback);
#else
failf(data, "wolfSSL was built without keylog callback");
goto out;
#endif
}
if(conn_config->verifypeer) {
const char * const ssl_cafile = conn_config->CAfile;
const char * const ssl_capath = conn_config->CApath;
wolfSSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER, NULL);
if(ssl_cafile || ssl_capath) {
/* tell wolfSSL where to find CA certificates that are used to verify
the server's certificate. */
int rc =
wolfSSL_CTX_load_verify_locations_ex(ssl_ctx, ssl_cafile, ssl_capath,
WOLFSSL_LOAD_FLAG_IGNORE_ERR);
if(SSL_SUCCESS != rc) {
/* Fail if we insist on successfully verifying the server. */
failf(data, "error setting certificate verify locations:"
" CAfile: %s CApath: %s",
ssl_cafile ? ssl_cafile : "none",
ssl_capath ? ssl_capath : "none");
goto out;
}
infof(data, " CAfile: %s", ssl_cafile ? ssl_cafile : "none");
infof(data, " CApath: %s", ssl_capath ? ssl_capath : "none");
}
#ifdef CURL_CA_FALLBACK
else {
/* verifying the peer without any CA certificates won't work so
use wolfssl's built-in default as fallback */
wolfSSL_CTX_set_default_verify_paths(ssl_ctx);
}
#endif
}
else {
wolfSSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_NONE, NULL);
}
/* give application a chance to interfere with SSL set up. */
if(data->set.ssl.fsslctx) {
Curl_set_in_callback(data, true);
result = (*data->set.ssl.fsslctx)(data, ssl_ctx,
data->set.ssl.fsslctxp);
Curl_set_in_callback(data, false);
if(result) {
failf(data, "error signaled by ssl ctx callback");
goto out;
}
}
result = CURLE_OK;
out:
*pssl_ctx = result? NULL : ssl_ctx;
if(result && ssl_ctx)
SSL_CTX_free(ssl_ctx);
return result;
}
/** SSL callbacks ***/
static CURLcode quic_init_ssl(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
const uint8_t *alpn = NULL;
size_t alpnlen = 0;
/* this will need some attention when HTTPS proxy over QUIC get fixed */
const char * const hostname = cf->conn->host.name;
(void)data;
DEBUGASSERT(!ctx->ssl);
ctx->ssl = wolfSSL_new(ctx->sslctx);
wolfSSL_set_app_data(ctx->ssl, &ctx->conn_ref);
wolfSSL_set_connect_state(ctx->ssl);
wolfSSL_set_quic_use_legacy_codepoint(ctx->ssl, 0);
alpn = (const uint8_t *)H3_ALPN_H3_29 H3_ALPN_H3;
alpnlen = sizeof(H3_ALPN_H3_29) - 1 + sizeof(H3_ALPN_H3) - 1;
if(alpn)
wolfSSL_set_alpn_protos(ctx->ssl, alpn, (int)alpnlen);
/* set SNI */
wolfSSL_UseSNI(ctx->ssl, WOLFSSL_SNI_HOST_NAME,
hostname, (unsigned short)strlen(hostname));
return CURLE_OK;
}
#endif /* defined(USE_WOLFSSL) */
static int cb_handshake_completed(ngtcp2_conn *tconn, void *user_data)
{
(void)user_data;
(void)tconn;
return 0;
}
static void report_consumed_data(struct Curl_cfilter *cf,
struct Curl_easy *data,
size_t consumed)
{
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
struct cf_ngtcp2_ctx *ctx = cf->ctx;
if(!stream)
return;
/* the HTTP/1.1 response headers are written to the buffer, but
* consuming those does not count against flow control. */
if(stream->recv_buf_nonflow) {
if(consumed >= stream->recv_buf_nonflow) {
consumed -= stream->recv_buf_nonflow;
stream->recv_buf_nonflow = 0;
}
else {
stream->recv_buf_nonflow -= consumed;
consumed = 0;
}
}
if(consumed > 0) {
CURL_TRC_CF(data, cf, "[%" PRId64 "] ACK %zu bytes of DATA",
stream->id, consumed);
ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream->id,
consumed);
ngtcp2_conn_extend_max_offset(ctx->qconn, consumed);
}
}
static int cb_recv_stream_data(ngtcp2_conn *tconn, uint32_t flags,
int64_t stream_id, uint64_t offset,
const uint8_t *buf, size_t buflen,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
nghttp3_ssize nconsumed;
int fin = (flags & NGTCP2_STREAM_DATA_FLAG_FIN) ? 1 : 0;
struct Curl_easy *data = stream_user_data;
(void)offset;
(void)data;
nconsumed =
nghttp3_conn_read_stream(ctx->h3conn, stream_id, buf, buflen, fin);
CURL_TRC_CF(data, cf, "[%" PRId64 "] read_stream(len=%zu) -> %zd",
stream_id, buflen, nconsumed);
if(nconsumed < 0) {
ngtcp2_ccerr_set_application_error(
&ctx->last_error,
nghttp3_err_infer_quic_app_error_code((int)nconsumed), NULL, 0);
return NGTCP2_ERR_CALLBACK_FAILURE;
}
/* number of bytes inside buflen which consists of framing overhead
* including QPACK HEADERS. In other words, it does not consume payload of
* DATA frame. */
ngtcp2_conn_extend_max_stream_offset(tconn, stream_id, nconsumed);
ngtcp2_conn_extend_max_offset(tconn, nconsumed);
return 0;
}
static int
cb_acked_stream_data_offset(ngtcp2_conn *tconn, int64_t stream_id,
uint64_t offset, uint64_t datalen, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rv;
(void)stream_id;
(void)tconn;
(void)offset;
(void)datalen;
(void)stream_user_data;
rv = nghttp3_conn_add_ack_offset(ctx->h3conn, stream_id, datalen);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_stream_close(ngtcp2_conn *tconn, uint32_t flags,
int64_t stream3_id, uint64_t app_error_code,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct Curl_easy *data = stream_user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rv;
(void)tconn;
(void)data;
/* stream is closed... */
if(!(flags & NGTCP2_STREAM_CLOSE_FLAG_APP_ERROR_CODE_SET)) {
app_error_code = NGHTTP3_H3_NO_ERROR;
}
rv = nghttp3_conn_close_stream(ctx->h3conn, stream3_id,
app_error_code);
CURL_TRC_CF(data, cf, "[%" PRId64 "] quic close(err=%"
PRIu64 ") -> %d", stream3_id, app_error_code, rv);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
ngtcp2_ccerr_set_application_error(
&ctx->last_error, nghttp3_err_infer_quic_app_error_code(rv), NULL, 0);
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_stream_reset(ngtcp2_conn *tconn, int64_t stream_id,
uint64_t final_size, uint64_t app_error_code,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
int rv;
(void)tconn;
(void)final_size;
(void)app_error_code;
(void)data;
rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id);
CURL_TRC_CF(data, cf, "[%" PRId64 "] reset -> %d", stream_id, rv);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_stream_stop_sending(ngtcp2_conn *tconn, int64_t stream_id,
uint64_t app_error_code, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rv;
(void)tconn;
(void)app_error_code;
(void)stream_user_data;
rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_extend_max_local_streams_bidi(ngtcp2_conn *tconn,
uint64_t max_streams,
void *user_data)
{
(void)tconn;
(void)max_streams;
(void)user_data;
return 0;
}
static int cb_extend_max_stream_data(ngtcp2_conn *tconn, int64_t stream_id,
uint64_t max_data, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = CF_DATA_CURRENT(cf);
struct Curl_easy *s_data;
struct h3_stream_ctx *stream;
int rv;
(void)tconn;
(void)max_data;
(void)stream_user_data;
rv = nghttp3_conn_unblock_stream(ctx->h3conn, stream_id);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
s_data = get_stream_easy(cf, data, stream_id);
stream = H3_STREAM_CTX(s_data);
if(stream && stream->quic_flow_blocked) {
CURL_TRC_CF(data, cf, "[%" PRId64 "] unblock quic flow", stream_id);
stream->quic_flow_blocked = FALSE;
h3_drain_stream(cf, data);
}
return 0;
}
static void cb_rand(uint8_t *dest, size_t destlen,
const ngtcp2_rand_ctx *rand_ctx)
{
CURLcode result;
(void)rand_ctx;
result = Curl_rand(NULL, dest, destlen);
if(result) {
/* cb_rand is only used for non-cryptographic context. If Curl_rand
failed, just fill 0 and call it *random*. */
memset(dest, 0, destlen);
}
}
static int cb_get_new_connection_id(ngtcp2_conn *tconn, ngtcp2_cid *cid,
uint8_t *token, size_t cidlen,
void *user_data)
{
CURLcode result;
(void)tconn;
(void)user_data;
result = Curl_rand(NULL, cid->data, cidlen);
if(result)
return NGTCP2_ERR_CALLBACK_FAILURE;
cid->datalen = cidlen;
result = Curl_rand(NULL, token, NGTCP2_STATELESS_RESET_TOKENLEN);
if(result)
return NGTCP2_ERR_CALLBACK_FAILURE;
return 0;
}
static int cb_recv_rx_key(ngtcp2_conn *tconn, ngtcp2_encryption_level level,
void *user_data)
{
struct Curl_cfilter *cf = user_data;
(void)tconn;
if(level != NGTCP2_ENCRYPTION_LEVEL_1RTT) {
return 0;
}
if(init_ngh3_conn(cf) != CURLE_OK) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static ngtcp2_callbacks ng_callbacks = {
ngtcp2_crypto_client_initial_cb,
NULL, /* recv_client_initial */
ngtcp2_crypto_recv_crypto_data_cb,
cb_handshake_completed,
NULL, /* recv_version_negotiation */
ngtcp2_crypto_encrypt_cb,
ngtcp2_crypto_decrypt_cb,
ngtcp2_crypto_hp_mask_cb,
cb_recv_stream_data,
cb_acked_stream_data_offset,
NULL, /* stream_open */
cb_stream_close,
NULL, /* recv_stateless_reset */
ngtcp2_crypto_recv_retry_cb,
cb_extend_max_local_streams_bidi,
NULL, /* extend_max_local_streams_uni */
cb_rand,
cb_get_new_connection_id,
NULL, /* remove_connection_id */
ngtcp2_crypto_update_key_cb, /* update_key */
NULL, /* path_validation */
NULL, /* select_preferred_addr */
cb_stream_reset,
NULL, /* extend_max_remote_streams_bidi */
NULL, /* extend_max_remote_streams_uni */
cb_extend_max_stream_data,
NULL, /* dcid_status */
NULL, /* handshake_confirmed */
NULL, /* recv_new_token */
ngtcp2_crypto_delete_crypto_aead_ctx_cb,
ngtcp2_crypto_delete_crypto_cipher_ctx_cb,
NULL, /* recv_datagram */
NULL, /* ack_datagram */
NULL, /* lost_datagram */
ngtcp2_crypto_get_path_challenge_data_cb,
cb_stream_stop_sending,
NULL, /* version_negotiation */
cb_recv_rx_key,
NULL, /* recv_tx_key */
NULL, /* early_data_rejected */
};
/**
* Connection maintenance like timeouts on packet ACKs etc. are done by us, not
* the OS like for TCP. POLL events on the socket therefore are not
* sufficient.
* ngtcp2 tells us when it wants to be invoked again. We handle that via
* the `Curl_expire()` mechanisms.
*/
static CURLcode check_and_set_expiry(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct pkt_io_ctx local_pktx;
ngtcp2_tstamp expiry;
if(!pktx) {
pktx_init(&local_pktx, cf, data);
pktx = &local_pktx;
}
else {
pktx_update_time(pktx, cf);
}
expiry = ngtcp2_conn_get_expiry(ctx->qconn);
if(expiry != UINT64_MAX) {
if(expiry <= pktx->ts) {
CURLcode result;
int rv = ngtcp2_conn_handle_expiry(ctx->qconn, pktx->ts);
if(rv) {
failf(data, "ngtcp2_conn_handle_expiry returned error: %s",
ngtcp2_strerror(rv));
ngtcp2_ccerr_set_liberr(&ctx->last_error, rv, NULL, 0);
return CURLE_SEND_ERROR;
}
result = cf_progress_ingress(cf, data, pktx);
if(result)
return result;
result = cf_progress_egress(cf, data, pktx);
if(result)
return result;
/* ask again, things might have changed */
expiry = ngtcp2_conn_get_expiry(ctx->qconn);
}
if(expiry > pktx->ts) {
ngtcp2_duration timeout = expiry - pktx->ts;
if(timeout % NGTCP2_MILLISECONDS) {
timeout += NGTCP2_MILLISECONDS;
}
Curl_expire(data, timeout / NGTCP2_MILLISECONDS, EXPIRE_QUIC);
}
}
return CURLE_OK;
}
static void cf_ngtcp2_adjust_pollset(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct easy_pollset *ps)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
bool want_recv = CURL_WANT_RECV(data);
bool want_send = CURL_WANT_SEND(data);
if(ctx->qconn && (want_recv || want_send)) {
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
struct cf_call_data save;
bool c_exhaust, s_exhaust;
CF_DATA_SAVE(save, cf, data);
c_exhaust = !ngtcp2_conn_get_cwnd_left(ctx->qconn) ||
!ngtcp2_conn_get_max_data_left(ctx->qconn);
s_exhaust = stream && stream->id >= 0 && stream->quic_flow_blocked;
want_recv = (want_recv || c_exhaust || s_exhaust);
want_send = (!s_exhaust && want_send) ||
!Curl_bufq_is_empty(&ctx->q.sendbuf);
Curl_pollset_set(data, ps, ctx->q.sockfd, want_recv, want_send);
CF_DATA_RESTORE(cf, save);
}
}
static int cb_h3_stream_close(nghttp3_conn *conn, int64_t stream_id,
uint64_t app_error_code, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
(void)conn;
(void)stream_id;
/* we might be called by nghttp3 after we already cleaned up */
if(!stream)
return 0;
stream->closed = TRUE;
stream->error3 = app_error_code;
if(stream->error3 != NGHTTP3_H3_NO_ERROR) {
stream->reset = TRUE;
stream->send_closed = TRUE;
CURL_TRC_CF(data, cf, "[%" PRId64 "] RESET: error %" PRId64,
stream->id, stream->error3);
}
else {
CURL_TRC_CF(data, cf, "[%" PRId64 "] CLOSED", stream->id);
}
h3_drain_stream(cf, data);
return 0;
}
/*
* write_resp_raw() copies response data in raw format to the `data`'s
* receive buffer. If not enough space is available, it appends to the
* `data`'s overflow buffer.
*/
static CURLcode write_resp_raw(struct Curl_cfilter *cf,
struct Curl_easy *data,
const void *mem, size_t memlen,
bool flow)
{
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
CURLcode result = CURLE_OK;
ssize_t nwritten;
(void)cf;
if(!stream) {
return CURLE_RECV_ERROR;
}
nwritten = Curl_bufq_write(&stream->recvbuf, mem, memlen, &result);
if(nwritten < 0) {
return result;
}
if(!flow)
stream->recv_buf_nonflow += (size_t)nwritten;
if((size_t)nwritten < memlen) {
/* This MUST not happen. Our recbuf is dimensioned to hold the
* full max_stream_window and then some for this very reason. */
DEBUGASSERT(0);
return CURLE_RECV_ERROR;
}
return result;
}
static int cb_h3_recv_data(nghttp3_conn *conn, int64_t stream3_id,
const uint8_t *buf, size_t buflen,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
CURLcode result;
(void)conn;
(void)stream3_id;
if(!stream)
return NGHTTP3_ERR_CALLBACK_FAILURE;
result = write_resp_raw(cf, data, buf, buflen, TRUE);
if(result) {
CURL_TRC_CF(data, cf, "[%" PRId64 "] DATA len=%zu, ERROR receiving %d",
stream->id, buflen, result);
return NGHTTP3_ERR_CALLBACK_FAILURE;
}
CURL_TRC_CF(data, cf, "[%" PRId64 "] DATA len=%zu", stream->id, buflen);
h3_drain_stream(cf, data);
return 0;
}
static int cb_h3_deferred_consume(nghttp3_conn *conn, int64_t stream3_id,
size_t consumed, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
(void)conn;
(void)stream_user_data;
/* nghttp3 has consumed bytes on the QUIC stream and we need to
* tell the QUIC connection to increase its flow control */
ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream3_id, consumed);
ngtcp2_conn_extend_max_offset(ctx->qconn, consumed);
return 0;
}
static int cb_h3_end_headers(nghttp3_conn *conn, int64_t stream_id,
int fin, void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
CURLcode result = CURLE_OK;
(void)conn;
(void)stream_id;
(void)fin;
(void)cf;
if(!stream)
return 0;
/* add a CRLF only if we've received some headers */
result = write_resp_raw(cf, data, "\r\n", 2, FALSE);
if(result) {
return -1;
}
CURL_TRC_CF(data, cf, "[%" PRId64 "] end_headers, status=%d",
stream_id, stream->status_code);
if(stream->status_code / 100 != 1) {
stream->resp_hds_complete = TRUE;
}
h3_drain_stream(cf, data);
return 0;
}
static int cb_h3_recv_header(nghttp3_conn *conn, int64_t stream_id,
int32_t token, nghttp3_rcbuf *name,
nghttp3_rcbuf *value, uint8_t flags,
void *user_data, void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
nghttp3_vec h3name = nghttp3_rcbuf_get_buf(name);
nghttp3_vec h3val = nghttp3_rcbuf_get_buf(value);
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
CURLcode result = CURLE_OK;
(void)conn;
(void)stream_id;
(void)token;
(void)flags;
(void)cf;
/* we might have cleaned up this transfer already */
if(!stream)
return 0;
if(token == NGHTTP3_QPACK_TOKEN__STATUS) {
char line[14]; /* status line is always 13 characters long */
size_t ncopy;
result = Curl_http_decode_status(&stream->status_code,
(const char *)h3val.base, h3val.len);
if(result)
return -1;
ncopy = msnprintf(line, sizeof(line), "HTTP/3 %03d \r\n",
stream->status_code);
CURL_TRC_CF(data, cf, "[%" PRId64 "] status: %s", stream_id, line);
result = write_resp_raw(cf, data, line, ncopy, FALSE);
if(result) {
return -1;
}
}
else {
/* store as an HTTP1-style header */
CURL_TRC_CF(data, cf, "[%" PRId64 "] header: %.*s: %.*s",
stream_id, (int)h3name.len, h3name.base,
(int)h3val.len, h3val.base);
result = write_resp_raw(cf, data, h3name.base, h3name.len, FALSE);
if(result) {
return -1;
}
result = write_resp_raw(cf, data, ": ", 2, FALSE);
if(result) {
return -1;
}
result = write_resp_raw(cf, data, h3val.base, h3val.len, FALSE);
if(result) {
return -1;
}
result = write_resp_raw(cf, data, "\r\n", 2, FALSE);
if(result) {
return -1;
}
}
return 0;
}
static int cb_h3_stop_sending(nghttp3_conn *conn, int64_t stream_id,
uint64_t app_error_code, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rv;
(void)conn;
(void)stream_user_data;
rv = ngtcp2_conn_shutdown_stream_read(ctx->qconn, 0, stream_id,
app_error_code);
if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static int cb_h3_reset_stream(nghttp3_conn *conn, int64_t stream_id,
uint64_t app_error_code, void *user_data,
void *stream_user_data) {
struct Curl_cfilter *cf = user_data;
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct Curl_easy *data = stream_user_data;
int rv;
(void)conn;
(void)data;
rv = ngtcp2_conn_shutdown_stream_write(ctx->qconn, 0, stream_id,
app_error_code);
CURL_TRC_CF(data, cf, "[%" PRId64 "] reset -> %d", stream_id, rv);
if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
return 0;
}
static nghttp3_callbacks ngh3_callbacks = {
cb_h3_acked_req_body, /* acked_stream_data */
cb_h3_stream_close,
cb_h3_recv_data,
cb_h3_deferred_consume,
NULL, /* begin_headers */
cb_h3_recv_header,
cb_h3_end_headers,
NULL, /* begin_trailers */
cb_h3_recv_header,
NULL, /* end_trailers */
cb_h3_stop_sending,
NULL, /* end_stream */
cb_h3_reset_stream,
NULL, /* shutdown */
NULL /* recv_settings */
};
static int init_ngh3_conn(struct Curl_cfilter *cf)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
CURLcode result;
int rc;
int64_t ctrl_stream_id, qpack_enc_stream_id, qpack_dec_stream_id;
if(ngtcp2_conn_get_streams_uni_left(ctx->qconn) < 3) {
return CURLE_QUIC_CONNECT_ERROR;
}
nghttp3_settings_default(&ctx->h3settings);
rc = nghttp3_conn_client_new(&ctx->h3conn,
&ngh3_callbacks,
&ctx->h3settings,
nghttp3_mem_default(),
cf);
if(rc) {
result = CURLE_OUT_OF_MEMORY;
goto fail;
}
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &ctrl_stream_id, NULL);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = nghttp3_conn_bind_control_stream(ctx->h3conn, ctrl_stream_id);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_enc_stream_id, NULL);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_dec_stream_id, NULL);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
rc = nghttp3_conn_bind_qpack_streams(ctx->h3conn, qpack_enc_stream_id,
qpack_dec_stream_id);
if(rc) {
result = CURLE_QUIC_CONNECT_ERROR;
goto fail;
}
return CURLE_OK;
fail:
return result;
}
static ssize_t recv_closed_stream(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct h3_stream_ctx *stream,
CURLcode *err)
{
ssize_t nread = -1;
(void)cf;
if(stream->reset) {
failf(data,
"HTTP/3 stream %" PRId64 " reset by server", stream->id);
*err = stream->resp_hds_complete? CURLE_PARTIAL_FILE : CURLE_HTTP3;
goto out;
}
else if(!stream->resp_hds_complete) {
failf(data,
"HTTP/3 stream %" PRId64 " was closed cleanly, but before getting"
" all response header fields, treated as error",
stream->id);
*err = CURLE_HTTP3;
goto out;
}
*err = CURLE_OK;
nread = 0;
out:
return nread;
}
/* incoming data frames on the h3 stream */
static ssize_t cf_ngtcp2_recv(struct Curl_cfilter *cf, struct Curl_easy *data,
char *buf, size_t len, CURLcode *err)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
ssize_t nread = -1;
struct cf_call_data save;
struct pkt_io_ctx pktx;
(void)ctx;
CF_DATA_SAVE(save, cf, data);
DEBUGASSERT(cf->connected);
DEBUGASSERT(ctx);
DEBUGASSERT(ctx->qconn);
DEBUGASSERT(ctx->h3conn);
*err = CURLE_OK;
pktx_init(&pktx, cf, data);
if(!stream) {
*err = CURLE_RECV_ERROR;
goto out;
}
if(!Curl_bufq_is_empty(&stream->recvbuf)) {
nread = Curl_bufq_read(&stream->recvbuf,
(unsigned char *)buf, len, err);
if(nread < 0) {
CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) "
"-> %zd, %d", stream->id, len, nread, *err);
goto out;
}
report_consumed_data(cf, data, nread);
}
if(cf_progress_ingress(cf, data, &pktx)) {
*err = CURLE_RECV_ERROR;
nread = -1;
goto out;
}
/* recvbuf had nothing before, maybe after progressing ingress? */
if(nread < 0 && !Curl_bufq_is_empty(&stream->recvbuf)) {
nread = Curl_bufq_read(&stream->recvbuf,
(unsigned char *)buf, len, err);
if(nread < 0) {
CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) "
"-> %zd, %d", stream->id, len, nread, *err);
goto out;
}
report_consumed_data(cf, data, nread);
}
if(nread > 0) {
h3_drain_stream(cf, data);
}
else {
if(stream->closed) {
nread = recv_closed_stream(cf, data, stream, err);
goto out;
}
*err = CURLE_AGAIN;
nread = -1;
}
out:
if(cf_progress_egress(cf, data, &pktx)) {
*err = CURLE_SEND_ERROR;
nread = -1;
}
else {
CURLcode result2 = check_and_set_expiry(cf, data, &pktx);
if(result2) {
*err = result2;
nread = -1;
}
}
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_recv(len=%zu) -> %zd, %d",
stream? stream->id : -1, len, nread, *err);
CF_DATA_RESTORE(cf, save);
return nread;
}
static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id,
uint64_t datalen, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
size_t skiplen;
(void)cf;
if(!stream)
return 0;
/* The server acknowledged `datalen` of bytes from our request body.
* This is a delta. We have kept this data in `sendbuf` for
* re-transmissions and can free it now. */
if(datalen >= (uint64_t)stream->sendbuf_len_in_flight)
skiplen = stream->sendbuf_len_in_flight;
else
skiplen = (size_t)datalen;
Curl_bufq_skip(&stream->sendbuf, skiplen);
stream->sendbuf_len_in_flight -= skiplen;
/* Everything ACKed, we resume upload processing */
if(!stream->sendbuf_len_in_flight) {
int rv = nghttp3_conn_resume_stream(conn, stream_id);
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
return NGTCP2_ERR_CALLBACK_FAILURE;
}
}
return 0;
}
static nghttp3_ssize
cb_h3_read_req_body(nghttp3_conn *conn, int64_t stream_id,
nghttp3_vec *vec, size_t veccnt,
uint32_t *pflags, void *user_data,
void *stream_user_data)
{
struct Curl_cfilter *cf = user_data;
struct Curl_easy *data = stream_user_data;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
ssize_t nwritten = 0;
size_t nvecs = 0;
(void)cf;
(void)conn;
(void)stream_id;
(void)user_data;
(void)veccnt;
if(!stream)
return NGHTTP3_ERR_CALLBACK_FAILURE;
/* nghttp3 keeps references to the sendbuf data until it is ACKed
* by the server (see `cb_h3_acked_req_body()` for updates).
* `sendbuf_len_in_flight` is the amount of bytes in `sendbuf`
* that we have already passed to nghttp3, but which have not been
* ACKed yet.
* Any amount beyond `sendbuf_len_in_flight` we need still to pass
* to nghttp3. Do that now, if we can. */
if(stream->sendbuf_len_in_flight < Curl_bufq_len(&stream->sendbuf)) {
nvecs = 0;
while(nvecs < veccnt &&
Curl_bufq_peek_at(&stream->sendbuf,
stream->sendbuf_len_in_flight,
(const unsigned char **)&vec[nvecs].base,
&vec[nvecs].len)) {
stream->sendbuf_len_in_flight += vec[nvecs].len;
nwritten += vec[nvecs].len;
++nvecs;
}
DEBUGASSERT(nvecs > 0); /* we SHOULD have been be able to peek */
}
if(nwritten > 0 && stream->upload_left != -1)
stream->upload_left -= nwritten;
/* When we stopped sending and everything in `sendbuf` is "in flight",
* we are at the end of the request body. */
if(stream->upload_left == 0) {
*pflags = NGHTTP3_DATA_FLAG_EOF;
stream->send_closed = TRUE;
}
else if(!nwritten) {
/* Not EOF, and nothing to give, we signal WOULDBLOCK. */
CURL_TRC_CF(data, cf, "[%" PRId64 "] read req body -> AGAIN",
stream->id);
return NGHTTP3_ERR_WOULDBLOCK;
}
CURL_TRC_CF(data, cf, "[%" PRId64 "] read req body -> "
"%d vecs%s with %zu (buffered=%zu, left=%"
CURL_FORMAT_CURL_OFF_T ")",
stream->id, (int)nvecs,
*pflags == NGHTTP3_DATA_FLAG_EOF?" EOF":"",
nwritten, Curl_bufq_len(&stream->sendbuf),
stream->upload_left);
return (nghttp3_ssize)nvecs;
}
/* Index where :authority header field will appear in request header
field list. */
#define AUTHORITY_DST_IDX 3
static ssize_t h3_stream_open(struct Curl_cfilter *cf,
struct Curl_easy *data,
const void *buf, size_t len,
CURLcode *err)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = NULL;
struct dynhds h2_headers;
size_t nheader;
nghttp3_nv *nva = NULL;
int rc = 0;
unsigned int i;
ssize_t nwritten = -1;
nghttp3_data_reader reader;
nghttp3_data_reader *preader = NULL;
Curl_dynhds_init(&h2_headers, 0, DYN_HTTP_REQUEST);
*err = h3_data_setup(cf, data);
if(*err)
goto out;
stream = H3_STREAM_CTX(data);
DEBUGASSERT(stream);
nwritten = Curl_h1_req_parse_read(&stream->h1, buf, len, NULL, 0, err);
if(nwritten < 0)
goto out;
if(!stream->h1.done) {
/* need more data */
goto out;
}
DEBUGASSERT(stream->h1.req);
*err = Curl_http_req_to_h2(&h2_headers, stream->h1.req, data);
if(*err) {
nwritten = -1;
goto out;
}
/* no longer needed */
Curl_h1_req_parse_free(&stream->h1);
nheader = Curl_dynhds_count(&h2_headers);
nva = malloc(sizeof(nghttp3_nv) * nheader);
if(!nva) {
*err = CURLE_OUT_OF_MEMORY;
nwritten = -1;
goto out;
}
for(i = 0; i < nheader; ++i) {
struct dynhds_entry *e = Curl_dynhds_getn(&h2_headers, i);
nva[i].name = (unsigned char *)e->name;
nva[i].namelen = e->namelen;
nva[i].value = (unsigned char *)e->value;
nva[i].valuelen = e->valuelen;
nva[i].flags = NGHTTP3_NV_FLAG_NONE;
}
rc = ngtcp2_conn_open_bidi_stream(ctx->qconn, &stream->id, NULL);
if(rc) {
failf(data, "can get bidi streams");
*err = CURLE_SEND_ERROR;
goto out;
}
switch(data->state.httpreq) {
case HTTPREQ_POST:
case HTTPREQ_POST_FORM:
case HTTPREQ_POST_MIME:
case HTTPREQ_PUT:
/* known request body size or -1 */
if(data->state.infilesize != -1)
stream->upload_left = data->state.infilesize;
else
/* data sending without specifying the data amount up front */
stream->upload_left = -1; /* unknown */
break;
default:
/* there is not request body */
stream->upload_left = 0; /* no request body */
break;
}
stream->send_closed = (stream->upload_left == 0);
if(!stream->send_closed) {
reader.read_data = cb_h3_read_req_body;
preader = &reader;
}
rc = nghttp3_conn_submit_request(ctx->h3conn, stream->id,
nva, nheader, preader, data);
if(rc) {
switch(rc) {
case NGHTTP3_ERR_CONN_CLOSING:
CURL_TRC_CF(data, cf, "h3sid[%"PRId64"] failed to send, "
"connection is closing", stream->id);
break;
default:
CURL_TRC_CF(data, cf, "h3sid[%"PRId64"] failed to send -> %d (%s)",
stream->id, rc, ngtcp2_strerror(rc));
break;
}
*err = CURLE_SEND_ERROR;
nwritten = -1;
goto out;
}
if(Curl_trc_is_verbose(data)) {
infof(data, "[HTTP/3] [%" PRId64 "] OPENED stream for %s",
stream->id, data->state.url);
for(i = 0; i < nheader; ++i) {
infof(data, "[HTTP/3] [%" PRId64 "] [%.*s: %.*s]", stream->id,
(int)nva[i].namelen, nva[i].name,
(int)nva[i].valuelen, nva[i].value);
}
}
out:
free(nva);
Curl_dynhds_free(&h2_headers);
return nwritten;
}
static ssize_t cf_ngtcp2_send(struct Curl_cfilter *cf, struct Curl_easy *data,
const void *buf, size_t len, CURLcode *err)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
ssize_t sent = 0;
struct cf_call_data save;
struct pkt_io_ctx pktx;
CURLcode result;
CF_DATA_SAVE(save, cf, data);
DEBUGASSERT(cf->connected);
DEBUGASSERT(ctx->qconn);
DEBUGASSERT(ctx->h3conn);
pktx_init(&pktx, cf, data);
*err = CURLE_OK;
result = cf_progress_ingress(cf, data, &pktx);
if(result) {
*err = result;
sent = -1;
}
if(!stream || stream->id < 0) {
sent = h3_stream_open(cf, data, buf, len, err);
if(sent < 0) {
CURL_TRC_CF(data, cf, "failed to open stream -> %d", *err);
goto out;
}
stream = H3_STREAM_CTX(data);
}
else if(stream->upload_blocked_len) {
/* the data in `buf` has already been submitted or added to the
* buffers, but have been EAGAINed on the last invocation. */
DEBUGASSERT(len >= stream->upload_blocked_len);
if(len < stream->upload_blocked_len) {
/* Did we get called again with a smaller `len`? This should not
* happen. We are not prepared to handle that. */
failf(data, "HTTP/3 send again with decreased length");
*err = CURLE_HTTP3;
sent = -1;
goto out;
}
sent = (ssize_t)stream->upload_blocked_len;
stream->upload_blocked_len = 0;
}
else if(stream->closed) {
if(stream->resp_hds_complete) {
/* Server decided to close the stream after having sent us a final
* response. This is valid if it is not interested in the request
* body. This happens on 30x or 40x responses.
* We silently discard the data sent, since this is not a transport
* error situation. */
CURL_TRC_CF(data, cf, "[%" PRId64 "] discarding data"
"on closed stream with response", stream->id);
*err = CURLE_OK;
sent = (ssize_t)len;
goto out;
}
*err = CURLE_HTTP3;
sent = -1;
goto out;
}
else {
sent = Curl_bufq_write(&stream->sendbuf, buf, len, err);
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send, add to "
"sendbuf(len=%zu) -> %zd, %d",
stream->id, len, sent, *err);
if(sent < 0) {
goto out;
}
(void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id);
}
result = cf_progress_egress(cf, data, &pktx);
if(result) {
*err = result;
sent = -1;
}
if(stream && sent > 0 && stream->sendbuf_len_in_flight) {
/* We have unacknowledged DATA and cannot report success to our
* caller. Instead we EAGAIN and remember how much we have already
* "written" into our various internal connection buffers. */
stream->upload_blocked_len = sent;
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send(len=%zu), "
"%zu bytes in flight -> EGAIN", stream->id, len,
stream->sendbuf_len_in_flight);
*err = CURLE_AGAIN;
sent = -1;
}
out:
result = check_and_set_expiry(cf, data, &pktx);
if(result) {
*err = result;
sent = -1;
}
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send(len=%zu) -> %zd, %d",
stream? stream->id : -1, len, sent, *err);
CF_DATA_RESTORE(cf, save);
return sent;
}
static CURLcode qng_verify_peer(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct ssl_primary_config *conn_config;
CURLcode result = CURLE_OK;
conn_config = Curl_ssl_cf_get_primary_config(cf);
if(!conn_config)
return CURLE_FAILED_INIT;
cf->conn->bits.multiplex = TRUE; /* at least potentially multiplexed */
cf->conn->httpversion = 30;
cf->conn->bundle->multiuse = BUNDLE_MULTIPLEX;
if(conn_config->verifyhost) {
#ifdef USE_OPENSSL
X509 *server_cert;
server_cert = SSL_get1_peer_certificate(ctx->ssl);
if(!server_cert) {
return CURLE_PEER_FAILED_VERIFICATION;
}
result = Curl_ossl_verifyhost(data, cf->conn, &ctx->peer, server_cert);
X509_free(server_cert);
if(result)
return result;
#elif defined(USE_GNUTLS)
result = Curl_gtls_verifyserver(data, ctx->gtls->session,
conn_config, &data->set.ssl, &ctx->peer,
data->set.str[STRING_SSL_PINNEDPUBLICKEY]);
if(result)
return result;
#elif defined(USE_WOLFSSL)
if(!ctx->peer.sni ||
wolfSSL_check_domain_name(ctx->ssl, ctx->peer.sni) == SSL_FAILURE)
return CURLE_PEER_FAILED_VERIFICATION;
#endif
infof(data, "Verified certificate just fine");
}
else
infof(data, "Skipped certificate verification");
#ifdef USE_OPENSSL
if(data->set.ssl.certinfo)
/* asked to gather certificate info */
(void)Curl_ossl_certchain(data, ctx->ssl);
#endif
return result;
}
static CURLcode recv_pkt(const unsigned char *pkt, size_t pktlen,
struct sockaddr_storage *remote_addr,
socklen_t remote_addrlen, int ecn,
void *userp)
{
struct pkt_io_ctx *pktx = userp;
struct cf_ngtcp2_ctx *ctx = pktx->cf->ctx;
ngtcp2_pkt_info pi;
ngtcp2_path path;
int rv;
++pktx->pkt_count;
ngtcp2_addr_init(&path.local, (struct sockaddr *)&ctx->q.local_addr,
ctx->q.local_addrlen);
ngtcp2_addr_init(&path.remote, (struct sockaddr *)remote_addr,
remote_addrlen);
pi.ecn = (uint8_t)ecn;
rv = ngtcp2_conn_read_pkt(ctx->qconn, &path, &pi, pkt, pktlen, pktx->ts);
if(rv) {
CURL_TRC_CF(pktx->data, pktx->cf, "ingress, read_pkt -> %s",
ngtcp2_strerror(rv));
if(!ctx->last_error.error_code) {
if(rv == NGTCP2_ERR_CRYPTO) {
ngtcp2_ccerr_set_tls_alert(&ctx->last_error,
ngtcp2_conn_get_tls_alert(ctx->qconn),
NULL, 0);
}
else {
ngtcp2_ccerr_set_liberr(&ctx->last_error, rv, NULL, 0);
}
}
if(rv == NGTCP2_ERR_CRYPTO)
/* this is a "TLS problem", but a failed certificate verification
is a common reason for this */
return CURLE_PEER_FAILED_VERIFICATION;
return CURLE_RECV_ERROR;
}
return CURLE_OK;
}
static CURLcode cf_progress_ingress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct pkt_io_ctx local_pktx;
size_t pkts_chunk = 128, i;
size_t pkts_max = 10 * pkts_chunk;
CURLcode result = CURLE_OK;
if(!pktx) {
pktx_init(&local_pktx, cf, data);
pktx = &local_pktx;
}
else {
pktx_update_time(pktx, cf);
}
#ifdef USE_OPENSSL
if(!ctx->x509_store_setup) {
result = Curl_ssl_setup_x509_store(cf, data, ctx->sslctx);
if(result)
return result;
ctx->x509_store_setup = TRUE;
}
#endif
for(i = 0; i < pkts_max; i += pkts_chunk) {
pktx->pkt_count = 0;
result = vquic_recv_packets(cf, data, &ctx->q, pkts_chunk,
recv_pkt, pktx);
if(result) /* error */
break;
if(pktx->pkt_count < pkts_chunk) /* got less than we could */
break;
/* give egress a chance before we receive more */
result = cf_progress_egress(cf, data, pktx);
if(result) /* error */
break;
}
return result;
}
/**
* Read a network packet to send from ngtcp2 into `buf`.
* Return number of bytes written or -1 with *err set.
*/
static ssize_t read_pkt_to_send(void *userp,
unsigned char *buf, size_t buflen,
CURLcode *err)
{
struct pkt_io_ctx *x = userp;
struct cf_ngtcp2_ctx *ctx = x->cf->ctx;
nghttp3_vec vec[16];
nghttp3_ssize veccnt;
ngtcp2_ssize ndatalen;
uint32_t flags;
int64_t stream_id;
int fin;
ssize_t nwritten, n;
veccnt = 0;
stream_id = -1;
fin = 0;
/* ngtcp2 may want to put several frames from different streams into
* this packet. `NGTCP2_WRITE_STREAM_FLAG_MORE` tells it to do so.
* When `NGTCP2_ERR_WRITE_MORE` is returned, we *need* to make
* another iteration.
* When ngtcp2 is happy (because it has no other frame that would fit
* or it has nothing more to send), it returns the total length
* of the assembled packet. This may be 0 if there was nothing to send. */
nwritten = 0;
*err = CURLE_OK;
for(;;) {
if(ctx->h3conn && ngtcp2_conn_get_max_data_left(ctx->qconn)) {
veccnt = nghttp3_conn_writev_stream(ctx->h3conn, &stream_id, &fin, vec,
sizeof(vec) / sizeof(vec[0]));
if(veccnt < 0) {
failf(x->data, "nghttp3_conn_writev_stream returned error: %s",
nghttp3_strerror((int)veccnt));
ngtcp2_ccerr_set_application_error(
&ctx->last_error,
nghttp3_err_infer_quic_app_error_code((int)veccnt), NULL, 0);
*err = CURLE_SEND_ERROR;
return -1;
}
}
flags = NGTCP2_WRITE_STREAM_FLAG_MORE |
(fin ? NGTCP2_WRITE_STREAM_FLAG_FIN : 0);
n = ngtcp2_conn_writev_stream(ctx->qconn, &x->ps.path,
NULL, buf, buflen,
&ndatalen, flags, stream_id,
(const ngtcp2_vec *)vec, veccnt, x->ts);
if(n == 0) {
/* nothing to send */
*err = CURLE_AGAIN;
nwritten = -1;
goto out;
}
else if(n < 0) {
switch(n) {
case NGTCP2_ERR_STREAM_DATA_BLOCKED: {
struct h3_stream_ctx *stream = H3_STREAM_CTX(x->data);
DEBUGASSERT(ndatalen == -1);
nghttp3_conn_block_stream(ctx->h3conn, stream_id);
CURL_TRC_CF(x->data, x->cf, "[%" PRId64 "] block quic flow",
stream_id);
DEBUGASSERT(stream);
if(stream)
stream->quic_flow_blocked = TRUE;
n = 0;
break;
}
case NGTCP2_ERR_STREAM_SHUT_WR:
DEBUGASSERT(ndatalen == -1);
nghttp3_conn_shutdown_stream_write(ctx->h3conn, stream_id);
n = 0;
break;
case NGTCP2_ERR_WRITE_MORE:
/* ngtcp2 wants to send more. update the flow of the stream whose data
* is in the buffer and continue */
DEBUGASSERT(ndatalen >= 0);
n = 0;
break;
default:
DEBUGASSERT(ndatalen == -1);
failf(x->data, "ngtcp2_conn_writev_stream returned error: %s",
ngtcp2_strerror((int)n));
ngtcp2_ccerr_set_liberr(&ctx->last_error, (int)n, NULL, 0);
*err = CURLE_SEND_ERROR;
nwritten = -1;
goto out;
}
}
if(ndatalen >= 0) {
/* we add the amount of data bytes to the flow windows */
int rv = nghttp3_conn_add_write_offset(ctx->h3conn, stream_id, ndatalen);
if(rv) {
failf(x->data, "nghttp3_conn_add_write_offset returned error: %s\n",
nghttp3_strerror(rv));
return CURLE_SEND_ERROR;
}
}
if(n > 0) {
/* packet assembled, leave */
nwritten = n;
goto out;
}
}
out:
return nwritten;
}
static CURLcode cf_progress_egress(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
ssize_t nread;
size_t max_payload_size, path_max_payload_size, max_pktcnt;
size_t pktcnt = 0;
size_t gsolen = 0; /* this disables gso until we have a clue */
CURLcode curlcode;
struct pkt_io_ctx local_pktx;
if(!pktx) {
pktx_init(&local_pktx, cf, data);
pktx = &local_pktx;
}
else {
pktx_update_time(pktx, cf);
ngtcp2_path_storage_zero(&pktx->ps);
}
curlcode = vquic_flush(cf, data, &ctx->q);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
/* In UDP, there is a maximum theoretical packet paload length and
* a minimum payload length that is "guarantueed" to work.
* To detect if this minimum payload can be increased, ngtcp2 sends
* now and then a packet payload larger than the minimum. It that
* is ACKed by the peer, both parties know that it works and
* the subsequent packets can use a larger one.
* This is called PMTUD (Path Maximum Transmission Unit Discovery).
* Since a PMTUD might be rejected right on send, we do not want it
* be followed by other packets of lesser size. Because those would
* also fail then. So, if we detect a PMTUD while buffering, we flush.
*/
max_payload_size = ngtcp2_conn_get_max_tx_udp_payload_size(ctx->qconn);
path_max_payload_size =
ngtcp2_conn_get_path_max_tx_udp_payload_size(ctx->qconn);
/* maximum number of packets buffered before we flush to the socket */
max_pktcnt = CURLMIN(MAX_PKT_BURST,
ctx->q.sendbuf.chunk_size / max_payload_size);
for(;;) {
/* add the next packet to send, if any, to our buffer */
nread = Curl_bufq_sipn(&ctx->q.sendbuf, max_payload_size,
read_pkt_to_send, pktx, &curlcode);
if(nread < 0) {
if(curlcode != CURLE_AGAIN)
return curlcode;
/* Nothing more to add, flush and leave */
curlcode = vquic_send(cf, data, &ctx->q, gsolen);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
goto out;
}
DEBUGASSERT(nread > 0);
if(pktcnt == 0) {
/* first packet in buffer. This is either of a known, "good"
* payload size or it is a PMTUD. We'll see. */
gsolen = (size_t)nread;
}
else if((size_t)nread > gsolen ||
(gsolen > path_max_payload_size && (size_t)nread != gsolen)) {
/* The just added packet is a PMTUD *or* the one(s) before the
* just added were PMTUD and the last one is smaller.
* Flush the buffer before the last add. */
curlcode = vquic_send_tail_split(cf, data, &ctx->q,
gsolen, nread, nread);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
pktcnt = 0;
continue;
}
if(++pktcnt >= max_pktcnt || (size_t)nread < gsolen) {
/* Reached MAX_PKT_BURST *or*
* the capacity of our buffer *or*
* last add was shorter than the previous ones, flush */
curlcode = vquic_send(cf, data, &ctx->q, gsolen);
if(curlcode) {
if(curlcode == CURLE_AGAIN) {
Curl_expire(data, 1, EXPIRE_QUIC);
return CURLE_OK;
}
return curlcode;
}
/* pktbuf has been completely sent */
pktcnt = 0;
}
}
out:
return CURLE_OK;
}
/*
* Called from transfer.c:data_pending to know if we should keep looping
* to receive more data from the connection.
*/
static bool cf_ngtcp2_data_pending(struct Curl_cfilter *cf,
const struct Curl_easy *data)
{
const struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
(void)cf;
return stream && !Curl_bufq_is_empty(&stream->recvbuf);
}
static CURLcode h3_data_pause(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool pause)
{
/* TODO: there seems right now no API in ngtcp2 to shrink/enlarge
* the streams windows. As we do in HTTP/2. */
if(!pause) {
h3_drain_stream(cf, data);
Curl_expire(data, 0, EXPIRE_RUN_NOW);
}
return CURLE_OK;
}
static CURLcode cf_ngtcp2_data_event(struct Curl_cfilter *cf,
struct Curl_easy *data,
int event, int arg1, void *arg2)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
CURLcode result = CURLE_OK;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
(void)arg1;
(void)arg2;
switch(event) {
case CF_CTRL_DATA_SETUP:
break;
case CF_CTRL_DATA_PAUSE:
result = h3_data_pause(cf, data, (arg1 != 0));
break;
case CF_CTRL_DATA_DETACH:
h3_data_done(cf, data);
break;
case CF_CTRL_DATA_DONE:
h3_data_done(cf, data);
break;
case CF_CTRL_DATA_DONE_SEND: {
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
if(stream && !stream->send_closed) {
stream->send_closed = TRUE;
stream->upload_left = Curl_bufq_len(&stream->sendbuf);
(void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id);
}
break;
}
case CF_CTRL_DATA_IDLE: {
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
CURL_TRC_CF(data, cf, "data idle");
if(stream && !stream->closed) {
result = check_and_set_expiry(cf, data, NULL);
if(result)
CURL_TRC_CF(data, cf, "data idle, check_and_set_expiry -> %d", result);
}
break;
}
default:
break;
}
CF_DATA_RESTORE(cf, save);
return result;
}
static void cf_ngtcp2_ctx_clear(struct cf_ngtcp2_ctx *ctx)
{
struct cf_call_data save = ctx->call_data;
if(ctx->qlogfd != -1) {
close(ctx->qlogfd);
}
#ifdef USE_OPENSSL
if(ctx->ssl)
SSL_free(ctx->ssl);
if(ctx->sslctx)
SSL_CTX_free(ctx->sslctx);
#elif defined(USE_GNUTLS)
if(ctx->gtls) {
if(ctx->gtls->cred)
gnutls_certificate_free_credentials(ctx->gtls->cred);
if(ctx->gtls->session)
gnutls_deinit(ctx->gtls->session);
free(ctx->gtls);
}
#elif defined(USE_WOLFSSL)
if(ctx->ssl)
wolfSSL_free(ctx->ssl);
if(ctx->sslctx)
wolfSSL_CTX_free(ctx->sslctx);
#endif
vquic_ctx_free(&ctx->q);
if(ctx->h3conn)
nghttp3_conn_del(ctx->h3conn);
if(ctx->qconn)
ngtcp2_conn_del(ctx->qconn);
Curl_bufcp_free(&ctx->stream_bufcp);
Curl_ssl_peer_cleanup(&ctx->peer);
memset(ctx, 0, sizeof(*ctx));
ctx->qlogfd = -1;
ctx->call_data = save;
}
static void cf_ngtcp2_close(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
if(ctx && ctx->qconn) {
char buffer[NGTCP2_MAX_UDP_PAYLOAD_SIZE];
struct pkt_io_ctx pktx;
ngtcp2_ssize rc;
CURL_TRC_CF(data, cf, "close");
pktx_init(&pktx, cf, data);
rc = ngtcp2_conn_write_connection_close(ctx->qconn, NULL, /* path */
NULL, /* pkt_info */
(uint8_t *)buffer, sizeof(buffer),
&ctx->last_error, pktx.ts);
if(rc > 0) {
while((send(ctx->q.sockfd, buffer, (SEND_TYPE_ARG3)rc, 0) == -1) &&
SOCKERRNO == EINTR);
}
cf_ngtcp2_ctx_clear(ctx);
}
cf->connected = FALSE;
CF_DATA_RESTORE(cf, save);
}
static void cf_ngtcp2_destroy(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
CURL_TRC_CF(data, cf, "destroy");
if(ctx) {
cf_ngtcp2_ctx_clear(ctx);
free(ctx);
}
cf->ctx = NULL;
/* No CF_DATA_RESTORE(cf, save) possible */
(void)save;
}
/*
* Might be called twice for happy eyeballs.
*/
static CURLcode cf_connect_start(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct pkt_io_ctx *pktx)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
int rc;
int rv;
CURLcode result;
const struct Curl_sockaddr_ex *sockaddr = NULL;
int qfd;
ctx->version = NGTCP2_PROTO_VER_MAX;
ctx->max_stream_window = H3_STREAM_WINDOW_SIZE;
ctx->max_idle_ms = CURL_QUIC_MAX_IDLE_MS;
Curl_bufcp_init(&ctx->stream_bufcp, H3_STREAM_CHUNK_SIZE,
H3_STREAM_POOL_SPARES);
result = Curl_ssl_peer_init(&ctx->peer, cf);
if(result)
return result;
#ifdef USE_OPENSSL
result = quic_ssl_ctx(&ctx->sslctx, cf, data);
if(result)
return result;
result = quic_set_client_cert(cf, data);
if(result)
return result;
#elif defined(USE_WOLFSSL)
result = quic_ssl_ctx(&ctx->sslctx, cf, data);
if(result)
return result;
#endif
result = quic_init_ssl(cf, data);
if(result)
return result;
ctx->dcid.datalen = NGTCP2_MAX_CIDLEN;
result = Curl_rand(data, ctx->dcid.data, NGTCP2_MAX_CIDLEN);
if(result)
return result;
ctx->scid.datalen = NGTCP2_MAX_CIDLEN;
result = Curl_rand(data, ctx->scid.data, NGTCP2_MAX_CIDLEN);
if(result)
return result;
(void)Curl_qlogdir(data, ctx->scid.data, NGTCP2_MAX_CIDLEN, &qfd);
ctx->qlogfd = qfd; /* -1 if failure above */
quic_settings(ctx, data, pktx);
result = vquic_ctx_init(&ctx->q);
if(result)
return result;
Curl_cf_socket_peek(cf->next, data, &ctx->q.sockfd,
&sockaddr, NULL, NULL, NULL, NULL);
if(!sockaddr)
return CURLE_QUIC_CONNECT_ERROR;
ctx->q.local_addrlen = sizeof(ctx->q.local_addr);
rv = getsockname(ctx->q.sockfd, (struct sockaddr *)&ctx->q.local_addr,
&ctx->q.local_addrlen);
if(rv == -1)
return CURLE_QUIC_CONNECT_ERROR;
ngtcp2_addr_init(&ctx->connected_path.local,
(struct sockaddr *)&ctx->q.local_addr,
ctx->q.local_addrlen);
ngtcp2_addr_init(&ctx->connected_path.remote,
&sockaddr->sa_addr, sockaddr->addrlen);
rc = ngtcp2_conn_client_new(&ctx->qconn, &ctx->dcid, &ctx->scid,
&ctx->connected_path,
NGTCP2_PROTO_VER_V1, &ng_callbacks,
&ctx->settings, &ctx->transport_params,
NULL, cf);
if(rc)
return CURLE_QUIC_CONNECT_ERROR;
#ifdef USE_GNUTLS
ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->gtls->session);
#else
ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->ssl);
#endif
ngtcp2_ccerr_default(&ctx->last_error);
ctx->conn_ref.get_conn = get_conn;
ctx->conn_ref.user_data = cf;
return CURLE_OK;
}
static CURLcode cf_ngtcp2_connect(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool blocking, bool *done)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
CURLcode result = CURLE_OK;
struct cf_call_data save;
struct curltime now;
struct pkt_io_ctx pktx;
if(cf->connected) {
*done = TRUE;
return CURLE_OK;
}
/* Connect the UDP filter first */
if(!cf->next->connected) {
result = Curl_conn_cf_connect(cf->next, data, blocking, done);
if(result || !*done)
return result;
}
*done = FALSE;
now = Curl_now();
pktx_init(&pktx, cf, data);
CF_DATA_SAVE(save, cf, data);
if(ctx->reconnect_at.tv_sec && Curl_timediff(now, ctx->reconnect_at) < 0) {
/* Not time yet to attempt the next connect */
CURL_TRC_CF(data, cf, "waiting for reconnect time");
goto out;
}
if(!ctx->qconn) {
ctx->started_at = now;
result = cf_connect_start(cf, data, &pktx);
if(result)
goto out;
result = cf_progress_egress(cf, data, &pktx);
/* we do not expect to be able to recv anything yet */
goto out;
}
result = cf_progress_ingress(cf, data, &pktx);
if(result)
goto out;
result = cf_progress_egress(cf, data, &pktx);
if(result)
goto out;
if(ngtcp2_conn_get_handshake_completed(ctx->qconn)) {
ctx->handshake_at = now;
CURL_TRC_CF(data, cf, "handshake complete after %dms",
(int)Curl_timediff(now, ctx->started_at));
result = qng_verify_peer(cf, data);
if(!result) {
CURL_TRC_CF(data, cf, "peer verified");
cf->connected = TRUE;
cf->conn->alpn = CURL_HTTP_VERSION_3;
*done = TRUE;
connkeep(cf->conn, "HTTP/3 default");
}
}
out:
if(result == CURLE_RECV_ERROR && ctx->qconn &&
ngtcp2_conn_in_draining_period(ctx->qconn)) {
/* When a QUIC server instance is shutting down, it may send us a
* CONNECTION_CLOSE right away. Our connection then enters the DRAINING
* state. The CONNECT may work in the near future again. Indicate
* that as a "weird" reply. */
result = CURLE_WEIRD_SERVER_REPLY;
}
#ifndef CURL_DISABLE_VERBOSE_STRINGS
if(result) {
const char *r_ip = NULL;
int r_port = 0;
Curl_cf_socket_peek(cf->next, data, NULL, NULL,
&r_ip, &r_port, NULL, NULL);
infof(data, "QUIC connect to %s port %u failed: %s",
r_ip, r_port, curl_easy_strerror(result));
}
#endif
if(!result && ctx->qconn) {
result = check_and_set_expiry(cf, data, &pktx);
}
if(result || *done)
CURL_TRC_CF(data, cf, "connect -> %d, done=%d", result, *done);
CF_DATA_RESTORE(cf, save);
return result;
}
static CURLcode cf_ngtcp2_query(struct Curl_cfilter *cf,
struct Curl_easy *data,
int query, int *pres1, void *pres2)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
struct cf_call_data save;
switch(query) {
case CF_QUERY_MAX_CONCURRENT: {
const ngtcp2_transport_params *rp;
DEBUGASSERT(pres1);
CF_DATA_SAVE(save, cf, data);
rp = ngtcp2_conn_get_remote_transport_params(ctx->qconn);
if(rp)
*pres1 = (rp->initial_max_streams_bidi > INT_MAX)?
INT_MAX : (int)rp->initial_max_streams_bidi;
else /* not arrived yet? */
*pres1 = Curl_multi_max_concurrent_streams(data->multi);
CURL_TRC_CF(data, cf, "query max_conncurrent -> %d", *pres1);
CF_DATA_RESTORE(cf, save);
return CURLE_OK;
}
case CF_QUERY_CONNECT_REPLY_MS:
if(ctx->got_first_byte) {
timediff_t ms = Curl_timediff(ctx->first_byte_at, ctx->started_at);
*pres1 = (ms < INT_MAX)? (int)ms : INT_MAX;
}
else
*pres1 = -1;
return CURLE_OK;
case CF_QUERY_TIMER_CONNECT: {
struct curltime *when = pres2;
if(ctx->got_first_byte)
*when = ctx->first_byte_at;
return CURLE_OK;
}
case CF_QUERY_TIMER_APPCONNECT: {
struct curltime *when = pres2;
if(cf->connected)
*when = ctx->handshake_at;
return CURLE_OK;
}
default:
break;
}
return cf->next?
cf->next->cft->query(cf->next, data, query, pres1, pres2) :
CURLE_UNKNOWN_OPTION;
}
static bool cf_ngtcp2_conn_is_alive(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool *input_pending)
{
struct cf_ngtcp2_ctx *ctx = cf->ctx;
bool alive = TRUE;
const ngtcp2_transport_params *rp;
*input_pending = FALSE;
if(!ctx->qconn)
return FALSE;
/* Both sides of the QUIC connection announce they max idle times in
* the transport parameters. Look at the minimum of both and if
* we exceed this, regard the connection as dead. The other side
* may have completely purged it and will no longer respond
* to any packets from us. */
rp = ngtcp2_conn_get_remote_transport_params(ctx->qconn);
if(rp) {
timediff_t idletime;
uint64_t idle_ms = ctx->max_idle_ms;
if(rp->max_idle_timeout &&
(rp->max_idle_timeout / NGTCP2_MILLISECONDS) < idle_ms)
idle_ms = (rp->max_idle_timeout / NGTCP2_MILLISECONDS);
idletime = Curl_timediff(Curl_now(), ctx->q.last_io);
if(idletime > 0 && (uint64_t)idletime > idle_ms)
return FALSE;
}
if(!cf->next || !cf->next->cft->is_alive(cf->next, data, input_pending))
return FALSE;
if(*input_pending) {
/* This happens before we've sent off a request and the connection is
not in use by any other transfer, there shouldn't be any data here,
only "protocol frames" */
*input_pending = FALSE;
if(cf_progress_ingress(cf, data, NULL))
alive = FALSE;
else {
alive = TRUE;
}
}
return alive;
}
struct Curl_cftype Curl_cft_http3 = {
"HTTP/3",
CF_TYPE_IP_CONNECT | CF_TYPE_SSL | CF_TYPE_MULTIPLEX,
0,
cf_ngtcp2_destroy,
cf_ngtcp2_connect,
cf_ngtcp2_close,
Curl_cf_def_get_host,
cf_ngtcp2_adjust_pollset,
cf_ngtcp2_data_pending,
cf_ngtcp2_send,
cf_ngtcp2_recv,
cf_ngtcp2_data_event,
cf_ngtcp2_conn_is_alive,
Curl_cf_def_conn_keep_alive,
cf_ngtcp2_query,
};
CURLcode Curl_cf_ngtcp2_create(struct Curl_cfilter **pcf,
struct Curl_easy *data,
struct connectdata *conn,
const struct Curl_addrinfo *ai)
{
struct cf_ngtcp2_ctx *ctx = NULL;
struct Curl_cfilter *cf = NULL, *udp_cf = NULL;
CURLcode result;
(void)data;
ctx = calloc(1, sizeof(*ctx));
if(!ctx) {
result = CURLE_OUT_OF_MEMORY;
goto out;
}
ctx->qlogfd = -1;
cf_ngtcp2_ctx_clear(ctx);
result = Curl_cf_create(&cf, &Curl_cft_http3, ctx);
if(result)
goto out;
result = Curl_cf_udp_create(&udp_cf, data, conn, ai, TRNSPRT_QUIC);
if(result)
goto out;
cf->conn = conn;
udp_cf->conn = cf->conn;
udp_cf->sockindex = cf->sockindex;
cf->next = udp_cf;
out:
*pcf = (!result)? cf : NULL;
if(result) {
if(udp_cf)
Curl_conn_cf_discard_sub(cf, udp_cf, data, TRUE);
Curl_safefree(cf);
Curl_safefree(ctx);
}
return result;
}
bool Curl_conn_is_ngtcp2(const struct Curl_easy *data,
const struct connectdata *conn,
int sockindex)
{
struct Curl_cfilter *cf = conn? conn->cfilter[sockindex] : NULL;
(void)data;
for(; cf; cf = cf->next) {
if(cf->cft == &Curl_cft_http3)
return TRUE;
if(cf->cft->flags & CF_TYPE_IP_CONNECT)
return FALSE;
}
return FALSE;
}
#endif