t7x/deps/libtomcrypt/demos/tv_gen.c
2023-12-06 17:43:39 -05:00

819 lines
26 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#include "tomcrypt_private.h"
static void hash_gen(void)
{
unsigned char md[MAXBLOCKSIZE], *buf;
unsigned long outlen, x, y, z;
FILE *out;
int err;
out = fopen("hash_tv.txt", "w");
if (out == NULL) {
perror("can't open hash_tv");
}
fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n");
for (x = 0; hash_descriptor[x].name != NULL; x++) {
buf = XMALLOC(2 * hash_descriptor[x].blocksize + 1);
if (buf == NULL) {
perror("can't alloc mem");
exit(EXIT_FAILURE);
}
fprintf(out, "Hash: %s\n", hash_descriptor[x].name);
for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) {
for (z = 0; z < y; z++) {
buf[z] = (unsigned char)(z & 255);
}
outlen = sizeof(md);
if ((err = hash_memory(x, buf, y, md, &outlen)) != CRYPT_OK) {
printf("hash_memory error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3lu: ", y);
for (z = 0; z < outlen; z++) {
fprintf(out, "%02X", md[z]);
}
fprintf(out, "\n");
}
fprintf(out, "\n");
XFREE(buf);
}
fclose(out);
}
static void cipher_gen(void)
{
unsigned char *key, pt[MAXBLOCKSIZE];
unsigned long x, y, z, w;
int err, kl, lastkl;
FILE *out;
symmetric_key skey;
out = fopen("cipher_tv.txt", "w");
fprintf(out,
"Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n"
"The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name);
/* three modes, smallest, medium, large keys */
lastkl = 10000;
for (y = 0; y < 3; y++) {
switch (y) {
case 0: kl = cipher_descriptor[x].min_key_length; break;
case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break;
case 2: kl = cipher_descriptor[x].max_key_length; break;
}
if ((err = cipher_descriptor[x].keysize(&kl)) != CRYPT_OK) {
printf("keysize error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (kl == lastkl) continue;
lastkl = kl;
fprintf(out, "Key Size: %d bytes\n", kl);
key = XMALLOC(kl);
if (key == NULL) {
perror("can't malloc memory");
exit(EXIT_FAILURE);
}
for (z = 0; (int)z < kl; z++) {
key[z] = (unsigned char)z;
}
if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
printf("setup error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
pt[z] = (unsigned char)z;
}
for (w = 0; w < 50; w++) {
cipher_descriptor[x].ecb_encrypt(pt, pt, &skey);
fprintf(out, "%2lu: ", w);
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
fprintf(out, "%02X", pt[z]);
}
fprintf(out, "\n");
/* reschedule a new key */
for (z = 0; z < (unsigned long)kl; z++) {
key[z] = pt[z % cipher_descriptor[x].block_length];
}
if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
printf("cipher setup2 error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
}
fprintf(out, "\n");
XFREE(key);
}
fprintf(out, "\n");
}
fclose(out);
}
static void hmac_gen(void)
{
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], *input;
int x, y, z, err;
FILE *out;
unsigned long len;
out = fopen("hmac_tv.txt", "w");
fprintf(out,
"HMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed. The initial key is\n"
"of the same format (the same length as the HASH output size). The HMAC key in step N+1 is the HMAC output of\n"
"step N.\n\n");
for (x = 0; hash_descriptor[x].name != NULL; x++) {
fprintf(out, "HMAC-%s\n", hash_descriptor[x].name);
/* initial key */
for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) {
key[y] = (y&255);
}
input = XMALLOC(hash_descriptor[x].blocksize * 2 + 1);
if (input == NULL) {
perror("Can't malloc memory");
exit(EXIT_FAILURE);
}
for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) {
for (z = 0; z < y; z++) {
input[z] = (unsigned char)(z & 255);
}
len = sizeof(output);
if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) {
printf("Error hmacing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y);
for (z = 0; z <(int) len; z++) {
fprintf(out, "%02X", output[z]);
}
fprintf(out, "\n");
/* forward the key */
memcpy(key, output, hash_descriptor[x].hashsize);
}
XFREE(input);
fprintf(out, "\n");
}
fclose(out);
}
#ifdef LTC_OMAC
static void omac_gen(void)
{
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
int err, x, y, z, kl;
FILE *out;
unsigned long len;
out = fopen("omac_tv.txt", "w");
fprintf(out,
"OMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed. The initial key is\n"
"of the same format (length specified per cipher). The OMAC key in step N+1 is the OMAC output of\n"
"step N (repeated as required to fill the array).\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* initial key/block */
for (y = 0; y < kl; y++) {
key[y] = (y & 255);
}
for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
for (z = 0; z < y; z++) {
input[z] = (unsigned char)(z & 255);
}
len = sizeof(output);
if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
printf("Error OMAC'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (len == 0) {
printf("Error OMAC'ing: zero length\n");
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y);
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", output[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = output[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
#endif
#ifdef LTC_PMAC
static void pmac_gen(void)
{
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
int err, x, y, z, kl;
FILE *out;
unsigned long len;
out = fopen("pmac_tv.txt", "w");
fprintf(out,
"PMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are PMAC'ed. The initial key is\n"
"of the same format (length specified per cipher). The PMAC key in step N+1 is the PMAC output of\n"
"step N (repeated as required to fill the array).\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "PMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* initial key/block */
for (y = 0; y < kl; y++) {
key[y] = (y & 255);
}
for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
for (z = 0; z < y; z++) {
input[z] = (unsigned char)(z & 255);
}
len = sizeof(output);
if ((err = pmac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
printf("Error PMACing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (len == 0) {
printf("Error PMAC'ing: zero length\n");
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y);
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", output[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = output[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
#endif
#ifdef LTC_EAX_MODE
static void eax_gen(void)
{
int err, kl, x, y1, z;
FILE *out;
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], header[MAXBLOCKSIZE*2],
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("eax_tv.txt", "w");
fprintf(out, "EAX Test Vectors. Uses the 00010203...NN-1 pattern for header/nonce/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently.\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "EAX-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
nonce[z] = (unsigned char)(z & 255);
header[z] = (unsigned char)(z & 255);
}
len = sizeof(tag);
if ((err = eax_encrypt_authenticate_memory(x, key, kl, nonce, y1, header, y1, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
printf("Error EAX'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (len == 0) {
printf("Error EAX'ing: zero length\n");
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
#endif
#ifdef LTC_OCB_MODE
static void ocb_gen(void)
{
int err, kl, x, y1, z;
FILE *out;
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("ocb_tv.txt", "w");
fprintf(out, "OCB Test Vectors. Uses the 00010203...NN-1 pattern for nonce/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently. The nonce is fixed throughout.\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 8 && kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
/* fixed nonce */
for (z = 0; z < cipher_descriptor[x].block_length; z++) {
nonce[z] = z;
}
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
}
len = sizeof(tag);
if ((err = ocb_encrypt_authenticate_memory(x, key, kl, nonce, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
printf("Error OCB'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (len == 0) {
printf("Error OCB'ing: zero length\n");
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
#endif
#ifdef LTC_OCB3_MODE
static void ocb3_gen(void)
{
int err, kl, x, y1, z, noncelen;
FILE *out;
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("ocb3_tv.txt", "w");
fprintf(out, "OCB3 Test Vectors. Uses the 00010203...NN-1 pattern for nonce/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently. The nonce is fixed throughout. AAD is fixed to 3 bytes (ASCII) 'AAD'.\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 64 or 128 bit block sizes */
if (kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "OCB3-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
/* fixed nonce */
noncelen = MIN(15, cipher_descriptor[x].block_length);
for (z = 0; z < noncelen; z++) {
nonce[z] = z;
}
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
}
len = 16;
if ((err = ocb3_encrypt_authenticate_memory(x, key, kl, nonce, noncelen, (unsigned char*)"AAD", 3, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
printf("Error OCB3'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (len == 0) {
printf("Error OCB3'ing: zero length\n");
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
#endif
#ifdef LTC_CCM_MODE
static void ccm_gen(void)
{
int err, kl, x, y1, z;
unsigned int t;
FILE *out;
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
plaintext[MAXBLOCKSIZE*2], tag[16];
unsigned long len;
const unsigned int taglen[] = {4, 6, 8, 10, 12, 14, 16};
out = fopen("ccm_tv.txt", "w");
fprintf(out, "CCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 128 bit block sizes */
if (kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "CCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
/* fixed nonce */
for (z = 0; z < cipher_descriptor[x].block_length; z++) {
nonce[z] = z;
}
for (t = 0; t < sizeof(taglen)/sizeof(taglen[0]); ++t) {
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
}
len = taglen[t];
if ((err = ccm_memory(x, key, kl, NULL, nonce, 13, plaintext, y1, plaintext, y1, plaintext, tag, &len, CCM_ENCRYPT)) != CRYPT_OK) {
printf("Error CCM'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (len == 0) {
printf("Error CCM'ing: zero length\n");
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
}
fprintf(out, "\n");
}
fclose(out);
}
#endif
#ifdef LTC_GCM_MODE
static void gcm_gen(void)
{
int err, kl, x, y1, z;
FILE *out;
unsigned char key[MAXBLOCKSIZE], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
unsigned long len;
out = fopen("gcm_tv.txt", "w");
fprintf(out, "GCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n"
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
"step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n");
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
kl = cipher_descriptor[x].block_length;
/* skip ciphers which do not have 128 bit block sizes */
if (kl != 16) continue;
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
kl = cipher_descriptor[x].max_key_length;
}
fprintf(out, "GCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
/* the key */
for (z = 0; z < kl; z++) {
key[z] = (z & 255);
}
for (y1 = 1; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
for (z = 0; z < y1; z++) {
plaintext[z] = (unsigned char)(z & 255);
}
len = sizeof(tag);
if ((err = gcm_memory(x, key, kl, plaintext, y1, plaintext, y1, plaintext, y1, plaintext, tag, &len, GCM_ENCRYPT)) != CRYPT_OK) {
printf("Error GCM'ing: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
if (len == 0) {
printf("Error GCM'ing: zero length\n");
exit(EXIT_FAILURE);
}
fprintf(out, "%3d: ", y1);
for (z = 0; z < y1; z++) {
fprintf(out, "%02X", plaintext[z]);
}
fprintf(out, ", ");
for (z = 0; z <(int)len; z++) {
fprintf(out, "%02X", tag[z]);
}
fprintf(out, "\n");
/* forward the key */
for (z = 0; z < kl; z++) {
key[z] = tag[z % len];
}
}
fprintf(out, "\n");
}
fclose(out);
}
#endif
static void base64_gen(void)
{
FILE *out;
unsigned char src[32], ch;
char dst[256];
unsigned long x, len;
out = fopen("base64_tv.txt", "w");
fprintf(out, "Base64 vectors. These are the base64 encodings of the strings 00,01,02...NN-1\n\n");
for (x = 0; x <= 32; x++) {
for (ch = 0; ch < x; ch++) {
src[ch] = ch;
}
len = sizeof(dst);
base64_encode(src, x, dst, &len);
fprintf(out, "%2lu: %s\n", x, dst);
}
fclose(out);
}
static void math_gen(void)
{
}
static void ecc_gen(void)
{
FILE *out;
unsigned char str[512];
void *k, *order, *modulus, *a;
ecc_point *G, *R;
int x;
out = fopen("ecc_tv.txt", "w");
fprintf(out, "ecc vectors. These are for kG for k=1,3,9,27,...,3**n until k > order of the curve outputs are <k,x,y> triplets\n\n");
G = ltc_ecc_new_point();
R = ltc_ecc_new_point();
mp_init(&k);
mp_init(&order);
mp_init(&modulus);
mp_init(&a);
for (x = 0; ltc_ecc_curves[x].prime != NULL; x++) {
fprintf(out, "%s\n", ltc_ecc_curves[x].OID);
mp_set(k, 1);
mp_read_radix(order, (char *)ltc_ecc_curves[x].order, 16);
mp_read_radix(modulus, (char *)ltc_ecc_curves[x].prime, 16);
mp_read_radix(a, (char *)ltc_ecc_curves[x].A, 16);
mp_read_radix(G->x, (char *)ltc_ecc_curves[x].Gx, 16);
mp_read_radix(G->y, (char *)ltc_ecc_curves[x].Gy, 16);
mp_set(G->z, 1);
while (mp_cmp(k, order) == LTC_MP_LT) {
ltc_mp.ecc_ptmul(k, G, R, a, modulus, 1);
mp_tohex(k, (char*)str); fprintf(out, "%s, ", (char*)str);
mp_tohex(R->x, (char*)str); fprintf(out, "%s, ", (char*)str);
mp_tohex(R->y, (char*)str); fprintf(out, "%s\n", (char*)str);
mp_mul_d(k, 3, k);
}
}
mp_clear_multi(k, order, modulus, a, LTC_NULL);
ltc_ecc_del_point(G);
ltc_ecc_del_point(R);
fclose(out);
}
#ifdef LTC_LRW_MODE
static void lrw_gen(void)
{
FILE *out;
unsigned char tweak[16], key[16], iv[16], buf[1024];
int x, y, err;
symmetric_LRW lrw;
/* initialize default key and tweak */
for (x = 0; x < 16; x++) {
tweak[x] = key[x] = iv[x] = x;
}
out = fopen("lrw_tv.txt", "w");
for (x = 16; x < (int)(sizeof(buf)); x += 16) {
if ((err = lrw_start(find_cipher("aes"), iv, key, 16, tweak, 0, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error starting LRW-AES: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* encrypt incremental */
for (y = 0; y < x; y++) {
buf[y] = y & 255;
}
if ((err = lrw_encrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error encrypting with LRW-AES: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* display it */
fprintf(out, "%d:", x);
for (y = 0; y < x; y++) {
fprintf(out, "%02x", buf[y]);
}
fprintf(out, "\n");
/* reset IV */
if ((err = lrw_setiv(iv, 16, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error setting IV: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* copy new tweak, iv and key */
for (y = 0; y < 16; y++) {
key[y] = buf[y];
iv[y] = buf[(y+16)%x];
tweak[y] = buf[(y+32)%x];
}
if ((err = lrw_decrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
fprintf(stderr, "Error decrypting with LRW-AES: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
/* display it */
fprintf(out, "%d:", x);
for (y = 0; y < x; y++) {
fprintf(out, "%02x", buf[y]);
}
fprintf(out, "\n");
lrw_done(&lrw);
}
fclose(out);
}
#endif
int main(void)
{
register_all_ciphers();
register_all_hashes();
register_all_prngs();
#ifdef USE_LTM
ltc_mp = ltm_desc;
#elif defined(USE_TFM)
ltc_mp = tfm_desc;
#elif defined(USE_GMP)
ltc_mp = gmp_desc;
#elif defined(EXT_MATH_LIB)
extern ltc_math_descriptor EXT_MATH_LIB;
ltc_mp = EXT_MATH_LIB;
#endif
printf("Generating hash vectors..."); fflush(stdout); hash_gen(); printf("done\n");
printf("Generating cipher vectors..."); fflush(stdout); cipher_gen(); printf("done\n");
printf("Generating HMAC vectors..."); fflush(stdout); hmac_gen(); printf("done\n");
#ifdef LTC_OMAC
printf("Generating OMAC vectors..."); fflush(stdout); omac_gen(); printf("done\n");
#endif
#ifdef LTC_PMAC
printf("Generating PMAC vectors..."); fflush(stdout); pmac_gen(); printf("done\n");
#endif
#ifdef LTC_EAX_MODE
printf("Generating EAX vectors..."); fflush(stdout); eax_gen(); printf("done\n");
#endif
#ifdef LTC_OCB_MODE
printf("Generating OCB vectors..."); fflush(stdout); ocb_gen(); printf("done\n");
#endif
#ifdef LTC_OCB3_MODE
printf("Generating OCB3 vectors..."); fflush(stdout); ocb3_gen(); printf("done\n");
#endif
#ifdef LTC_CCM_MODE
printf("Generating CCM vectors..."); fflush(stdout); ccm_gen(); printf("done\n");
#endif
#ifdef LTC_GCM_MODE
printf("Generating GCM vectors..."); fflush(stdout); gcm_gen(); printf("done\n");
#endif
printf("Generating BASE64 vectors..."); fflush(stdout); base64_gen(); printf("done\n");
if (ltc_mp.name != NULL) {
printf("Generating MATH vectors..."); fflush(stdout); math_gen(); printf("done\n");
printf("Generating ECC vectors..."); fflush(stdout); ecc_gen(); printf("done\n");
}
#ifdef LTC_LRW_MODE
printf("Generating LRW vectors..."); fflush(stdout); lrw_gen(); printf("done\n");
#endif
return 0;
}