2023-12-06 17:43:39 -05:00
|
|
|
/* infcover.c -- test zlib's inflate routines with full code coverage
|
|
|
|
* Copyright (C) 2011, 2016 Mark Adler
|
|
|
|
* For conditions of distribution and use, see copyright notice in zlib.h
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* to use, do: ./configure --cover && make cover */
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include "zlib.h"
|
|
|
|
|
|
|
|
/* get definition of internal structure so we can mess with it (see pull()),
|
|
|
|
and so we can call inflate_trees() (see cover5()) */
|
|
|
|
#define ZLIB_INTERNAL
|
|
|
|
#include "inftrees.h"
|
|
|
|
#include "inflate.h"
|
|
|
|
|
|
|
|
#define local static
|
|
|
|
|
|
|
|
/* -- memory tracking routines -- */
|
|
|
|
|
|
|
|
/*
|
|
|
|
These memory tracking routines are provided to zlib and track all of zlib's
|
|
|
|
allocations and deallocations, check for LIFO operations, keep a current
|
|
|
|
and high water mark of total bytes requested, optionally set a limit on the
|
|
|
|
total memory that can be allocated, and when done check for memory leaks.
|
|
|
|
|
|
|
|
They are used as follows:
|
|
|
|
|
|
|
|
z_stream strm;
|
|
|
|
mem_setup(&strm) initializes the memory tracking and sets the
|
|
|
|
zalloc, zfree, and opaque members of strm to use
|
|
|
|
memory tracking for all zlib operations on strm
|
|
|
|
mem_limit(&strm, limit) sets a limit on the total bytes requested -- a
|
|
|
|
request that exceeds this limit will result in an
|
|
|
|
allocation failure (returns NULL) -- setting the
|
|
|
|
limit to zero means no limit, which is the default
|
|
|
|
after mem_setup()
|
|
|
|
mem_used(&strm, "msg") prints to stderr "msg" and the total bytes used
|
|
|
|
mem_high(&strm, "msg") prints to stderr "msg" and the high water mark
|
|
|
|
mem_done(&strm, "msg") ends memory tracking, releases all allocations
|
|
|
|
for the tracking as well as leaked zlib blocks, if
|
|
|
|
any. If there was anything unusual, such as leaked
|
|
|
|
blocks, non-FIFO frees, or frees of addresses not
|
|
|
|
allocated, then "msg" and information about the
|
|
|
|
problem is printed to stderr. If everything is
|
|
|
|
normal, nothing is printed. mem_done resets the
|
|
|
|
strm members to Z_NULL to use the default memory
|
|
|
|
allocation routines on the next zlib initialization
|
|
|
|
using strm.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* these items are strung together in a linked list, one for each allocation */
|
|
|
|
struct mem_item {
|
|
|
|
void *ptr; /* pointer to allocated memory */
|
|
|
|
size_t size; /* requested size of allocation */
|
|
|
|
struct mem_item *next; /* pointer to next item in list, or NULL */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* this structure is at the root of the linked list, and tracks statistics */
|
|
|
|
struct mem_zone {
|
|
|
|
struct mem_item *first; /* pointer to first item in list, or NULL */
|
|
|
|
size_t total, highwater; /* total allocations, and largest total */
|
|
|
|
size_t limit; /* memory allocation limit, or 0 if no limit */
|
|
|
|
int notlifo, rogue; /* counts of non-LIFO frees and rogue frees */
|
|
|
|
};
|
|
|
|
|
|
|
|
/* memory allocation routine to pass to zlib */
|
|
|
|
local void *mem_alloc(void *mem, unsigned count, unsigned size)
|
|
|
|
{
|
|
|
|
void *ptr;
|
|
|
|
struct mem_item *item;
|
|
|
|
struct mem_zone *zone = mem;
|
|
|
|
size_t len = count * (size_t)size;
|
|
|
|
|
|
|
|
/* induced allocation failure */
|
|
|
|
if (zone == NULL || (zone->limit && zone->total + len > zone->limit))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/* perform allocation using the standard library, fill memory with a
|
|
|
|
non-zero value to make sure that the code isn't depending on zeros */
|
|
|
|
ptr = malloc(len);
|
|
|
|
if (ptr == NULL)
|
|
|
|
return NULL;
|
|
|
|
memset(ptr, 0xa5, len);
|
|
|
|
|
|
|
|
/* create a new item for the list */
|
|
|
|
item = malloc(sizeof(struct mem_item));
|
|
|
|
if (item == NULL) {
|
|
|
|
free(ptr);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
item->ptr = ptr;
|
|
|
|
item->size = len;
|
|
|
|
|
|
|
|
/* insert item at the beginning of the list */
|
|
|
|
item->next = zone->first;
|
|
|
|
zone->first = item;
|
|
|
|
|
|
|
|
/* update the statistics */
|
|
|
|
zone->total += item->size;
|
|
|
|
if (zone->total > zone->highwater)
|
|
|
|
zone->highwater = zone->total;
|
|
|
|
|
|
|
|
/* return the allocated memory */
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* memory free routine to pass to zlib */
|
|
|
|
local void mem_free(void *mem, void *ptr)
|
|
|
|
{
|
|
|
|
struct mem_item *item, *next;
|
|
|
|
struct mem_zone *zone = mem;
|
|
|
|
|
|
|
|
/* if no zone, just do a free */
|
|
|
|
if (zone == NULL) {
|
|
|
|
free(ptr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* point next to the item that matches ptr, or NULL if not found -- remove
|
|
|
|
the item from the linked list if found */
|
|
|
|
next = zone->first;
|
|
|
|
if (next) {
|
|
|
|
if (next->ptr == ptr)
|
|
|
|
zone->first = next->next; /* first one is it, remove from list */
|
|
|
|
else {
|
|
|
|
do { /* search the linked list */
|
|
|
|
item = next;
|
|
|
|
next = item->next;
|
|
|
|
} while (next != NULL && next->ptr != ptr);
|
|
|
|
if (next) { /* if found, remove from linked list */
|
|
|
|
item->next = next->next;
|
|
|
|
zone->notlifo++; /* not a LIFO free */
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if found, update the statistics and free the item */
|
|
|
|
if (next) {
|
|
|
|
zone->total -= next->size;
|
|
|
|
free(next);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if not found, update the rogue count */
|
|
|
|
else
|
|
|
|
zone->rogue++;
|
|
|
|
|
|
|
|
/* in any case, do the requested free with the standard library function */
|
|
|
|
free(ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set up a controlled memory allocation space for monitoring, set the stream
|
|
|
|
parameters to the controlled routines, with opaque pointing to the space */
|
|
|
|
local void mem_setup(z_stream *strm)
|
|
|
|
{
|
|
|
|
struct mem_zone *zone;
|
|
|
|
|
|
|
|
zone = malloc(sizeof(struct mem_zone));
|
|
|
|
assert(zone != NULL);
|
|
|
|
zone->first = NULL;
|
|
|
|
zone->total = 0;
|
|
|
|
zone->highwater = 0;
|
|
|
|
zone->limit = 0;
|
|
|
|
zone->notlifo = 0;
|
|
|
|
zone->rogue = 0;
|
|
|
|
strm->opaque = zone;
|
|
|
|
strm->zalloc = mem_alloc;
|
|
|
|
strm->zfree = mem_free;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set a limit on the total memory allocation, or 0 to remove the limit */
|
|
|
|
local void mem_limit(z_stream *strm, size_t limit)
|
|
|
|
{
|
|
|
|
struct mem_zone *zone = strm->opaque;
|
|
|
|
|
|
|
|
zone->limit = limit;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* show the current total requested allocations in bytes */
|
|
|
|
local void mem_used(z_stream *strm, char *prefix)
|
|
|
|
{
|
|
|
|
struct mem_zone *zone = strm->opaque;
|
|
|
|
|
2024-06-17 19:04:36 -04:00
|
|
|
fprintf(stderr, "%s: %zu allocated\n", prefix, zone->total);
|
2023-12-06 17:43:39 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/* show the high water allocation in bytes */
|
|
|
|
local void mem_high(z_stream *strm, char *prefix)
|
|
|
|
{
|
|
|
|
struct mem_zone *zone = strm->opaque;
|
|
|
|
|
2024-06-17 19:04:36 -04:00
|
|
|
fprintf(stderr, "%s: %zu high water mark\n", prefix, zone->highwater);
|
2023-12-06 17:43:39 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/* release the memory allocation zone -- if there are any surprises, notify */
|
|
|
|
local void mem_done(z_stream *strm, char *prefix)
|
|
|
|
{
|
|
|
|
int count = 0;
|
|
|
|
struct mem_item *item, *next;
|
|
|
|
struct mem_zone *zone = strm->opaque;
|
|
|
|
|
|
|
|
/* show high water mark */
|
|
|
|
mem_high(strm, prefix);
|
|
|
|
|
|
|
|
/* free leftover allocations and item structures, if any */
|
|
|
|
item = zone->first;
|
|
|
|
while (item != NULL) {
|
|
|
|
free(item->ptr);
|
|
|
|
next = item->next;
|
|
|
|
free(item);
|
|
|
|
item = next;
|
|
|
|
count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* issue alerts about anything unexpected */
|
|
|
|
if (count || zone->total)
|
2024-06-17 19:04:36 -04:00
|
|
|
fprintf(stderr, "** %s: %zu bytes in %d blocks not freed\n",
|
2023-12-06 17:43:39 -05:00
|
|
|
prefix, zone->total, count);
|
|
|
|
if (zone->notlifo)
|
|
|
|
fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo);
|
|
|
|
if (zone->rogue)
|
|
|
|
fprintf(stderr, "** %s: %d frees not recognized\n",
|
|
|
|
prefix, zone->rogue);
|
|
|
|
|
|
|
|
/* free the zone and delete from the stream */
|
|
|
|
free(zone);
|
|
|
|
strm->opaque = Z_NULL;
|
|
|
|
strm->zalloc = Z_NULL;
|
|
|
|
strm->zfree = Z_NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* -- inflate test routines -- */
|
|
|
|
|
|
|
|
/* Decode a hexadecimal string, set *len to length, in[] to the bytes. This
|
|
|
|
decodes liberally, in that hex digits can be adjacent, in which case two in
|
|
|
|
a row writes a byte. Or they can be delimited by any non-hex character,
|
|
|
|
where the delimiters are ignored except when a single hex digit is followed
|
|
|
|
by a delimiter, where that single digit writes a byte. The returned data is
|
|
|
|
allocated and must eventually be freed. NULL is returned if out of memory.
|
|
|
|
If the length is not needed, then len can be NULL. */
|
|
|
|
local unsigned char *h2b(const char *hex, unsigned *len)
|
|
|
|
{
|
|
|
|
unsigned char *in, *re;
|
|
|
|
unsigned next, val;
|
|
|
|
|
|
|
|
in = malloc((strlen(hex) + 1) >> 1);
|
|
|
|
if (in == NULL)
|
|
|
|
return NULL;
|
|
|
|
next = 0;
|
|
|
|
val = 1;
|
|
|
|
do {
|
|
|
|
if (*hex >= '0' && *hex <= '9')
|
|
|
|
val = (val << 4) + *hex - '0';
|
|
|
|
else if (*hex >= 'A' && *hex <= 'F')
|
|
|
|
val = (val << 4) + *hex - 'A' + 10;
|
|
|
|
else if (*hex >= 'a' && *hex <= 'f')
|
|
|
|
val = (val << 4) + *hex - 'a' + 10;
|
|
|
|
else if (val != 1 && val < 32) /* one digit followed by delimiter */
|
|
|
|
val += 240; /* make it look like two digits */
|
|
|
|
if (val > 255) { /* have two digits */
|
|
|
|
in[next++] = val & 0xff; /* save the decoded byte */
|
|
|
|
val = 1; /* start over */
|
|
|
|
}
|
|
|
|
} while (*hex++); /* go through the loop with the terminating null */
|
|
|
|
if (len != NULL)
|
|
|
|
*len = next;
|
|
|
|
re = realloc(in, next);
|
|
|
|
return re == NULL ? in : re;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* generic inflate() run, where hex is the hexadecimal input data, what is the
|
|
|
|
text to include in an error message, step is how much input data to feed
|
|
|
|
inflate() on each call, or zero to feed it all, win is the window bits
|
|
|
|
parameter to inflateInit2(), len is the size of the output buffer, and err
|
|
|
|
is the error code expected from the first inflate() call (the second
|
|
|
|
inflate() call is expected to return Z_STREAM_END). If win is 47, then
|
|
|
|
header information is collected with inflateGetHeader(). If a zlib stream
|
|
|
|
is looking for a dictionary, then an empty dictionary is provided.
|
|
|
|
inflate() is run until all of the input data is consumed. */
|
|
|
|
local void inf(char *hex, char *what, unsigned step, int win, unsigned len,
|
|
|
|
int err)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
unsigned have;
|
|
|
|
unsigned char *in, *out;
|
|
|
|
z_stream strm, copy;
|
|
|
|
gz_header head;
|
|
|
|
|
|
|
|
mem_setup(&strm);
|
|
|
|
strm.avail_in = 0;
|
|
|
|
strm.next_in = Z_NULL;
|
|
|
|
ret = inflateInit2(&strm, win);
|
|
|
|
if (ret != Z_OK) {
|
|
|
|
mem_done(&strm, what);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
out = malloc(len); assert(out != NULL);
|
|
|
|
if (win == 47) {
|
|
|
|
head.extra = out;
|
|
|
|
head.extra_max = len;
|
|
|
|
head.name = out;
|
|
|
|
head.name_max = len;
|
|
|
|
head.comment = out;
|
|
|
|
head.comm_max = len;
|
|
|
|
ret = inflateGetHeader(&strm, &head); assert(ret == Z_OK);
|
|
|
|
}
|
|
|
|
in = h2b(hex, &have); assert(in != NULL);
|
|
|
|
if (step == 0 || step > have)
|
|
|
|
step = have;
|
|
|
|
strm.avail_in = step;
|
|
|
|
have -= step;
|
|
|
|
strm.next_in = in;
|
|
|
|
do {
|
|
|
|
strm.avail_out = len;
|
|
|
|
strm.next_out = out;
|
|
|
|
ret = inflate(&strm, Z_NO_FLUSH); assert(err == 9 || ret == err);
|
|
|
|
if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT)
|
|
|
|
break;
|
|
|
|
if (ret == Z_NEED_DICT) {
|
|
|
|
ret = inflateSetDictionary(&strm, in, 1);
|
|
|
|
assert(ret == Z_DATA_ERROR);
|
|
|
|
mem_limit(&strm, 1);
|
|
|
|
ret = inflateSetDictionary(&strm, out, 0);
|
|
|
|
assert(ret == Z_MEM_ERROR);
|
|
|
|
mem_limit(&strm, 0);
|
|
|
|
((struct inflate_state *)strm.state)->mode = DICT;
|
|
|
|
ret = inflateSetDictionary(&strm, out, 0);
|
|
|
|
assert(ret == Z_OK);
|
|
|
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_BUF_ERROR);
|
|
|
|
}
|
|
|
|
ret = inflateCopy(©, &strm); assert(ret == Z_OK);
|
|
|
|
ret = inflateEnd(©); assert(ret == Z_OK);
|
|
|
|
err = 9; /* don't care next time around */
|
|
|
|
have += strm.avail_in;
|
|
|
|
strm.avail_in = step > have ? have : step;
|
|
|
|
have -= strm.avail_in;
|
|
|
|
} while (strm.avail_in);
|
|
|
|
free(in);
|
|
|
|
free(out);
|
|
|
|
ret = inflateReset2(&strm, -8); assert(ret == Z_OK);
|
|
|
|
ret = inflateEnd(&strm); assert(ret == Z_OK);
|
|
|
|
mem_done(&strm, what);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cover all of the lines in inflate.c up to inflate() */
|
|
|
|
local void cover_support(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
z_stream strm;
|
|
|
|
|
|
|
|
mem_setup(&strm);
|
|
|
|
strm.avail_in = 0;
|
|
|
|
strm.next_in = Z_NULL;
|
|
|
|
ret = inflateInit(&strm); assert(ret == Z_OK);
|
|
|
|
mem_used(&strm, "inflate init");
|
|
|
|
ret = inflatePrime(&strm, 5, 31); assert(ret == Z_OK);
|
|
|
|
ret = inflatePrime(&strm, -1, 0); assert(ret == Z_OK);
|
|
|
|
ret = inflateSetDictionary(&strm, Z_NULL, 0);
|
|
|
|
assert(ret == Z_STREAM_ERROR);
|
|
|
|
ret = inflateEnd(&strm); assert(ret == Z_OK);
|
|
|
|
mem_done(&strm, "prime");
|
|
|
|
|
|
|
|
inf("63 0", "force window allocation", 0, -15, 1, Z_OK);
|
|
|
|
inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK);
|
|
|
|
inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK);
|
|
|
|
inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END);
|
|
|
|
inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR);
|
|
|
|
|
|
|
|
mem_setup(&strm);
|
|
|
|
strm.avail_in = 0;
|
|
|
|
strm.next_in = Z_NULL;
|
|
|
|
ret = inflateInit_(&strm, "!", (int)sizeof(z_stream));
|
|
|
|
assert(ret == Z_VERSION_ERROR);
|
|
|
|
mem_done(&strm, "wrong version");
|
|
|
|
|
|
|
|
strm.avail_in = 0;
|
|
|
|
strm.next_in = Z_NULL;
|
|
|
|
ret = inflateInit(&strm); assert(ret == Z_OK);
|
|
|
|
ret = inflateEnd(&strm); assert(ret == Z_OK);
|
|
|
|
fputs("inflate built-in memory routines\n", stderr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cover all inflate() header and trailer cases and code after inflate() */
|
|
|
|
local void cover_wrap(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
z_stream strm, copy;
|
|
|
|
unsigned char dict[257];
|
|
|
|
|
|
|
|
ret = inflate(Z_NULL, 0); assert(ret == Z_STREAM_ERROR);
|
|
|
|
ret = inflateEnd(Z_NULL); assert(ret == Z_STREAM_ERROR);
|
|
|
|
ret = inflateCopy(Z_NULL, Z_NULL); assert(ret == Z_STREAM_ERROR);
|
|
|
|
fputs("inflate bad parameters\n", stderr);
|
|
|
|
|
|
|
|
inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR);
|
|
|
|
inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR);
|
|
|
|
inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR);
|
|
|
|
inf("8 99", "set window size from header", 0, 0, 0, Z_OK);
|
|
|
|
inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR);
|
|
|
|
inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END);
|
|
|
|
inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1,
|
|
|
|
Z_DATA_ERROR);
|
|
|
|
inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length",
|
|
|
|
0, 47, 0, Z_STREAM_END);
|
|
|
|
inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR);
|
|
|
|
inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT);
|
|
|
|
inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK);
|
|
|
|
|
|
|
|
mem_setup(&strm);
|
|
|
|
strm.avail_in = 0;
|
|
|
|
strm.next_in = Z_NULL;
|
|
|
|
ret = inflateInit2(&strm, -8);
|
|
|
|
strm.avail_in = 2;
|
|
|
|
strm.next_in = (void *)"\x63";
|
|
|
|
strm.avail_out = 1;
|
|
|
|
strm.next_out = (void *)&ret;
|
|
|
|
mem_limit(&strm, 1);
|
|
|
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR);
|
|
|
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_MEM_ERROR);
|
|
|
|
mem_limit(&strm, 0);
|
|
|
|
memset(dict, 0, 257);
|
|
|
|
ret = inflateSetDictionary(&strm, dict, 257);
|
|
|
|
assert(ret == Z_OK);
|
|
|
|
mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256);
|
|
|
|
ret = inflatePrime(&strm, 16, 0); assert(ret == Z_OK);
|
|
|
|
strm.avail_in = 2;
|
|
|
|
strm.next_in = (void *)"\x80";
|
|
|
|
ret = inflateSync(&strm); assert(ret == Z_DATA_ERROR);
|
|
|
|
ret = inflate(&strm, Z_NO_FLUSH); assert(ret == Z_STREAM_ERROR);
|
|
|
|
strm.avail_in = 4;
|
|
|
|
strm.next_in = (void *)"\0\0\xff\xff";
|
|
|
|
ret = inflateSync(&strm); assert(ret == Z_OK);
|
|
|
|
(void)inflateSyncPoint(&strm);
|
|
|
|
ret = inflateCopy(©, &strm); assert(ret == Z_MEM_ERROR);
|
|
|
|
mem_limit(&strm, 0);
|
|
|
|
ret = inflateUndermine(&strm, 1); assert(ret == Z_DATA_ERROR);
|
|
|
|
(void)inflateMark(&strm);
|
|
|
|
ret = inflateEnd(&strm); assert(ret == Z_OK);
|
|
|
|
mem_done(&strm, "miscellaneous, force memory errors");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* input and output functions for inflateBack() */
|
|
|
|
local unsigned pull(void *desc, unsigned char **buf)
|
|
|
|
{
|
|
|
|
static unsigned int next = 0;
|
|
|
|
static unsigned char dat[] = {0x63, 0, 2, 0};
|
|
|
|
struct inflate_state *state;
|
|
|
|
|
|
|
|
if (desc == Z_NULL) {
|
|
|
|
next = 0;
|
|
|
|
return 0; /* no input (already provided at next_in) */
|
|
|
|
}
|
|
|
|
state = (void *)((z_stream *)desc)->state;
|
|
|
|
if (state != Z_NULL)
|
|
|
|
state->mode = SYNC; /* force an otherwise impossible situation */
|
|
|
|
return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
local int push(void *desc, unsigned char *buf, unsigned len)
|
|
|
|
{
|
|
|
|
(void)buf;
|
|
|
|
(void)len;
|
|
|
|
return desc != Z_NULL; /* force error if desc not null */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cover inflateBack() up to common deflate data cases and after those */
|
|
|
|
local void cover_back(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
z_stream strm;
|
|
|
|
unsigned char win[32768];
|
|
|
|
|
|
|
|
ret = inflateBackInit_(Z_NULL, 0, win, 0, 0);
|
|
|
|
assert(ret == Z_VERSION_ERROR);
|
|
|
|
ret = inflateBackInit(Z_NULL, 0, win); assert(ret == Z_STREAM_ERROR);
|
|
|
|
ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL);
|
|
|
|
assert(ret == Z_STREAM_ERROR);
|
|
|
|
ret = inflateBackEnd(Z_NULL); assert(ret == Z_STREAM_ERROR);
|
|
|
|
fputs("inflateBack bad parameters\n", stderr);
|
|
|
|
|
|
|
|
mem_setup(&strm);
|
|
|
|
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK);
|
|
|
|
strm.avail_in = 2;
|
|
|
|
strm.next_in = (void *)"\x03";
|
|
|
|
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
|
|
|
|
assert(ret == Z_STREAM_END);
|
|
|
|
/* force output error */
|
|
|
|
strm.avail_in = 3;
|
|
|
|
strm.next_in = (void *)"\x63\x00";
|
|
|
|
ret = inflateBack(&strm, pull, Z_NULL, push, &strm);
|
|
|
|
assert(ret == Z_BUF_ERROR);
|
|
|
|
/* force mode error by mucking with state */
|
|
|
|
ret = inflateBack(&strm, pull, &strm, push, Z_NULL);
|
|
|
|
assert(ret == Z_STREAM_ERROR);
|
|
|
|
ret = inflateBackEnd(&strm); assert(ret == Z_OK);
|
|
|
|
mem_done(&strm, "inflateBack bad state");
|
|
|
|
|
|
|
|
ret = inflateBackInit(&strm, 15, win); assert(ret == Z_OK);
|
|
|
|
ret = inflateBackEnd(&strm); assert(ret == Z_OK);
|
|
|
|
fputs("inflateBack built-in memory routines\n", stderr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* do a raw inflate of data in hexadecimal with both inflate and inflateBack */
|
|
|
|
local int try(char *hex, char *id, int err)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
unsigned len, size;
|
|
|
|
unsigned char *in, *out, *win;
|
|
|
|
char *prefix;
|
|
|
|
z_stream strm;
|
|
|
|
|
|
|
|
/* convert to hex */
|
|
|
|
in = h2b(hex, &len);
|
|
|
|
assert(in != NULL);
|
|
|
|
|
|
|
|
/* allocate work areas */
|
|
|
|
size = len << 3;
|
|
|
|
out = malloc(size);
|
|
|
|
assert(out != NULL);
|
|
|
|
win = malloc(32768);
|
|
|
|
assert(win != NULL);
|
|
|
|
prefix = malloc(strlen(id) + 6);
|
|
|
|
assert(prefix != NULL);
|
|
|
|
|
|
|
|
/* first with inflate */
|
|
|
|
strcpy(prefix, id);
|
|
|
|
strcat(prefix, "-late");
|
|
|
|
mem_setup(&strm);
|
|
|
|
strm.avail_in = 0;
|
|
|
|
strm.next_in = Z_NULL;
|
|
|
|
ret = inflateInit2(&strm, err < 0 ? 47 : -15);
|
|
|
|
assert(ret == Z_OK);
|
|
|
|
strm.avail_in = len;
|
|
|
|
strm.next_in = in;
|
|
|
|
do {
|
|
|
|
strm.avail_out = size;
|
|
|
|
strm.next_out = out;
|
|
|
|
ret = inflate(&strm, Z_TREES);
|
|
|
|
assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR);
|
|
|
|
if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT)
|
|
|
|
break;
|
|
|
|
} while (strm.avail_in || strm.avail_out == 0);
|
|
|
|
if (err) {
|
|
|
|
assert(ret == Z_DATA_ERROR);
|
|
|
|
assert(strcmp(id, strm.msg) == 0);
|
|
|
|
}
|
|
|
|
inflateEnd(&strm);
|
|
|
|
mem_done(&strm, prefix);
|
|
|
|
|
|
|
|
/* then with inflateBack */
|
|
|
|
if (err >= 0) {
|
|
|
|
strcpy(prefix, id);
|
|
|
|
strcat(prefix, "-back");
|
|
|
|
mem_setup(&strm);
|
|
|
|
ret = inflateBackInit(&strm, 15, win);
|
|
|
|
assert(ret == Z_OK);
|
|
|
|
strm.avail_in = len;
|
|
|
|
strm.next_in = in;
|
|
|
|
ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
|
|
|
|
assert(ret != Z_STREAM_ERROR);
|
|
|
|
if (err) {
|
|
|
|
assert(ret == Z_DATA_ERROR);
|
|
|
|
assert(strcmp(id, strm.msg) == 0);
|
|
|
|
}
|
|
|
|
inflateBackEnd(&strm);
|
|
|
|
mem_done(&strm, prefix);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* clean up */
|
|
|
|
free(prefix);
|
|
|
|
free(win);
|
|
|
|
free(out);
|
|
|
|
free(in);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cover deflate data cases in both inflate() and inflateBack() */
|
|
|
|
local void cover_inflate(void)
|
|
|
|
{
|
|
|
|
try("0 0 0 0 0", "invalid stored block lengths", 1);
|
|
|
|
try("3 0", "fixed", 0);
|
|
|
|
try("6", "invalid block type", 1);
|
|
|
|
try("1 1 0 fe ff 0", "stored", 0);
|
|
|
|
try("fc 0 0", "too many length or distance symbols", 1);
|
|
|
|
try("4 0 fe ff", "invalid code lengths set", 1);
|
|
|
|
try("4 0 24 49 0", "invalid bit length repeat", 1);
|
|
|
|
try("4 0 24 e9 ff ff", "invalid bit length repeat", 1);
|
|
|
|
try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1);
|
|
|
|
try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0",
|
|
|
|
"invalid literal/lengths set", 1);
|
|
|
|
try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1);
|
|
|
|
try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1);
|
|
|
|
try("2 7e ff ff", "invalid distance code", 1);
|
|
|
|
try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1);
|
|
|
|
|
|
|
|
/* also trailer mismatch just in inflate() */
|
|
|
|
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1);
|
|
|
|
try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1",
|
|
|
|
"incorrect length check", -1);
|
|
|
|
try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0);
|
|
|
|
try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f",
|
|
|
|
"long code", 0);
|
|
|
|
try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0);
|
|
|
|
try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c",
|
|
|
|
"long distance and extra", 0);
|
|
|
|
try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
|
|
|
|
"0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0);
|
|
|
|
inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258,
|
|
|
|
Z_STREAM_END);
|
|
|
|
inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cover remaining lines in inftrees.c */
|
|
|
|
local void cover_trees(void)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
unsigned bits;
|
|
|
|
unsigned short lens[16], work[16];
|
|
|
|
code *next, table[ENOUGH_DISTS];
|
|
|
|
|
|
|
|
/* we need to call inflate_table() directly in order to manifest not-
|
|
|
|
enough errors, since zlib insures that enough is always enough */
|
|
|
|
for (bits = 0; bits < 15; bits++)
|
|
|
|
lens[bits] = (unsigned short)(bits + 1);
|
|
|
|
lens[15] = 15;
|
|
|
|
next = table;
|
|
|
|
bits = 15;
|
|
|
|
ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
|
|
|
|
assert(ret == 1);
|
|
|
|
next = table;
|
|
|
|
bits = 1;
|
|
|
|
ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
|
|
|
|
assert(ret == 1);
|
|
|
|
fputs("inflate_table not enough errors\n", stderr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cover remaining inffast.c decoding and window copying */
|
|
|
|
local void cover_fast(void)
|
|
|
|
{
|
|
|
|
inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68"
|
|
|
|
" ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR);
|
|
|
|
inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49"
|
|
|
|
" 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258,
|
|
|
|
Z_DATA_ERROR);
|
|
|
|
inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258,
|
|
|
|
Z_DATA_ERROR);
|
|
|
|
inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258,
|
|
|
|
Z_DATA_ERROR);
|
|
|
|
inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0",
|
|
|
|
"fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR);
|
|
|
|
inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK);
|
|
|
|
inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0",
|
|
|
|
"contiguous and wrap around window", 6, -8, 259, Z_OK);
|
|
|
|
inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259,
|
|
|
|
Z_STREAM_END);
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(void)
|
|
|
|
{
|
|
|
|
fprintf(stderr, "%s\n", zlibVersion());
|
|
|
|
cover_support();
|
|
|
|
cover_wrap();
|
|
|
|
cover_back();
|
|
|
|
cover_inflate();
|
|
|
|
cover_trees();
|
|
|
|
cover_fast();
|
|
|
|
return 0;
|
|
|
|
}
|