565 lines
28 KiB
Markdown
565 lines
28 KiB
Markdown
|
|
||
|
|
||
|
# Defining a Mock Class #
|
||
|
|
||
|
## Mocking a Normal Class ##
|
||
|
|
||
|
Given
|
||
|
```
|
||
|
class Foo {
|
||
|
...
|
||
|
virtual ~Foo();
|
||
|
virtual int GetSize() const = 0;
|
||
|
virtual string Describe(const char* name) = 0;
|
||
|
virtual string Describe(int type) = 0;
|
||
|
virtual bool Process(Bar elem, int count) = 0;
|
||
|
};
|
||
|
```
|
||
|
(note that `~Foo()` **must** be virtual) we can define its mock as
|
||
|
```
|
||
|
#include "gmock/gmock.h"
|
||
|
|
||
|
class MockFoo : public Foo {
|
||
|
MOCK_CONST_METHOD0(GetSize, int());
|
||
|
MOCK_METHOD1(Describe, string(const char* name));
|
||
|
MOCK_METHOD1(Describe, string(int type));
|
||
|
MOCK_METHOD2(Process, bool(Bar elem, int count));
|
||
|
};
|
||
|
```
|
||
|
|
||
|
To create a "nice" mock object which ignores all uninteresting calls,
|
||
|
or a "strict" mock object, which treats them as failures:
|
||
|
```
|
||
|
NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo.
|
||
|
StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
|
||
|
```
|
||
|
|
||
|
## Mocking a Class Template ##
|
||
|
|
||
|
To mock
|
||
|
```
|
||
|
template <typename Elem>
|
||
|
class StackInterface {
|
||
|
public:
|
||
|
...
|
||
|
virtual ~StackInterface();
|
||
|
virtual int GetSize() const = 0;
|
||
|
virtual void Push(const Elem& x) = 0;
|
||
|
};
|
||
|
```
|
||
|
(note that `~StackInterface()` **must** be virtual) just append `_T` to the `MOCK_*` macros:
|
||
|
```
|
||
|
template <typename Elem>
|
||
|
class MockStack : public StackInterface<Elem> {
|
||
|
public:
|
||
|
...
|
||
|
MOCK_CONST_METHOD0_T(GetSize, int());
|
||
|
MOCK_METHOD1_T(Push, void(const Elem& x));
|
||
|
};
|
||
|
```
|
||
|
|
||
|
## Specifying Calling Conventions for Mock Functions ##
|
||
|
|
||
|
If your mock function doesn't use the default calling convention, you
|
||
|
can specify it by appending `_WITH_CALLTYPE` to any of the macros
|
||
|
described in the previous two sections and supplying the calling
|
||
|
convention as the first argument to the macro. For example,
|
||
|
```
|
||
|
MOCK_METHOD1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n));
|
||
|
MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y));
|
||
|
```
|
||
|
where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.
|
||
|
|
||
|
# Using Mocks in Tests #
|
||
|
|
||
|
The typical flow is:
|
||
|
1. Import the Google Mock names you need to use. All Google Mock names are in the `testing` namespace unless they are macros or otherwise noted.
|
||
|
1. Create the mock objects.
|
||
|
1. Optionally, set the default actions of the mock objects.
|
||
|
1. Set your expectations on the mock objects (How will they be called? What wil they do?).
|
||
|
1. Exercise code that uses the mock objects; if necessary, check the result using [Google Test](../../googletest/) assertions.
|
||
|
1. When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied.
|
||
|
|
||
|
Here is an example:
|
||
|
```
|
||
|
using ::testing::Return; // #1
|
||
|
|
||
|
TEST(BarTest, DoesThis) {
|
||
|
MockFoo foo; // #2
|
||
|
|
||
|
ON_CALL(foo, GetSize()) // #3
|
||
|
.WillByDefault(Return(1));
|
||
|
// ... other default actions ...
|
||
|
|
||
|
EXPECT_CALL(foo, Describe(5)) // #4
|
||
|
.Times(3)
|
||
|
.WillRepeatedly(Return("Category 5"));
|
||
|
// ... other expectations ...
|
||
|
|
||
|
EXPECT_EQ("good", MyProductionFunction(&foo)); // #5
|
||
|
} // #6
|
||
|
```
|
||
|
|
||
|
# Setting Default Actions #
|
||
|
|
||
|
Google Mock has a **built-in default action** for any function that
|
||
|
returns `void`, `bool`, a numeric value, or a pointer.
|
||
|
|
||
|
To customize the default action for functions with return type `T` globally:
|
||
|
```
|
||
|
using ::testing::DefaultValue;
|
||
|
|
||
|
// Sets the default value to be returned. T must be CopyConstructible.
|
||
|
DefaultValue<T>::Set(value);
|
||
|
// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
|
||
|
// T MakeT();
|
||
|
DefaultValue<T>::SetFactory(&MakeT);
|
||
|
// ... use the mocks ...
|
||
|
// Resets the default value.
|
||
|
DefaultValue<T>::Clear();
|
||
|
```
|
||
|
|
||
|
To customize the default action for a particular method, use `ON_CALL()`:
|
||
|
```
|
||
|
ON_CALL(mock_object, method(matchers))
|
||
|
.With(multi_argument_matcher) ?
|
||
|
.WillByDefault(action);
|
||
|
```
|
||
|
|
||
|
# Setting Expectations #
|
||
|
|
||
|
`EXPECT_CALL()` sets **expectations** on a mock method (How will it be
|
||
|
called? What will it do?):
|
||
|
```
|
||
|
EXPECT_CALL(mock_object, method(matchers))
|
||
|
.With(multi_argument_matcher) ?
|
||
|
.Times(cardinality) ?
|
||
|
.InSequence(sequences) *
|
||
|
.After(expectations) *
|
||
|
.WillOnce(action) *
|
||
|
.WillRepeatedly(action) ?
|
||
|
.RetiresOnSaturation(); ?
|
||
|
```
|
||
|
|
||
|
If `Times()` is omitted, the cardinality is assumed to be:
|
||
|
|
||
|
* `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
|
||
|
* `Times(n)` when there are `n WillOnce()`s but no `WillRepeatedly()`, where `n` >= 1; or
|
||
|
* `Times(AtLeast(n))` when there are `n WillOnce()`s and a `WillRepeatedly()`, where `n` >= 0.
|
||
|
|
||
|
A method with no `EXPECT_CALL()` is free to be invoked _any number of times_, and the default action will be taken each time.
|
||
|
|
||
|
# Matchers #
|
||
|
|
||
|
A **matcher** matches a _single_ argument. You can use it inside
|
||
|
`ON_CALL()` or `EXPECT_CALL()`, or use it to validate a value
|
||
|
directly:
|
||
|
|
||
|
| `EXPECT_THAT(value, matcher)` | Asserts that `value` matches `matcher`. |
|
||
|
|:------------------------------|:----------------------------------------|
|
||
|
| `ASSERT_THAT(value, matcher)` | The same as `EXPECT_THAT(value, matcher)`, except that it generates a **fatal** failure. |
|
||
|
|
||
|
Built-in matchers (where `argument` is the function argument) are
|
||
|
divided into several categories:
|
||
|
|
||
|
## Wildcard ##
|
||
|
|`_`|`argument` can be any value of the correct type.|
|
||
|
|:--|:-----------------------------------------------|
|
||
|
|`A<type>()` or `An<type>()`|`argument` can be any value of type `type`. |
|
||
|
|
||
|
## Generic Comparison ##
|
||
|
|
||
|
|`Eq(value)` or `value`|`argument == value`|
|
||
|
|:---------------------|:------------------|
|
||
|
|`Ge(value)` |`argument >= value`|
|
||
|
|`Gt(value)` |`argument > value` |
|
||
|
|`Le(value)` |`argument <= value`|
|
||
|
|`Lt(value)` |`argument < value` |
|
||
|
|`Ne(value)` |`argument != value`|
|
||
|
|`IsNull()` |`argument` is a `NULL` pointer (raw or smart).|
|
||
|
|`NotNull()` |`argument` is a non-null pointer (raw or smart).|
|
||
|
|`VariantWith<T>(m)` |`argument` is `variant<>` that holds the alternative of
|
||
|
type T with a value matching `m`.|
|
||
|
|`Ref(variable)` |`argument` is a reference to `variable`.|
|
||
|
|`TypedEq<type>(value)`|`argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded.|
|
||
|
|
||
|
Except `Ref()`, these matchers make a _copy_ of `value` in case it's
|
||
|
modified or destructed later. If the compiler complains that `value`
|
||
|
doesn't have a public copy constructor, try wrap it in `ByRef()`,
|
||
|
e.g. `Eq(ByRef(non_copyable_value))`. If you do that, make sure
|
||
|
`non_copyable_value` is not changed afterwards, or the meaning of your
|
||
|
matcher will be changed.
|
||
|
|
||
|
## Floating-Point Matchers ##
|
||
|
|
||
|
|`DoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal.|
|
||
|
|:-------------------|:----------------------------------------------------------------------------------------------|
|
||
|
|`FloatEq(a_float)` |`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
|
||
|
|`NanSensitiveDoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
|
||
|
|`NanSensitiveFloatEq(a_float)`|`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
|
||
|
|
||
|
The above matchers use ULP-based comparison (the same as used in
|
||
|
[Google Test](../../googletest/)). They
|
||
|
automatically pick a reasonable error bound based on the absolute
|
||
|
value of the expected value. `DoubleEq()` and `FloatEq()` conform to
|
||
|
the IEEE standard, which requires comparing two NaNs for equality to
|
||
|
return false. The `NanSensitive*` version instead treats two NaNs as
|
||
|
equal, which is often what a user wants.
|
||
|
|
||
|
|`DoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal.|
|
||
|
|:------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
|
||
|
|`FloatNear(a_float, max_abs_error)` |`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
|
||
|
|`NanSensitiveDoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
|
||
|
|`NanSensitiveFloatNear(a_float, max_abs_error)`|`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
|
||
|
|
||
|
## String Matchers ##
|
||
|
|
||
|
The `argument` can be either a C string or a C++ string object:
|
||
|
|
||
|
|`ContainsRegex(string)`|`argument` matches the given regular expression.|
|
||
|
|:----------------------|:-----------------------------------------------|
|
||
|
|`EndsWith(suffix)` |`argument` ends with string `suffix`. |
|
||
|
|`HasSubstr(string)` |`argument` contains `string` as a sub-string. |
|
||
|
|`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.|
|
||
|
|`StartsWith(prefix)` |`argument` starts with string `prefix`. |
|
||
|
|`StrCaseEq(string)` |`argument` is equal to `string`, ignoring case. |
|
||
|
|`StrCaseNe(string)` |`argument` is not equal to `string`, ignoring case.|
|
||
|
|`StrEq(string)` |`argument` is equal to `string`. |
|
||
|
|`StrNe(string)` |`argument` is not equal to `string`. |
|
||
|
|
||
|
`ContainsRegex()` and `MatchesRegex()` use the regular expression
|
||
|
syntax defined
|
||
|
[here](../../googletest/docs/advanced.md#regular-expression-syntax).
|
||
|
`StrCaseEq()`, `StrCaseNe()`, `StrEq()`, and `StrNe()` work for wide
|
||
|
strings as well.
|
||
|
|
||
|
## Container Matchers ##
|
||
|
|
||
|
Most STL-style containers support `==`, so you can use
|
||
|
`Eq(expected_container)` or simply `expected_container` to match a
|
||
|
container exactly. If you want to write the elements in-line,
|
||
|
match them more flexibly, or get more informative messages, you can use:
|
||
|
|
||
|
| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
|
||
|
|:-------------------------|:---------------------------------------------------------------------------------------------------------------------------------|
|
||
|
| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
|
||
|
| `Each(e)` | `argument` is a container where _every_ element matches `e`, which can be either a value or a matcher. |
|
||
|
| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei`, which can be a value or a matcher. 0 to 10 arguments are allowed. |
|
||
|
| `ElementsAreArray({ e0, e1, ..., en })`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
|
||
|
| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
|
||
|
| `Pointwise(m, container)` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
|
||
|
| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
|
||
|
| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i`), which can be a value or a matcher. 0 to 10 arguments are allowed. |
|
||
|
| `UnorderedElementsAreArray({ e0, e1, ..., en })`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. |
|
||
|
| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements `1`, `2`, and `3`, ignoring order. |
|
||
|
| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))`. |
|
||
|
|
||
|
Notes:
|
||
|
|
||
|
* These matchers can also match:
|
||
|
1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), and
|
||
|
1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers](#Multiargument_Matchers.md)).
|
||
|
* The array being matched may be multi-dimensional (i.e. its elements can be arrays).
|
||
|
* `m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write:
|
||
|
|
||
|
```
|
||
|
using ::testing::get;
|
||
|
MATCHER(FooEq, "") {
|
||
|
return get<0>(arg).Equals(get<1>(arg));
|
||
|
}
|
||
|
...
|
||
|
EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
|
||
|
```
|
||
|
|
||
|
## Member Matchers ##
|
||
|
|
||
|
|`Field(&class::field, m)`|`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
|
||
|
|:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
|
||
|
|`Key(e)` |`argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`.|
|
||
|
|`Pair(m1, m2)` |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
|
||
|
|`Property(&class::property, m)`|`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.|
|
||
|
|
||
|
## Matching the Result of a Function or Functor ##
|
||
|
|
||
|
|`ResultOf(f, m)`|`f(argument)` matches matcher `m`, where `f` is a function or functor.|
|
||
|
|:---------------|:---------------------------------------------------------------------|
|
||
|
|
||
|
## Pointer Matchers ##
|
||
|
|
||
|
|`Pointee(m)`|`argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`.|
|
||
|
|:-----------|:-----------------------------------------------------------------------------------------------|
|
||
|
|`WhenDynamicCastTo<T>(m)`| when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
|
||
|
|
||
|
## Multiargument Matchers ##
|
||
|
|
||
|
Technically, all matchers match a _single_ value. A "multi-argument"
|
||
|
matcher is just one that matches a _tuple_. The following matchers can
|
||
|
be used to match a tuple `(x, y)`:
|
||
|
|
||
|
|`Eq()`|`x == y`|
|
||
|
|:-----|:-------|
|
||
|
|`Ge()`|`x >= y`|
|
||
|
|`Gt()`|`x > y` |
|
||
|
|`Le()`|`x <= y`|
|
||
|
|`Lt()`|`x < y` |
|
||
|
|`Ne()`|`x != y`|
|
||
|
|
||
|
You can use the following selectors to pick a subset of the arguments
|
||
|
(or reorder them) to participate in the matching:
|
||
|
|
||
|
|`AllArgs(m)`|Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`.|
|
||
|
|:-----------|:-------------------------------------------------------------------|
|
||
|
|`Args<N1, N2, ..., Nk>(m)`|The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`.|
|
||
|
|
||
|
## Composite Matchers ##
|
||
|
|
||
|
You can make a matcher from one or more other matchers:
|
||
|
|
||
|
|`AllOf(m1, m2, ..., mn)`|`argument` matches all of the matchers `m1` to `mn`.|
|
||
|
|:-----------------------|:---------------------------------------------------|
|
||
|
|`AnyOf(m1, m2, ..., mn)`|`argument` matches at least one of the matchers `m1` to `mn`.|
|
||
|
|`Not(m)` |`argument` doesn't match matcher `m`. |
|
||
|
|
||
|
## Adapters for Matchers ##
|
||
|
|
||
|
|`MatcherCast<T>(m)`|casts matcher `m` to type `Matcher<T>`.|
|
||
|
|:------------------|:--------------------------------------|
|
||
|
|`SafeMatcherCast<T>(m)`| [safely casts](CookBook.md#casting-matchers) matcher `m` to type `Matcher<T>`. |
|
||
|
|`Truly(predicate)` |`predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor.|
|
||
|
|
||
|
## Matchers as Predicates ##
|
||
|
|
||
|
|`Matches(m)(value)`|evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor.|
|
||
|
|:------------------|:---------------------------------------------------------------------------------------------|
|
||
|
|`ExplainMatchResult(m, value, result_listener)`|evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
|
||
|
|`Value(value, m)` |evaluates to `true` if `value` matches `m`. |
|
||
|
|
||
|
## Defining Matchers ##
|
||
|
|
||
|
| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
|
||
|
|:-------------------------------------------------|:------------------------------------------------------|
|
||
|
| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a macher `IsDivisibleBy(n)` to match a number divisible by `n`. |
|
||
|
| `MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
|
||
|
|
||
|
**Notes:**
|
||
|
|
||
|
1. The `MATCHER*` macros cannot be used inside a function or class.
|
||
|
1. The matcher body must be _purely functional_ (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters).
|
||
|
1. You can use `PrintToString(x)` to convert a value `x` of any type to a string.
|
||
|
|
||
|
## Matchers as Test Assertions ##
|
||
|
|
||
|
|`ASSERT_THAT(expression, m)`|Generates a [fatal failure](../../googletest/docs/primer.md#assertions) if the value of `expression` doesn't match matcher `m`.|
|
||
|
|:---------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
|
||
|
|`EXPECT_THAT(expression, m)`|Generates a non-fatal failure if the value of `expression` doesn't match matcher `m`. |
|
||
|
|
||
|
# Actions #
|
||
|
|
||
|
**Actions** specify what a mock function should do when invoked.
|
||
|
|
||
|
## Returning a Value ##
|
||
|
|
||
|
|`Return()`|Return from a `void` mock function.|
|
||
|
|:---------|:----------------------------------|
|
||
|
|`Return(value)`|Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed.|
|
||
|
|`ReturnArg<N>()`|Return the `N`-th (0-based) argument.|
|
||
|
|`ReturnNew<T>(a1, ..., ak)`|Return `new T(a1, ..., ak)`; a different object is created each time.|
|
||
|
|`ReturnNull()`|Return a null pointer. |
|
||
|
|`ReturnPointee(ptr)`|Return the value pointed to by `ptr`.|
|
||
|
|`ReturnRef(variable)`|Return a reference to `variable`. |
|
||
|
|`ReturnRefOfCopy(value)`|Return a reference to a copy of `value`; the copy lives as long as the action.|
|
||
|
|
||
|
## Side Effects ##
|
||
|
|
||
|
|`Assign(&variable, value)`|Assign `value` to variable.|
|
||
|
|:-------------------------|:--------------------------|
|
||
|
| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
|
||
|
| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
|
||
|
| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
|
||
|
| `SetArgReferee<N>(value)` | Assign value to the variable referenced by the `N`-th (0-based) argument. |
|
||
|
|`SetArgPointee<N>(value)` |Assign `value` to the variable pointed by the `N`-th (0-based) argument.|
|
||
|
|`SetArgumentPointee<N>(value)`|Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0.|
|
||
|
|`SetArrayArgument<N>(first, last)`|Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range.|
|
||
|
|`SetErrnoAndReturn(error, value)`|Set `errno` to `error` and return `value`.|
|
||
|
|`Throw(exception)` |Throws the given exception, which can be any copyable value. Available since v1.1.0.|
|
||
|
|
||
|
## Using a Function or a Functor as an Action ##
|
||
|
|
||
|
|`Invoke(f)`|Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor.|
|
||
|
|:----------|:-----------------------------------------------------------------------------------------------------------------|
|
||
|
|`Invoke(object_pointer, &class::method)`|Invoke the {method on the object with the arguments passed to the mock function. |
|
||
|
|`InvokeWithoutArgs(f)`|Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
|
||
|
|`InvokeWithoutArgs(object_pointer, &class::method)`|Invoke the method on the object, which takes no arguments. |
|
||
|
|`InvokeArgument<N>(arg1, arg2, ..., argk)`|Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments.|
|
||
|
|
||
|
The return value of the invoked function is used as the return value
|
||
|
of the action.
|
||
|
|
||
|
When defining a function or functor to be used with `Invoke*()`, you can declare any unused parameters as `Unused`:
|
||
|
```
|
||
|
double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
|
||
|
...
|
||
|
EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));
|
||
|
```
|
||
|
|
||
|
In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference, wrap it inside `ByRef()`. For example,
|
||
|
```
|
||
|
InvokeArgument<2>(5, string("Hi"), ByRef(foo))
|
||
|
```
|
||
|
calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by value, and `foo` by reference.
|
||
|
|
||
|
## Default Action ##
|
||
|
|
||
|
|`DoDefault()`|Do the default action (specified by `ON_CALL()` or the built-in one).|
|
||
|
|:------------|:--------------------------------------------------------------------|
|
||
|
|
||
|
**Note:** due to technical reasons, `DoDefault()` cannot be used inside a composite action - trying to do so will result in a run-time error.
|
||
|
|
||
|
## Composite Actions ##
|
||
|
|
||
|
|`DoAll(a1, a2, ..., an)`|Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void. |
|
||
|
|:-----------------------|:-----------------------------------------------------------------------------------------------------------------------------|
|
||
|
|`IgnoreResult(a)` |Perform action `a` and ignore its result. `a` must not return void. |
|
||
|
|`WithArg<N>(a)` |Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. |
|
||
|
|`WithArgs<N1, N2, ..., Nk>(a)`|Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
|
||
|
|`WithoutArgs(a)` |Perform action `a` without any arguments. |
|
||
|
|
||
|
## Defining Actions ##
|
||
|
|
||
|
| `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1. |
|
||
|
|:--------------------------------------|:---------------------------------------------------------------------------------------|
|
||
|
| `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n`. |
|
||
|
| `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements`. |
|
||
|
|
||
|
The `ACTION*` macros cannot be used inside a function or class.
|
||
|
|
||
|
# Cardinalities #
|
||
|
|
||
|
These are used in `Times()` to specify how many times a mock function will be called:
|
||
|
|
||
|
|`AnyNumber()`|The function can be called any number of times.|
|
||
|
|:------------|:----------------------------------------------|
|
||
|
|`AtLeast(n)` |The call is expected at least `n` times. |
|
||
|
|`AtMost(n)` |The call is expected at most `n` times. |
|
||
|
|`Between(m, n)`|The call is expected between `m` and `n` (inclusive) times.|
|
||
|
|`Exactly(n) or n`|The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0.|
|
||
|
|
||
|
# Expectation Order #
|
||
|
|
||
|
By default, the expectations can be matched in _any_ order. If some
|
||
|
or all expectations must be matched in a given order, there are two
|
||
|
ways to specify it. They can be used either independently or
|
||
|
together.
|
||
|
|
||
|
## The After Clause ##
|
||
|
|
||
|
```
|
||
|
using ::testing::Expectation;
|
||
|
...
|
||
|
Expectation init_x = EXPECT_CALL(foo, InitX());
|
||
|
Expectation init_y = EXPECT_CALL(foo, InitY());
|
||
|
EXPECT_CALL(foo, Bar())
|
||
|
.After(init_x, init_y);
|
||
|
```
|
||
|
says that `Bar()` can be called only after both `InitX()` and
|
||
|
`InitY()` have been called.
|
||
|
|
||
|
If you don't know how many pre-requisites an expectation has when you
|
||
|
write it, you can use an `ExpectationSet` to collect them:
|
||
|
|
||
|
```
|
||
|
using ::testing::ExpectationSet;
|
||
|
...
|
||
|
ExpectationSet all_inits;
|
||
|
for (int i = 0; i < element_count; i++) {
|
||
|
all_inits += EXPECT_CALL(foo, InitElement(i));
|
||
|
}
|
||
|
EXPECT_CALL(foo, Bar())
|
||
|
.After(all_inits);
|
||
|
```
|
||
|
says that `Bar()` can be called only after all elements have been
|
||
|
initialized (but we don't care about which elements get initialized
|
||
|
before the others).
|
||
|
|
||
|
Modifying an `ExpectationSet` after using it in an `.After()` doesn't
|
||
|
affect the meaning of the `.After()`.
|
||
|
|
||
|
## Sequences ##
|
||
|
|
||
|
When you have a long chain of sequential expectations, it's easier to
|
||
|
specify the order using **sequences**, which don't require you to given
|
||
|
each expectation in the chain a different name. <i>All expected<br>
|
||
|
calls</i> in the same sequence must occur in the order they are
|
||
|
specified.
|
||
|
|
||
|
```
|
||
|
using ::testing::Sequence;
|
||
|
Sequence s1, s2;
|
||
|
...
|
||
|
EXPECT_CALL(foo, Reset())
|
||
|
.InSequence(s1, s2)
|
||
|
.WillOnce(Return(true));
|
||
|
EXPECT_CALL(foo, GetSize())
|
||
|
.InSequence(s1)
|
||
|
.WillOnce(Return(1));
|
||
|
EXPECT_CALL(foo, Describe(A<const char*>()))
|
||
|
.InSequence(s2)
|
||
|
.WillOnce(Return("dummy"));
|
||
|
```
|
||
|
says that `Reset()` must be called before _both_ `GetSize()` _and_
|
||
|
`Describe()`, and the latter two can occur in any order.
|
||
|
|
||
|
To put many expectations in a sequence conveniently:
|
||
|
```
|
||
|
using ::testing::InSequence;
|
||
|
{
|
||
|
InSequence dummy;
|
||
|
|
||
|
EXPECT_CALL(...)...;
|
||
|
EXPECT_CALL(...)...;
|
||
|
...
|
||
|
EXPECT_CALL(...)...;
|
||
|
}
|
||
|
```
|
||
|
says that all expected calls in the scope of `dummy` must occur in
|
||
|
strict order. The name `dummy` is irrelevant.)
|
||
|
|
||
|
# Verifying and Resetting a Mock #
|
||
|
|
||
|
Google Mock will verify the expectations on a mock object when it is destructed, or you can do it earlier:
|
||
|
```
|
||
|
using ::testing::Mock;
|
||
|
...
|
||
|
// Verifies and removes the expectations on mock_obj;
|
||
|
// returns true iff successful.
|
||
|
Mock::VerifyAndClearExpectations(&mock_obj);
|
||
|
...
|
||
|
// Verifies and removes the expectations on mock_obj;
|
||
|
// also removes the default actions set by ON_CALL();
|
||
|
// returns true iff successful.
|
||
|
Mock::VerifyAndClear(&mock_obj);
|
||
|
```
|
||
|
|
||
|
You can also tell Google Mock that a mock object can be leaked and doesn't
|
||
|
need to be verified:
|
||
|
```
|
||
|
Mock::AllowLeak(&mock_obj);
|
||
|
```
|
||
|
|
||
|
# Mock Classes #
|
||
|
|
||
|
Google Mock defines a convenient mock class template
|
||
|
```
|
||
|
class MockFunction<R(A1, ..., An)> {
|
||
|
public:
|
||
|
MOCK_METHODn(Call, R(A1, ..., An));
|
||
|
};
|
||
|
```
|
||
|
See this [recipe](CookBook.md#using-check-points) for one application of it.
|
||
|
|
||
|
# Flags #
|
||
|
|
||
|
| `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. |
|
||
|
|:-------------------------------|:----------------------------------------------|
|
||
|
| `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, `warning`, or `error`) of Google Mock messages. |
|