s1-mod/deps/libtomcrypt/src/math/gmp_desc.c
2024-02-27 03:09:30 -05:00

659 lines
13 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */
#define DESC_DEF_ONLY
#include "tomcrypt_private.h"
#ifdef GMP_DESC
#include <stdio.h>
#include <gmp.h>
static int init(void **a)
{
LTC_ARGCHK(a != NULL);
*a = XCALLOC(1, sizeof(__mpz_struct));
if (*a == NULL) {
return CRYPT_MEM;
}
mpz_init(((__mpz_struct *)*a));
return CRYPT_OK;
}
static void deinit(void *a)
{
LTC_ARGCHKVD(a != NULL);
mpz_clear(a);
XFREE(a);
}
static int neg(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
mpz_neg(b, a);
return CRYPT_OK;
}
static int copy(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
mpz_set(b, a);
return CRYPT_OK;
}
static int init_copy(void **a, void *b)
{
if (init(a) != CRYPT_OK) {
return CRYPT_MEM;
}
return copy(b, *a);
}
/* ---- trivial ---- */
static int set_int(void *a, ltc_mp_digit b)
{
LTC_ARGCHK(a != NULL);
mpz_set_ui(((__mpz_struct *)a), b);
return CRYPT_OK;
}
static unsigned long get_int(void *a)
{
LTC_ARGCHK(a != NULL);
return mpz_get_ui(a);
}
static ltc_mp_digit get_digit(void *a, int n)
{
LTC_ARGCHK(a != NULL);
return mpz_getlimbn(a, n);
}
static int get_digit_count(void *a)
{
LTC_ARGCHK(a != NULL);
return mpz_size(a);
}
static int compare(void *a, void *b)
{
int ret;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
ret = mpz_cmp(a, b);
if (ret < 0) {
return LTC_MP_LT;
} else if (ret > 0) {
return LTC_MP_GT;
} else {
return LTC_MP_EQ;
}
}
static int compare_d(void *a, ltc_mp_digit b)
{
int ret;
LTC_ARGCHK(a != NULL);
ret = mpz_cmp_ui(((__mpz_struct *)a), b);
if (ret < 0) {
return LTC_MP_LT;
} else if (ret > 0) {
return LTC_MP_GT;
} else {
return LTC_MP_EQ;
}
}
static int count_bits(void *a)
{
LTC_ARGCHK(a != NULL);
return mpz_sizeinbase(a, 2);
}
static int count_lsb_bits(void *a)
{
LTC_ARGCHK(a != NULL);
return mpz_scan1(a, 0);
}
static int twoexpt(void *a, int n)
{
LTC_ARGCHK(a != NULL);
mpz_set_ui(a, 0);
mpz_setbit(a, n);
return CRYPT_OK;
}
/* ---- conversions ---- */
static const char rmap[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
/* read ascii string */
static int read_radix(void *a, const char *b, int radix)
{
int ret;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
if (radix == 64) {
/* Sadly, GMP only supports radixes up to 62, but we need 64.
* So, although this is not the most elegant or efficient way,
* let's just convert the base 64 string (6 bits per digit) to
* an octal string (3 bits per digit) that's twice as long. */
char c, *tmp, *q;
const char *p;
int i;
tmp = XMALLOC (1 + 2 * XSTRLEN (b));
if (tmp == NULL) {
return CRYPT_MEM;
}
p = b;
q = tmp;
while ((c = *p++) != 0) {
for (i = 0; i < 64; i++) {
if (c == rmap[i])
break;
}
if (i == 64) {
XFREE (tmp);
/* printf ("c = '%c'\n", c); */
return CRYPT_ERROR;
}
*q++ = '0' + (i / 8);
*q++ = '0' + (i % 8);
}
*q = 0;
ret = mpz_set_str(a, tmp, 8);
/* printf ("ret = %d for '%s'\n", ret, tmp); */
XFREE (tmp);
} else {
ret = mpz_set_str(a, b, radix);
}
return (ret == 0 ? CRYPT_OK : CRYPT_ERROR);
}
/* write one */
static int write_radix(void *a, char *b, int radix)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
if (radix >= 11 && radix <= 36)
/* If radix is positive, GMP uses lowercase, and if negative, uppercase.
* We want it to use uppercase, to match the test vectors (presumably
* generated with LibTomMath). */
radix = -radix;
mpz_get_str(b, radix, a);
return CRYPT_OK;
}
/* get size as unsigned char string */
static unsigned long unsigned_size(void *a)
{
unsigned long t;
LTC_ARGCHK(a != NULL);
t = mpz_sizeinbase(a, 2);
if (mpz_cmp_ui(((__mpz_struct *)a), 0) == 0) return 0;
return (t>>3) + ((t&7)?1:0);
}
/* store */
static int unsigned_write(void *a, unsigned char *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
mpz_export(b, NULL, 1, 1, 1, 0, ((__mpz_struct*)a));
return CRYPT_OK;
}
/* read */
static int unsigned_read(void *a, unsigned char *b, unsigned long len)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
mpz_import(a, len, 1, 1, 1, 0, b);
return CRYPT_OK;
}
/* add */
static int add(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_add(c, a, b);
return CRYPT_OK;
}
static int addi(void *a, ltc_mp_digit b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
mpz_add_ui(c, a, b);
return CRYPT_OK;
}
/* sub */
static int sub(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_sub(c, a, b);
return CRYPT_OK;
}
static int subi(void *a, ltc_mp_digit b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
mpz_sub_ui(c, a, b);
return CRYPT_OK;
}
/* mul */
static int mul(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_mul(c, a, b);
return CRYPT_OK;
}
static int muli(void *a, ltc_mp_digit b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
mpz_mul_ui(c, a, b);
return CRYPT_OK;
}
/* sqr */
static int sqr(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
mpz_mul(b, a, a);
return CRYPT_OK;
}
/* sqrtmod_prime */
static int sqrtmod_prime(void *n, void *prime, void *ret)
{
int res, legendre, i;
mpz_t t1, C, Q, S, Z, M, T, R, two;
LTC_ARGCHK(n != NULL);
LTC_ARGCHK(prime != NULL);
LTC_ARGCHK(ret != NULL);
/* first handle the simple cases */
if (mpz_cmp_ui(((__mpz_struct *)n), 0) == 0) {
mpz_set_ui(ret, 0);
return CRYPT_OK;
}
if (mpz_cmp_ui(((__mpz_struct *)prime), 2) == 0) return CRYPT_ERROR; /* prime must be odd */
legendre = mpz_legendre(n, prime);
if (legendre == -1) return CRYPT_ERROR; /* quadratic non-residue mod prime */
mpz_init(t1); mpz_init(C); mpz_init(Q);
mpz_init(S); mpz_init(Z); mpz_init(M);
mpz_init(T); mpz_init(R); mpz_init(two);
/* SPECIAL CASE: if prime mod 4 == 3
* compute directly: res = n^(prime+1)/4 mod prime
* Handbook of Applied Cryptography algorithm 3.36
*/
i = mpz_mod_ui(t1, prime, 4); /* t1 is ignored here */
if (i == 3) {
mpz_add_ui(t1, prime, 1);
mpz_fdiv_q_2exp(t1, t1, 2);
mpz_powm(ret, n, t1, prime);
res = CRYPT_OK;
goto cleanup;
}
/* NOW: Tonelli-Shanks algorithm */
/* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
mpz_set(Q, prime);
mpz_sub_ui(Q, Q, 1);
/* Q = prime - 1 */
mpz_set_ui(S, 0);
/* S = 0 */
while (mpz_even_p(Q)) {
mpz_fdiv_q_2exp(Q, Q, 1);
/* Q = Q / 2 */
mpz_add_ui(S, S, 1);
/* S = S + 1 */
}
/* find a Z such that the Legendre symbol (Z|prime) == -1 */
mpz_set_ui(Z, 2);
/* Z = 2 */
while(1) {
legendre = mpz_legendre(Z, prime);
if (legendre == -1) break;
mpz_add_ui(Z, Z, 1);
/* Z = Z + 1 */
}
mpz_powm(C, Z, Q, prime);
/* C = Z ^ Q mod prime */
mpz_add_ui(t1, Q, 1);
mpz_fdiv_q_2exp(t1, t1, 1);
/* t1 = (Q + 1) / 2 */
mpz_powm(R, n, t1, prime);
/* R = n ^ ((Q + 1) / 2) mod prime */
mpz_powm(T, n, Q, prime);
/* T = n ^ Q mod prime */
mpz_set(M, S);
/* M = S */
mpz_set_ui(two, 2);
while (1) {
mpz_set(t1, T);
i = 0;
while (1) {
if (mpz_cmp_ui(((__mpz_struct *)t1), 1) == 0) break;
mpz_powm(t1, t1, two, prime);
i++;
}
if (i == 0) {
mpz_set(ret, R);
res = CRYPT_OK;
goto cleanup;
}
mpz_sub_ui(t1, M, i);
mpz_sub_ui(t1, t1, 1);
mpz_powm(t1, two, t1, prime);
/* t1 = 2 ^ (M - i - 1) */
mpz_powm(t1, C, t1, prime);
/* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
mpz_mul(C, t1, t1);
mpz_mod(C, C, prime);
/* C = (t1 * t1) mod prime */
mpz_mul(R, R, t1);
mpz_mod(R, R, prime);
/* R = (R * t1) mod prime */
mpz_mul(T, T, C);
mpz_mod(T, T, prime);
/* T = (T * C) mod prime */
mpz_set_ui(M, i);
/* M = i */
}
cleanup:
mpz_clear(t1); mpz_clear(C); mpz_clear(Q);
mpz_clear(S); mpz_clear(Z); mpz_clear(M);
mpz_clear(T); mpz_clear(R); mpz_clear(two);
return res;
}
/* div */
static int divide(void *a, void *b, void *c, void *d)
{
mpz_t tmp;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
if (c != NULL) {
mpz_init(tmp);
mpz_divexact(tmp, a, b);
}
if (d != NULL) {
mpz_mod(d, a, b);
}
if (c != NULL) {
mpz_set(c, tmp);
mpz_clear(tmp);
}
return CRYPT_OK;
}
static int div_2(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
mpz_divexact_ui(b, a, 2);
return CRYPT_OK;
}
/* modi */
static int modi(void *a, ltc_mp_digit b, ltc_mp_digit *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
*c = mpz_fdiv_ui(a, b);
return CRYPT_OK;
}
/* gcd */
static int gcd(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_gcd(c, a, b);
return CRYPT_OK;
}
/* lcm */
static int lcm(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_lcm(c, a, b);
return CRYPT_OK;
}
static int addmod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
mpz_add(d, a, b);
mpz_mod(d, d, c);
return CRYPT_OK;
}
static int submod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
mpz_sub(d, a, b);
mpz_mod(d, d, c);
return CRYPT_OK;
}
static int mulmod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
mpz_mul(d, a, b);
mpz_mod(d, d, c);
return CRYPT_OK;
}
static int sqrmod(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_mul(c, a, a);
mpz_mod(c, c, b);
return CRYPT_OK;
}
/* invmod */
static int invmod(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_invert(c, a, b);
return CRYPT_OK;
}
/* setup */
static int montgomery_setup(void *a, void **b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
*b = (void *)1;
return CRYPT_OK;
}
/* get normalization value */
static int montgomery_normalization(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
mpz_set_ui(a, 1);
return CRYPT_OK;
}
/* reduce */
static int montgomery_reduce(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
mpz_mod(a, a, b);
return CRYPT_OK;
}
/* clean up */
static void montgomery_deinit(void *a)
{
LTC_UNUSED_PARAM(a);
}
static int exptmod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
mpz_powm(d, a, b, c);
return CRYPT_OK;
}
static int isprime(void *a, int b, int *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
if (b == 0) {
b = LTC_MILLER_RABIN_REPS;
} /* if */
*c = mpz_probab_prime_p(a, b) > 0 ? LTC_MP_YES : LTC_MP_NO;
return CRYPT_OK;
}
static int set_rand(void *a, int size)
{
LTC_ARGCHK(a != NULL);
mpz_random(a, size);
return CRYPT_OK;
}
const ltc_math_descriptor gmp_desc = {
"GNU MP",
sizeof(mp_limb_t) * CHAR_BIT - GMP_NAIL_BITS,
&init,
&init_copy,
&deinit,
&neg,
&copy,
&set_int,
&get_int,
&get_digit,
&get_digit_count,
&compare,
&compare_d,
&count_bits,
&count_lsb_bits,
&twoexpt,
&read_radix,
&write_radix,
&unsigned_size,
&unsigned_write,
&unsigned_read,
&add,
&addi,
&sub,
&subi,
&mul,
&muli,
&sqr,
&sqrtmod_prime,
&divide,
&div_2,
&modi,
&gcd,
&lcm,
&mulmod,
&sqrmod,
&invmod,
&montgomery_setup,
&montgomery_normalization,
&montgomery_reduce,
&montgomery_deinit,
&exptmod,
&isprime,
#ifdef LTC_MECC
#ifdef LTC_MECC_FP
&ltc_ecc_fp_mulmod,
#else
&ltc_ecc_mulmod,
#endif /* LTC_MECC_FP */
&ltc_ecc_projective_add_point,
&ltc_ecc_projective_dbl_point,
&ltc_ecc_map,
#ifdef LTC_ECC_SHAMIR
#ifdef LTC_MECC_FP
&ltc_ecc_fp_mul2add,
#else
&ltc_ecc_mul2add,
#endif /* LTC_MECC_FP */
#else
NULL,
#endif /* LTC_ECC_SHAMIR */
#else
NULL, NULL, NULL, NULL, NULL,
#endif /* LTC_MECC */
#ifdef LTC_MRSA
&rsa_make_key,
&rsa_exptmod,
#else
NULL, NULL,
#endif
&addmod,
&submod,
&set_rand,
};
#endif