/* LibTomCrypt, modular cryptographic library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ #define DESC_DEF_ONLY #include "tomcrypt_private.h" #ifdef GMP_DESC #include #include static int init(void **a) { LTC_ARGCHK(a != NULL); *a = XCALLOC(1, sizeof(__mpz_struct)); if (*a == NULL) { return CRYPT_MEM; } mpz_init(((__mpz_struct *)*a)); return CRYPT_OK; } static void deinit(void *a) { LTC_ARGCHKVD(a != NULL); mpz_clear(a); XFREE(a); } static int neg(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); mpz_neg(b, a); return CRYPT_OK; } static int copy(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); mpz_set(b, a); return CRYPT_OK; } static int init_copy(void **a, void *b) { if (init(a) != CRYPT_OK) { return CRYPT_MEM; } return copy(b, *a); } /* ---- trivial ---- */ static int set_int(void *a, ltc_mp_digit b) { LTC_ARGCHK(a != NULL); mpz_set_ui(((__mpz_struct *)a), b); return CRYPT_OK; } static unsigned long get_int(void *a) { LTC_ARGCHK(a != NULL); return mpz_get_ui(a); } static ltc_mp_digit get_digit(void *a, int n) { LTC_ARGCHK(a != NULL); return mpz_getlimbn(a, n); } static int get_digit_count(void *a) { LTC_ARGCHK(a != NULL); return mpz_size(a); } static int compare(void *a, void *b) { int ret; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); ret = mpz_cmp(a, b); if (ret < 0) { return LTC_MP_LT; } else if (ret > 0) { return LTC_MP_GT; } else { return LTC_MP_EQ; } } static int compare_d(void *a, ltc_mp_digit b) { int ret; LTC_ARGCHK(a != NULL); ret = mpz_cmp_ui(((__mpz_struct *)a), b); if (ret < 0) { return LTC_MP_LT; } else if (ret > 0) { return LTC_MP_GT; } else { return LTC_MP_EQ; } } static int count_bits(void *a) { LTC_ARGCHK(a != NULL); return mpz_sizeinbase(a, 2); } static int count_lsb_bits(void *a) { LTC_ARGCHK(a != NULL); return mpz_scan1(a, 0); } static int twoexpt(void *a, int n) { LTC_ARGCHK(a != NULL); mpz_set_ui(a, 0); mpz_setbit(a, n); return CRYPT_OK; } /* ---- conversions ---- */ static const char rmap[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/"; /* read ascii string */ static int read_radix(void *a, const char *b, int radix) { int ret; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); if (radix == 64) { /* Sadly, GMP only supports radixes up to 62, but we need 64. * So, although this is not the most elegant or efficient way, * let's just convert the base 64 string (6 bits per digit) to * an octal string (3 bits per digit) that's twice as long. */ char c, *tmp, *q; const char *p; int i; tmp = XMALLOC (1 + 2 * XSTRLEN (b)); if (tmp == NULL) { return CRYPT_MEM; } p = b; q = tmp; while ((c = *p++) != 0) { for (i = 0; i < 64; i++) { if (c == rmap[i]) break; } if (i == 64) { XFREE (tmp); /* printf ("c = '%c'\n", c); */ return CRYPT_ERROR; } *q++ = '0' + (i / 8); *q++ = '0' + (i % 8); } *q = 0; ret = mpz_set_str(a, tmp, 8); /* printf ("ret = %d for '%s'\n", ret, tmp); */ XFREE (tmp); } else { ret = mpz_set_str(a, b, radix); } return (ret == 0 ? CRYPT_OK : CRYPT_ERROR); } /* write one */ static int write_radix(void *a, char *b, int radix) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); if (radix >= 11 && radix <= 36) /* If radix is positive, GMP uses lowercase, and if negative, uppercase. * We want it to use uppercase, to match the test vectors (presumably * generated with LibTomMath). */ radix = -radix; mpz_get_str(b, radix, a); return CRYPT_OK; } /* get size as unsigned char string */ static unsigned long unsigned_size(void *a) { unsigned long t; LTC_ARGCHK(a != NULL); t = mpz_sizeinbase(a, 2); if (mpz_cmp_ui(((__mpz_struct *)a), 0) == 0) return 0; return (t>>3) + ((t&7)?1:0); } /* store */ static int unsigned_write(void *a, unsigned char *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); mpz_export(b, NULL, 1, 1, 1, 0, ((__mpz_struct*)a)); return CRYPT_OK; } /* read */ static int unsigned_read(void *a, unsigned char *b, unsigned long len) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); mpz_import(a, len, 1, 1, 1, 0, b); return CRYPT_OK; } /* add */ static int add(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_add(c, a, b); return CRYPT_OK; } static int addi(void *a, ltc_mp_digit b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); mpz_add_ui(c, a, b); return CRYPT_OK; } /* sub */ static int sub(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_sub(c, a, b); return CRYPT_OK; } static int subi(void *a, ltc_mp_digit b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); mpz_sub_ui(c, a, b); return CRYPT_OK; } /* mul */ static int mul(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_mul(c, a, b); return CRYPT_OK; } static int muli(void *a, ltc_mp_digit b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); mpz_mul_ui(c, a, b); return CRYPT_OK; } /* sqr */ static int sqr(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); mpz_mul(b, a, a); return CRYPT_OK; } /* sqrtmod_prime */ static int sqrtmod_prime(void *n, void *prime, void *ret) { int res, legendre, i; mpz_t t1, C, Q, S, Z, M, T, R, two; LTC_ARGCHK(n != NULL); LTC_ARGCHK(prime != NULL); LTC_ARGCHK(ret != NULL); /* first handle the simple cases */ if (mpz_cmp_ui(((__mpz_struct *)n), 0) == 0) { mpz_set_ui(ret, 0); return CRYPT_OK; } if (mpz_cmp_ui(((__mpz_struct *)prime), 2) == 0) return CRYPT_ERROR; /* prime must be odd */ legendre = mpz_legendre(n, prime); if (legendre == -1) return CRYPT_ERROR; /* quadratic non-residue mod prime */ mpz_init(t1); mpz_init(C); mpz_init(Q); mpz_init(S); mpz_init(Z); mpz_init(M); mpz_init(T); mpz_init(R); mpz_init(two); /* SPECIAL CASE: if prime mod 4 == 3 * compute directly: res = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ i = mpz_mod_ui(t1, prime, 4); /* t1 is ignored here */ if (i == 3) { mpz_add_ui(t1, prime, 1); mpz_fdiv_q_2exp(t1, t1, 2); mpz_powm(ret, n, t1, prime); res = CRYPT_OK; goto cleanup; } /* NOW: Tonelli-Shanks algorithm */ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ mpz_set(Q, prime); mpz_sub_ui(Q, Q, 1); /* Q = prime - 1 */ mpz_set_ui(S, 0); /* S = 0 */ while (mpz_even_p(Q)) { mpz_fdiv_q_2exp(Q, Q, 1); /* Q = Q / 2 */ mpz_add_ui(S, S, 1); /* S = S + 1 */ } /* find a Z such that the Legendre symbol (Z|prime) == -1 */ mpz_set_ui(Z, 2); /* Z = 2 */ while(1) { legendre = mpz_legendre(Z, prime); if (legendre == -1) break; mpz_add_ui(Z, Z, 1); /* Z = Z + 1 */ } mpz_powm(C, Z, Q, prime); /* C = Z ^ Q mod prime */ mpz_add_ui(t1, Q, 1); mpz_fdiv_q_2exp(t1, t1, 1); /* t1 = (Q + 1) / 2 */ mpz_powm(R, n, t1, prime); /* R = n ^ ((Q + 1) / 2) mod prime */ mpz_powm(T, n, Q, prime); /* T = n ^ Q mod prime */ mpz_set(M, S); /* M = S */ mpz_set_ui(two, 2); while (1) { mpz_set(t1, T); i = 0; while (1) { if (mpz_cmp_ui(((__mpz_struct *)t1), 1) == 0) break; mpz_powm(t1, t1, two, prime); i++; } if (i == 0) { mpz_set(ret, R); res = CRYPT_OK; goto cleanup; } mpz_sub_ui(t1, M, i); mpz_sub_ui(t1, t1, 1); mpz_powm(t1, two, t1, prime); /* t1 = 2 ^ (M - i - 1) */ mpz_powm(t1, C, t1, prime); /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ mpz_mul(C, t1, t1); mpz_mod(C, C, prime); /* C = (t1 * t1) mod prime */ mpz_mul(R, R, t1); mpz_mod(R, R, prime); /* R = (R * t1) mod prime */ mpz_mul(T, T, C); mpz_mod(T, T, prime); /* T = (T * C) mod prime */ mpz_set_ui(M, i); /* M = i */ } cleanup: mpz_clear(t1); mpz_clear(C); mpz_clear(Q); mpz_clear(S); mpz_clear(Z); mpz_clear(M); mpz_clear(T); mpz_clear(R); mpz_clear(two); return res; } /* div */ static int divide(void *a, void *b, void *c, void *d) { mpz_t tmp; LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); if (c != NULL) { mpz_init(tmp); mpz_divexact(tmp, a, b); } if (d != NULL) { mpz_mod(d, a, b); } if (c != NULL) { mpz_set(c, tmp); mpz_clear(tmp); } return CRYPT_OK; } static int div_2(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); mpz_divexact_ui(b, a, 2); return CRYPT_OK; } /* modi */ static int modi(void *a, ltc_mp_digit b, ltc_mp_digit *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); *c = mpz_fdiv_ui(a, b); return CRYPT_OK; } /* gcd */ static int gcd(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_gcd(c, a, b); return CRYPT_OK; } /* lcm */ static int lcm(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_lcm(c, a, b); return CRYPT_OK; } static int addmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); mpz_add(d, a, b); mpz_mod(d, d, c); return CRYPT_OK; } static int submod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); mpz_sub(d, a, b); mpz_mod(d, d, c); return CRYPT_OK; } static int mulmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); mpz_mul(d, a, b); mpz_mod(d, d, c); return CRYPT_OK; } static int sqrmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_mul(c, a, a); mpz_mod(c, c, b); return CRYPT_OK; } /* invmod */ static int invmod(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_invert(c, a, b); return CRYPT_OK; } /* setup */ static int montgomery_setup(void *a, void **b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); *b = (void *)1; return CRYPT_OK; } /* get normalization value */ static int montgomery_normalization(void *a, void *b) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); mpz_set_ui(a, 1); return CRYPT_OK; } /* reduce */ static int montgomery_reduce(void *a, void *b, void *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); mpz_mod(a, a, b); return CRYPT_OK; } /* clean up */ static void montgomery_deinit(void *a) { LTC_UNUSED_PARAM(a); } static int exptmod(void *a, void *b, void *c, void *d) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(b != NULL); LTC_ARGCHK(c != NULL); LTC_ARGCHK(d != NULL); mpz_powm(d, a, b, c); return CRYPT_OK; } static int isprime(void *a, int b, int *c) { LTC_ARGCHK(a != NULL); LTC_ARGCHK(c != NULL); if (b == 0) { b = LTC_MILLER_RABIN_REPS; } /* if */ *c = mpz_probab_prime_p(a, b) > 0 ? LTC_MP_YES : LTC_MP_NO; return CRYPT_OK; } static int set_rand(void *a, int size) { LTC_ARGCHK(a != NULL); mpz_random(a, size); return CRYPT_OK; } const ltc_math_descriptor gmp_desc = { "GNU MP", sizeof(mp_limb_t) * CHAR_BIT - GMP_NAIL_BITS, &init, &init_copy, &deinit, &neg, ©, &set_int, &get_int, &get_digit, &get_digit_count, &compare, &compare_d, &count_bits, &count_lsb_bits, &twoexpt, &read_radix, &write_radix, &unsigned_size, &unsigned_write, &unsigned_read, &add, &addi, &sub, &subi, &mul, &muli, &sqr, &sqrtmod_prime, ÷, &div_2, &modi, &gcd, &lcm, &mulmod, &sqrmod, &invmod, &montgomery_setup, &montgomery_normalization, &montgomery_reduce, &montgomery_deinit, &exptmod, &isprime, #ifdef LTC_MECC #ifdef LTC_MECC_FP <c_ecc_fp_mulmod, #else <c_ecc_mulmod, #endif /* LTC_MECC_FP */ <c_ecc_projective_add_point, <c_ecc_projective_dbl_point, <c_ecc_map, #ifdef LTC_ECC_SHAMIR #ifdef LTC_MECC_FP <c_ecc_fp_mul2add, #else <c_ecc_mul2add, #endif /* LTC_MECC_FP */ #else NULL, #endif /* LTC_ECC_SHAMIR */ #else NULL, NULL, NULL, NULL, NULL, #endif /* LTC_MECC */ #ifdef LTC_MRSA &rsa_make_key, &rsa_exptmod, #else NULL, NULL, #endif &addmod, &submod, &set_rand, }; #endif