GSL/tests/span_tests.cpp

1300 lines
34 KiB
C++

///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <gtest/gtest.h>
#include <gsl/byte> // for byte
#include <gsl/span> // for span, span_iterator, operator==, operator!=
#include <gsl/util> // for narrow_cast, at
#include <array> // for array
#include <cstddef> // for ptrdiff_t
#include <iostream> // for ptrdiff_t
#include <iterator> // for reverse_iterator, operator-, operator==
#include <memory> // for unique_ptr, shared_ptr, make_unique, allo...
#include <regex> // for match_results, sub_match, match_results<>...
#include <string> // for string
#include <type_traits> // for integral_constant<>::value, is_default_co...
#include <utility>
#include <vector> // for vector
// the string_view include and macro are used in the deduction guide verification
#if (defined(__cpp_deduction_guides) && (__cpp_deduction_guides >= 201611L))
#ifdef __has_include
#if __has_include(<string_view>)
#include <string_view>
#define HAS_STRING_VIEW
#endif // __has_include(<string_view>)
#endif // __has_include
#endif // (defined(__cpp_deduction_guides) && (__cpp_deduction_guides >= 201611L))
#include "deathTestCommon.h"
using namespace gsl;
namespace
{
struct BaseClass
{
};
struct DerivedClass : BaseClass
{
};
struct AddressOverloaded
{
#if (__cplusplus > 201402L)
[[maybe_unused]]
#endif
AddressOverloaded
operator&() const
{
return {};
}
};
} // namespace
TEST(span_test, constructors)
{
span<int> s;
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
span<const int> cs;
EXPECT_TRUE(cs.size() == 0);
EXPECT_TRUE(cs.data() == nullptr);
}
TEST(span_test, constructors_with_extent)
{
span<int, 0> s;
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
span<const int, 0> cs;
EXPECT_TRUE(cs.size() == 0);
EXPECT_TRUE(cs.data() == nullptr);
}
TEST(span_test, constructors_with_bracket_init)
{
span<int> s{};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
span<const int> cs{};
EXPECT_TRUE(cs.size() == 0);
EXPECT_TRUE(cs.data() == nullptr);
}
TEST(span_test, size_optimization)
{
span<int> s;
EXPECT_TRUE(sizeof(s) == sizeof(int*) + sizeof(ptrdiff_t));
span<int, 0> se;
EXPECT_TRUE(sizeof(se) == sizeof(int*));
}
TEST(span_test, from_nullptr_size_constructor)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. from_nullptr_size_constructor";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
span<int> s{nullptr, narrow_cast<span<int>::size_type>(0)};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
span<int> cs{nullptr, narrow_cast<span<int>::size_type>(0)};
EXPECT_TRUE(cs.size() == 0);
EXPECT_TRUE(cs.data() == nullptr);
}
{
auto workaround_macro = []() {
const span<int, 1> s{nullptr, narrow_cast<span<int>::size_type>(0)};
};
EXPECT_DEATH(workaround_macro(), expected);
}
{
auto workaround_macro = []() { const span<int> s{nullptr, 1}; };
EXPECT_DEATH(workaround_macro(), expected);
auto const_workaround_macro = []() { const span<const int> s{nullptr, 1}; };
EXPECT_DEATH(const_workaround_macro(), expected);
}
{
auto workaround_macro = []() { const span<int, 0> s{nullptr, 1}; };
EXPECT_DEATH(workaround_macro(), expected);
auto const_workaround_macro = []() { const span<const int, 0> s{nullptr, 1}; };
EXPECT_DEATH(const_workaround_macro(), expected);
}
{
span<int*> s{nullptr, narrow_cast<span<int>::size_type>(0)};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
span<const int*> cs{nullptr, narrow_cast<span<int>::size_type>(0)};
EXPECT_TRUE(cs.size() == 0);
EXPECT_TRUE(cs.data() == nullptr);
}
}
TEST(span_test, from_pointer_length_constructor)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. from_pointer_length_constructor";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int arr[4] = {1, 2, 3, 4};
{
for (int i = 0; i < 4; ++i)
{
{
span<int> s = {&arr[0], narrow_cast<std::size_t>(i)};
EXPECT_TRUE(s.size() == narrow_cast<std::size_t>(i));
EXPECT_TRUE(s.data() == &arr[0]);
EXPECT_TRUE(s.empty() == (i == 0));
for (int j = 0; j < i; ++j) EXPECT_TRUE(arr[j] == s[narrow_cast<std::size_t>(j)]);
}
{
span<int> s = {&arr[i], 4 - narrow_cast<std::size_t>(i)};
EXPECT_TRUE(s.size() == 4 - narrow_cast<std::size_t>(i));
EXPECT_TRUE(s.data() == &arr[i]);
EXPECT_TRUE(s.empty() == ((4 - i) == 0));
for (int j = 0; j < 4 - i; ++j)
EXPECT_TRUE(arr[j + i] == s[narrow_cast<std::size_t>(j)]);
}
}
}
{
span<int, 2> s{&arr[0], 2};
EXPECT_TRUE(s.size() == 2);
EXPECT_TRUE(s.data() == &arr[0]);
EXPECT_TRUE(s[0] == 1);
EXPECT_TRUE(s[1] == 2);
}
{
int* p = nullptr;
span<int> s{p, narrow_cast<span<int>::size_type>(0)};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
}
{
int* p = nullptr;
auto workaround_macro = [=]() { const span<int> s{p, 2}; };
EXPECT_DEATH(workaround_macro(), expected);
}
}
TEST(span_test, from_pointer_pointer_construction)
{
int arr[4] = {1, 2, 3, 4};
{
span<int> s{&arr[0], &arr[2]};
EXPECT_TRUE(s.size() == 2);
EXPECT_TRUE(s.data() == &arr[0]);
EXPECT_TRUE(s[0] == 1);
EXPECT_TRUE(s[1] == 2);
}
{
span<int, 2> s{&arr[0], &arr[2]};
EXPECT_TRUE(s.size() == 2);
EXPECT_TRUE(s.data() == &arr[0]);
EXPECT_TRUE(s[0] == 1);
EXPECT_TRUE(s[1] == 2);
}
{
span<int> s{&arr[0], &arr[0]};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == &arr[0]);
}
{
span<int, 0> s{&arr[0], &arr[0]};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == &arr[0]);
}
// this will fail the std::distance() precondition, which asserts on MSVC debug builds
//{
// auto workaround_macro = [&]() { span<int> s{&arr[1], &arr[0]}; };
// EXPECT_DEATH(workaround_macro(), expected);
//}
// this will fail the std::distance() precondition, which asserts on MSVC debug builds
//{
// int* p = nullptr;
// auto workaround_macro = [&]() { span<int> s{&arr[0], p}; };
// EXPECT_DEATH(workaround_macro(), expected);
//}
{
int* p = nullptr;
span<int> s{p, p};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
}
{
int* p = nullptr;
span<int, 0> s{p, p};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
}
// this will fail the std::distance() precondition, which asserts on MSVC debug builds
//{
// int* p = nullptr;
// auto workaround_macro = [&]() { span<int> s{&arr[0], p}; };
// EXPECT_DEATH(workaround_macro(), expected);
//}
}
TEST(span_test, from_array_constructor)
{
int arr[5] = {1, 2, 3, 4, 5};
{
const span<int> s{arr};
EXPECT_TRUE(s.size() == 5);
EXPECT_TRUE(s.data() == &arr[0]);
}
{
const span<int, 5> s{arr};
EXPECT_TRUE(s.size() == 5);
EXPECT_TRUE(s.data() == &arr[0]);
}
int arr2d[2][3] = {1, 2, 3, 4, 5, 6};
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, 6> s{arr};
}
{
span<int, 0> s{arr};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == &arr[0]);
}
{
span<int> s{arr2d};
EXPECT_TRUE(s.size() == 6);
EXPECT_TRUE(s.data() == &arr2d[0][0]);
EXPECT_TRUE(s[0] == 1);
EXPECT_TRUE(s[5] == 6);
}
{
span<int, 0> s{arr2d};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == &arr2d[0][0]);
}
{
span<int, 6> s{arr2d};
}
#endif
{
const span<int[3]> s{std::addressof(arr2d[0]), 1};
EXPECT_TRUE(s.size() == 1);
EXPECT_TRUE(s.data() == std::addressof(arr2d[0]));
}
int arr3d[2][3][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int> s{arr3d};
EXPECT_TRUE(s.size() == 12);
EXPECT_TRUE(s.data() == &arr3d[0][0][0]);
EXPECT_TRUE(s[0] == 1);
EXPECT_TRUE(s[11] == 12);
}
{
span<int, 0> s{arr3d};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == &arr3d[0][0][0]);
}
{
span<int, 11> s{arr3d};
}
{
span<int, 12> s{arr3d};
EXPECT_TRUE(s.size() == 12);
EXPECT_TRUE(s.data() == &arr3d[0][0][0]);
EXPECT_TRUE(s[0] == 1);
EXPECT_TRUE(s[5] == 6);
}
#endif
{
const span<int[3][2]> s{std::addressof(arr3d[0]), 1};
EXPECT_TRUE(s.size() == 1);
}
AddressOverloaded ao_arr[5] = {};
{
const span<AddressOverloaded, 5> s{ao_arr};
EXPECT_TRUE(s.size() == 5);
EXPECT_TRUE(s.data() == std::addressof(ao_arr[0]));
}
}
TEST(span_test, from_dynamic_array_constructor)
{
double(*arr)[3][4] = new double[100][3][4];
{
span<double> s(&arr[0][0][0], 10);
EXPECT_TRUE(s.size() == 10);
EXPECT_TRUE(s.data() == &arr[0][0][0]);
}
delete[] arr;
}
TEST(span_test, from_std_array_constructor)
{
std::array<int, 4> arr = {1, 2, 3, 4};
{
span<int> s{arr};
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
span<const int> cs{arr};
EXPECT_TRUE(cs.size() == arr.size());
EXPECT_TRUE(cs.data() == arr.data());
}
{
span<int, 4> s{arr};
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
span<const int, 4> cs{arr};
EXPECT_TRUE(cs.size() == arr.size());
EXPECT_TRUE(cs.data() == arr.data());
}
{
std::array<int, 0> empty_arr{};
span<int> s{empty_arr};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.empty());
}
std::array<AddressOverloaded, 4> ao_arr{};
{
span<AddressOverloaded, 4> fs{ao_arr};
EXPECT_TRUE(fs.size() == ao_arr.size());
EXPECT_TRUE(ao_arr.data() == fs.data());
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, 2> s{arr};
EXPECT_TRUE(s.size() == 2);
EXPECT_TRUE(s.data() == arr.data());
span<const int, 2> cs{arr};
EXPECT_TRUE(cs.size() == 2);
EXPECT_TRUE(cs.data() == arr.data());
}
{
span<int, 0> s{arr};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == arr.data());
span<const int, 0> cs{arr};
EXPECT_TRUE(cs.size() == 0);
EXPECT_TRUE(cs.data() == arr.data());
}
{
span<int, 5> s{arr};
}
{
auto get_an_array = []() -> std::array<int, 4> { return {1, 2, 3, 4}; };
auto take_a_span = [](span<int> s) { static_cast<void>(s); };
// try to take a temporary std::array
take_a_span(get_an_array());
}
#endif
{
auto get_an_array = []() -> std::array<int, 4> { return {1, 2, 3, 4}; };
auto take_a_span = [](span<const int> s) { static_cast<void>(s); };
// try to take a temporary std::array
take_a_span(get_an_array());
}
}
TEST(span_test, from_const_std_array_constructor)
{
const std::array<int, 4> arr = {1, 2, 3, 4};
{
span<const int> s{arr};
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
{
span<const int, 4> s{arr};
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
const std::array<AddressOverloaded, 4> ao_arr{};
{
span<const AddressOverloaded, 4> s{ao_arr};
EXPECT_TRUE(s.size() == ao_arr.size());
EXPECT_TRUE(s.data() == ao_arr.data());
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<const int, 2> s{arr};
EXPECT_TRUE(s.size() == 2);
EXPECT_TRUE(s.data() == arr.data());
}
{
span<const int, 0> s{arr};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == arr.data());
}
{
span<const int, 5> s{arr};
}
#endif
{
auto get_an_array = []() -> const std::array<int, 4> { return {1, 2, 3, 4}; };
auto take_a_span = [](span<const int> s) { static_cast<void>(s); };
// try to take a temporary std::array
take_a_span(get_an_array());
}
}
TEST(span_test, from_std_array_const_constructor)
{
std::array<const int, 4> arr = {1, 2, 3, 4};
{
span<const int> s{arr};
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
{
span<const int, 4> s{arr};
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<const int, 2> s{arr};
EXPECT_TRUE(s.size() == 2);
EXPECT_TRUE(s.data() == arr.data());
}
{
span<const int, 0> s{arr};
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == arr.data());
}
{
span<const int, 5> s{arr};
}
{
span<int, 4> s{arr};
}
#endif
}
TEST(span_test, from_container_constructor)
{
std::vector<int> v = {1, 2, 3};
const std::vector<int> cv = v;
{
span<int> s{v};
EXPECT_TRUE(s.size() == v.size());
EXPECT_TRUE(s.data() == v.data());
span<const int> cs{v};
EXPECT_TRUE(cs.size() == v.size());
EXPECT_TRUE(cs.data() == v.data());
}
std::string str = "hello";
const std::string cstr = "hello";
{
#ifdef CONFIRM_COMPILATION_ERRORS
span<char> s{str};
EXPECT_TRUE(s.size() == str.size());
EXPECT_TRUE(s.data() == str.data()));
#endif
span<const char> cs{str};
EXPECT_TRUE(cs.size() == str.size());
EXPECT_TRUE(cs.data() == str.data());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
span<char> s{cstr};
#endif
span<const char> cs{cstr};
EXPECT_TRUE(cs.size() == cstr.size());
EXPECT_TRUE(cs.data() == cstr.data());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_vector = []() -> std::vector<int> { return {}; };
auto use_span = [](span<int> s) { static_cast<void>(s); };
use_span(get_temp_vector());
#endif
}
{
auto get_temp_vector = []() -> std::vector<int> { return {}; };
auto use_span = [](span<const int> s) { static_cast<void>(s); };
use_span(get_temp_vector());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_string = []() -> std::string { return {}; };
auto use_span = [](span<char> s) { static_cast<void>(s); };
use_span(get_temp_string());
#endif
}
{
auto get_temp_string = []() -> std::string { return {}; };
auto use_span = [](span<const char> s) { static_cast<void>(s); };
use_span(get_temp_string());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
auto get_temp_vector = []() -> const std::vector<int> { return {}; };
auto use_span = [](span<const char> s) { static_cast<void>(s); };
use_span(get_temp_vector());
#endif
}
{
auto get_temp_string = []() -> const std::string { return {}; };
auto use_span = [](span<const char> s) { static_cast<void>(s); };
use_span(get_temp_string());
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
std::map<int, int> m;
span<int> s{m};
#endif
}
}
TEST(span_test, from_convertible_span_constructor){{span<DerivedClass> avd;
span<const DerivedClass> avcd = avd;
static_cast<void>(avcd);
}
{
#ifdef CONFIRM_COMPILATION_ERRORS
span<DerivedClass> avd;
span<BaseClass> avb = avd;
static_cast<void>(avb);
#endif
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int> s;
span<unsigned int> s2 = s;
static_cast<void>(s2);
}
{
span<int> s;
span<const unsigned int> s2 = s;
static_cast<void>(s2);
}
{
span<int> s;
span<short> s2 = s;
static_cast<void>(s2);
}
#endif
}
TEST(span_test, copy_move_and_assignment)
{
span<int> s1;
EXPECT_TRUE(s1.empty());
int arr[] = {3, 4, 5};
span<const int> s2 = arr;
EXPECT_TRUE(s2.size() == 3);
EXPECT_TRUE(s2.data() == &arr[0]);
s2 = s1;
EXPECT_TRUE(s2.empty());
auto get_temp_span = [&]() -> span<int> { return {&arr[1], 2}; };
auto use_span = [&](span<const int> s) {
EXPECT_TRUE(s.size() == 2);
EXPECT_TRUE(s.data() == &arr[1]);
};
use_span(get_temp_span());
s1 = get_temp_span();
EXPECT_TRUE(s1.size() == 2);
EXPECT_TRUE(s1.data() == &arr[1]);
}
TEST(span_test, first)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. first";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int arr[5] = {1, 2, 3, 4, 5};
{
span<int, 5> av = arr;
EXPECT_TRUE(av.first<2>().size() == 2);
EXPECT_TRUE(av.first(2).size() == 2);
}
{
span<int, 5> av = arr;
EXPECT_TRUE(av.first<0>().size() == 0);
EXPECT_TRUE(av.first(0).size() == 0);
}
{
span<int, 5> av = arr;
EXPECT_TRUE(av.first<5>().size() == 5);
EXPECT_TRUE(av.first(5).size() == 5);
}
{
span<int, 5> av = arr;
#ifdef CONFIRM_COMPILATION_ERRORS
EXPECT_TRUE(av.first<6>().size() == 6);
EXPECT_TRUE(av.first<-1>().size() == -1);
#endif
EXPECT_DEATH(av.first(6).size(), expected);
}
{
span<int> av;
EXPECT_TRUE(av.first<0>().size() == 0);
EXPECT_TRUE(av.first(0).size() == 0);
}
}
TEST(span_test, last)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. last";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int arr[5] = {1, 2, 3, 4, 5};
{
span<int, 5> av = arr;
EXPECT_TRUE(av.last<2>().size() == 2);
EXPECT_TRUE(av.last(2).size() == 2);
}
{
span<int, 5> av = arr;
EXPECT_TRUE(av.last<0>().size() == 0);
EXPECT_TRUE(av.last(0).size() == 0);
}
{
span<int, 5> av = arr;
EXPECT_TRUE(av.last<5>().size() == 5);
EXPECT_TRUE(av.last(5).size() == 5);
}
{
span<int, 5> av = arr;
#ifdef CONFIRM_COMPILATION_ERRORS
EXPECT_TRUE(av.last<6>().size() == 6);
#endif
EXPECT_DEATH(av.last(6).size(), expected);
}
{
span<int> av;
EXPECT_TRUE(av.last<0>().size() == 0);
EXPECT_TRUE(av.last(0).size() == 0);
}
}
TEST(span_test, subspan)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. subspan";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int arr[5] = {1, 2, 3, 4, 5};
{
span<int, 5> av = arr;
EXPECT_TRUE((av.subspan<2, 2>().size()) == 2);
EXPECT_TRUE(decltype(av.subspan<2, 2>())::extent == 2);
EXPECT_TRUE(av.subspan(2, 2).size() == 2);
EXPECT_TRUE(av.subspan(2, 3).size() == 3);
}
{
span<int, 5> av = arr;
EXPECT_TRUE((av.subspan<0, 0>().size()) == 0);
EXPECT_TRUE(decltype(av.subspan<0, 0>())::extent == 0);
EXPECT_TRUE(av.subspan(0, 0).size() == 0);
}
{
span<int, 5> av = arr;
EXPECT_TRUE((av.subspan<0, 5>().size()) == 5);
EXPECT_TRUE(decltype(av.subspan<0, 5>())::extent == 5);
EXPECT_TRUE(av.subspan(0, 5).size() == 5);
EXPECT_DEATH(av.subspan(0, 6).size(), expected);
EXPECT_DEATH(av.subspan(1, 5).size(), expected);
}
{
span<int, 5> av = arr;
EXPECT_TRUE((av.subspan<4, 0>().size()) == 0);
EXPECT_TRUE(decltype(av.subspan<4, 0>())::extent == 0);
EXPECT_TRUE(av.subspan(4, 0).size() == 0);
EXPECT_TRUE(av.subspan(5, 0).size() == 0);
EXPECT_DEATH(av.subspan(6, 0).size(), expected);
}
{
span<int, 5> av = arr;
EXPECT_TRUE(av.subspan<1>().size() == 4);
EXPECT_TRUE(decltype(av.subspan<1>())::extent == 4);
}
{
span<int> av;
EXPECT_TRUE((av.subspan<0, 0>().size()) == 0);
EXPECT_TRUE(decltype(av.subspan<0, 0>())::extent == 0);
EXPECT_TRUE(av.subspan(0, 0).size() == 0);
EXPECT_DEATH((av.subspan<1, 0>().size()), expected);
}
{
span<int> av;
EXPECT_TRUE(av.subspan(0).size() == 0);
EXPECT_DEATH(av.subspan(1).size(), expected);
}
{
span<int> av = arr;
EXPECT_TRUE(av.subspan(0).size() == 5);
EXPECT_TRUE(av.subspan(1).size() == 4);
EXPECT_TRUE(av.subspan(4).size() == 1);
EXPECT_TRUE(av.subspan(5).size() == 0);
EXPECT_DEATH(av.subspan(6).size(), expected);
const auto av2 = av.subspan(1);
for (std::size_t i = 0; i < 4; ++i) EXPECT_TRUE(av2[i] == static_cast<int>(i) + 2);
}
{
span<int, 5> av = arr;
EXPECT_TRUE(av.subspan(0).size() == 5);
EXPECT_TRUE(av.subspan(1).size() == 4);
EXPECT_TRUE(av.subspan(4).size() == 1);
EXPECT_TRUE(av.subspan(5).size() == 0);
EXPECT_DEATH(av.subspan(6).size(), expected);
const auto av2 = av.subspan(1);
for (std::size_t i = 0; i < 4; ++i) EXPECT_TRUE(av2[i] == static_cast<int>(i) + 2);
}
}
TEST(span_test, iterator_default_init)
{
span<int>::iterator it1;
span<int>::iterator it2;
EXPECT_TRUE(it1 == it2);
}
TEST(span_test, iterator_comparisons)
{
int a[] = {1, 2, 3, 4};
{
span<int> s = a;
span<int>::iterator it = s.begin();
auto it2 = it + 1;
EXPECT_TRUE(it == it);
EXPECT_TRUE(it == s.begin());
EXPECT_TRUE(s.begin() == it);
EXPECT_TRUE(it != it2);
EXPECT_TRUE(it2 != it);
EXPECT_TRUE(it != s.end());
EXPECT_TRUE(it2 != s.end());
EXPECT_TRUE(s.end() != it);
EXPECT_TRUE(it < it2);
EXPECT_TRUE(it <= it2);
EXPECT_TRUE(it2 <= s.end());
EXPECT_TRUE(it < s.end());
EXPECT_TRUE(it2 > it);
EXPECT_TRUE(it2 >= it);
EXPECT_TRUE(s.end() > it2);
EXPECT_TRUE(s.end() >= it2);
}
}
TEST(span_test, incomparable_iterators)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. incomparable_iterators";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int a[] = {1, 2, 3, 4};
int b[] = {1, 2, 3, 4};
{
span<int> s = a;
span<int> s2 = b;
#if (__cplusplus > 201402L)
EXPECT_DEATH([[maybe_unused]] bool _ = (s.begin() == s2.begin()), expected);
EXPECT_DEATH([[maybe_unused]] bool _ = (s.begin() <= s2.begin()), expected);
#else
EXPECT_DEATH(bool _ = (s.begin() == s2.begin()), expected);
EXPECT_DEATH(bool _ = (s.begin() <= s2.begin()), expected);
#endif
}
}
TEST(span_test, begin_end)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. begin_end";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
int a[] = {1, 2, 3, 4};
span<int> s = a;
span<int>::iterator it = s.begin();
span<int>::iterator it2 = std::begin(s);
EXPECT_TRUE(it == it2);
it = s.end();
it2 = std::end(s);
EXPECT_TRUE(it == it2);
}
{
int a[] = {1, 2, 3, 4};
span<int> s = a;
auto it = s.begin();
auto first = it;
EXPECT_TRUE(it == first);
EXPECT_TRUE(*it == 1);
auto beyond = s.end();
EXPECT_TRUE(it != beyond);
EXPECT_DEATH(*beyond, expected);
EXPECT_TRUE(beyond - first == 4);
EXPECT_TRUE(first - first == 0);
EXPECT_TRUE(beyond - beyond == 0);
++it;
EXPECT_TRUE(it - first == 1);
EXPECT_TRUE(*it == 2);
*it = 22;
EXPECT_TRUE(*it == 22);
EXPECT_TRUE(beyond - it == 3);
it = first;
EXPECT_TRUE(it == first);
while (it != s.end())
{
*it = 5;
++it;
}
EXPECT_TRUE(it == beyond);
EXPECT_TRUE(it - beyond == 0);
for (const auto& n : s) { EXPECT_TRUE(n == 5); }
}
}
TEST(span_test, rbegin_rend)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. rbegin_rend";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
int a[] = {1, 2, 3, 4};
span<int> s = a;
auto it = s.rbegin();
auto first = it;
EXPECT_TRUE(it == first);
EXPECT_TRUE(*it == 4);
auto beyond = s.rend();
EXPECT_TRUE(it != beyond);
#if (__cplusplus > 201402L)
EXPECT_DEATH([[maybe_unused]] auto _ = *beyond, expected);
#else
EXPECT_DEATH(auto _ = *beyond, expected);
#endif
EXPECT_TRUE(beyond - first == 4);
EXPECT_TRUE(first - first == 0);
EXPECT_TRUE(beyond - beyond == 0);
++it;
EXPECT_TRUE(it - s.rbegin() == 1);
EXPECT_TRUE(*it == 3);
*it = 22;
EXPECT_TRUE(*it == 22);
EXPECT_TRUE(beyond - it == 3);
it = first;
EXPECT_TRUE(it == first);
while (it != s.rend())
{
*it = 5;
++it;
}
EXPECT_TRUE(it == beyond);
EXPECT_TRUE(it - beyond == 0);
for (const auto& n : s) { EXPECT_TRUE(n == 5); }
}
}
TEST(span_test, as_bytes)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. as_bytes";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int a[] = {1, 2, 3, 4};
{
const span<const int> s = a;
EXPECT_TRUE(s.size() == 4);
const span<const byte> bs = as_bytes(s);
EXPECT_TRUE(static_cast<const void*>(bs.data()) == static_cast<const void*>(s.data()));
EXPECT_TRUE(bs.size() == s.size_bytes());
}
{
span<int> s;
const auto bs = as_bytes(s);
EXPECT_TRUE(bs.size() == s.size());
EXPECT_TRUE(bs.size() == 0);
EXPECT_TRUE(bs.size_bytes() == 0);
EXPECT_TRUE(static_cast<const void*>(bs.data()) == static_cast<const void*>(s.data()));
EXPECT_TRUE(bs.data() == nullptr);
}
{
span<int> s = a;
const auto bs = as_bytes(s);
EXPECT_TRUE(static_cast<const void*>(bs.data()) == static_cast<const void*>(s.data()));
EXPECT_TRUE(bs.size() == s.size_bytes());
}
int b[5] = {1, 2, 3, 4, 5};
{
span<int> sp(std::begin(b), static_cast<size_t>(-2));
EXPECT_DEATH((void) sp.size_bytes(), expected);
}
}
TEST(span_test, as_writable_bytes)
{
int a[] = {1, 2, 3, 4};
{
#ifdef CONFIRM_COMPILATION_ERRORS
// you should not be able to get writeable bytes for const objects
span<const int> s = a;
EXPECT_TRUE(s.size() == 4);
span<const byte> bs = as_writable_bytes(s);
EXPECT_TRUE(static_cast<void*>(bs.data()) == static_cast<void*>(s.data()));
EXPECT_TRUE(bs.size() == s.size_bytes());
#endif
}
{
span<int> s;
const auto bs = as_writable_bytes(s);
EXPECT_TRUE(bs.size() == s.size());
EXPECT_TRUE(bs.size() == 0);
EXPECT_TRUE(bs.size_bytes() == 0);
EXPECT_TRUE(static_cast<void*>(bs.data()) == static_cast<void*>(s.data()));
EXPECT_TRUE(bs.data() == nullptr);
}
{
span<int> s = a;
const auto bs = as_writable_bytes(s);
EXPECT_TRUE(static_cast<void*>(bs.data()) == static_cast<void*>(s.data()));
EXPECT_TRUE(bs.size() == s.size_bytes());
}
}
TEST(span_test, fixed_size_conversions)
{
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. fixed_size_conversions";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int arr[] = {1, 2, 3, 4};
// converting to an span from an equal size array is ok
span<int, 4> s4 = arr;
EXPECT_TRUE(s4.size() == 4);
// converting to dynamic_range is always ok
{
span<int> s = s4;
EXPECT_TRUE(s.size() == s4.size());
static_cast<void>(s);
}
// initialization or assignment to static span that REDUCES size is NOT ok
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, 2> s = arr;
}
{
span<int, 2> s2 = s4;
static_cast<void>(s2);
}
#endif
// even when done dynamically
{
/*
// this now results in a compile-time error, rather than runtime.
// There is no suitable conversion from dynamic span to fixed span.
span<int> s = arr;
auto f = [&]() {
const span<int, 2> s2 = s;
static_cast<void>(s2);
};
EXPECT_DEATH(f(), expected);
*/
}
// but doing so explicitly is ok
// you can convert statically
{
const span<int, 2> s2{&arr[0], 2};
static_cast<void>(s2);
}
{
const span<int, 1> s1 = s4.first<1>();
static_cast<void>(s1);
}
/*
// this is not a legal operation in std::span, so we are no longer supporting it
// conversion from span<int, 4> to span<int, dynamic_extent> via call to `first`
// then convert from span<int, dynamic_extent> to span<int, 1>
// The dynamic to fixed extents are not supported in the standard
// to make this work, span<int, 1> would need to be span<int>.
{
// NB: implicit conversion to span<int,1> from span<int>
span<int, 1> s1 = s4.first(1);
static_cast<void>(s1);
}
*/
// initialization or assignment to static span that requires size INCREASE is not ok.
int arr2[2] = {1, 2};
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, 4> s3 = arr2;
}
{
span<int, 2> s2 = arr2;
span<int, 4> s4a = s2;
}
#endif
{
auto f = [&]() {
const span<int, 4> _s4{arr2, 2};
static_cast<void>(_s4);
};
EXPECT_DEATH(f(), expected);
}
/*
// This no longer compiles. There is no suitable conversion from dynamic span to a fixed size
span.
// this should fail - we are trying to assign a small dynamic span to a fixed_size larger one
span<int> av = arr2; auto f = [&]() {
const span<int, 4> _s4 = av;
static_cast<void>(_s4);
};
EXPECT_DEATH(f(), expected);
*/
}
TEST(span_test, interop_with_std_regex)
{
char lat[] = {'1', '2', '3', '4', '5', '6', 'E', 'F', 'G'};
span<char> s = lat;
const auto f_it = s.begin() + 7;
std::match_results<span<char>::iterator> match;
std::regex_match(s.begin(), s.end(), match, std::regex(".*"));
EXPECT_TRUE(match.ready());
EXPECT_FALSE(match.empty());
EXPECT_TRUE(match[0].matched);
EXPECT_TRUE(match[0].first == s.begin());
EXPECT_TRUE(match[0].second == s.end());
std::regex_search(s.begin(), s.end(), match, std::regex("F"));
EXPECT_TRUE(match.ready());
EXPECT_FALSE(match.empty());
EXPECT_TRUE(match[0].matched);
EXPECT_TRUE(match[0].first == f_it);
EXPECT_TRUE(match[0].second == (f_it + 1));
}
TEST(span_test, default_constructible)
{
EXPECT_TRUE((std::is_default_constructible<span<int>>::value));
EXPECT_TRUE((std::is_default_constructible<span<int, 0>>::value));
EXPECT_FALSE((std::is_default_constructible<span<int, 42>>::value));
}
TEST(span_test, std_container_ctad)
{
#if (defined(__cpp_deduction_guides) && (__cpp_deduction_guides >= 201611L))
// this test is just to verify that these compile
{
std::vector<int> v{1, 2, 3, 4};
gsl::span sp{v};
static_assert(std::is_same<decltype(sp), gsl::span<int>>::value);
}
{
std::string str{"foo"};
gsl::span sp{str};
static_assert(std::is_same<decltype(sp), gsl::span<char>>::value);
}
#ifdef HAS_STRING_VIEW
{
std::string_view sv{"foo"};
gsl::span sp{sv};
static_assert(std::is_same<decltype(sp), gsl::span<const char>>::value);
}
#endif
#endif
}
TEST(span_test, front_back)
{
int arr[5] = {1, 2, 3, 4, 5};
span<int> s{arr};
EXPECT_TRUE(s.front() == 1);
EXPECT_TRUE(s.back() == 5);
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. front_back";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
span<int> s2;
EXPECT_DEATH(s2.front(), expected);
EXPECT_DEATH(s2.back(), expected);
}