GSL/tests/span_tests.cpp
2015-11-13 12:52:02 -08:00

1819 lines
43 KiB
C++

///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <UnitTest++/UnitTest++.h>
#include <span.h>
#include <string>
#include <vector>
#include <list>
#include <iostream>
using namespace std;
using namespace gsl;
namespace
{
struct BaseClass {};
struct DerivedClass : BaseClass {};
}
SUITE(span_tests)
{
TEST(basics)
{
auto ptr = as_span(new int[10], 10);
fill(ptr.begin(), ptr.end(), 99);
for (int num : ptr)
{
CHECK(num == 99);
}
delete[] ptr.data();
static_bounds<4, dynamic_range, 2> bounds{ 3 };
#ifdef CONFIRM_COMPILATION_ERRORS
span<int, 4, dynamic_range, 2> av(nullptr, bounds);
av.extent();
av.extent<2>();
av[8][4][3];
#endif
}
TEST (span_convertible)
{
#ifdef CONFIRM_COMPILATION_ERRORS
span<int, 7, 4, 2> av1(nullptr, b1);
#endif
auto f = [&]() { span<int, 7, 4, 2> av1(nullptr); };
CHECK_THROW(f(), fail_fast);
span<int, 7, dynamic_range, 2> av1(nullptr);
#ifdef CONFIRM_COMPILATION_ERRORS
static_bounds<size_t, 7, dynamic_range, 2> b12(b11);
b12 = b11;
b11 = b12;
span<int, dynamic_range> av1 = nullptr;
span<int, 7, dynamic_range, 2> av2(av1);
span<int, 7, 4, 2> av2(av1);
#endif
span<DerivedClass> avd;
#ifdef CONFIRM_COMPILATION_ERRORS
span<BaseClass> avb = avd;
#endif
span<const DerivedClass> avcd = avd;
(void)avcd;
}
TEST(boundary_checks)
{
int arr[10][2];
auto av = as_span(arr);
fill(begin(av), end(av), 0);
av[2][0] = 1;
av[1][1] = 3;
// out of bounds
CHECK_THROW(av[1][3] = 3, fail_fast);
CHECK_THROW((av[{1, 3}] = 3), fail_fast);
CHECK_THROW(av[10][2], fail_fast);
CHECK_THROW((av[{10,2}]), fail_fast);
}
void overloaded_func(span<const int, dynamic_range, 3, 5> exp, int expected_value) {
for (auto val : exp)
{
CHECK(val == expected_value);
}
}
void overloaded_func(span<const char, dynamic_range, 3, 5> exp, char expected_value) {
for (auto val : exp)
{
CHECK(val == expected_value);
}
}
void fixed_func(span<int, 3, 3, 5> exp, int expected_value) {
for (auto val : exp)
{
CHECK(val == expected_value);
}
}
TEST(span_parameter_test)
{
auto data = new int[4][3][5];
auto av = as_span(data, 4);
CHECK(av.size() == 60);
fill(av.begin(), av.end(), 34);
int count = 0;
for_each(av.rbegin(), av.rend(), [&](int val) { count += val; });
CHECK(count == 34 * 60);
overloaded_func(av, 34);
overloaded_func(av.as_span(dim<>(4), dim<>(3), dim<>(5)), 34);
//fixed_func(av, 34);
delete[] data;
}
TEST(md_access)
{
auto width = 5, height = 20;
auto imgSize = width * height;
auto image_ptr = new int[imgSize][3];
// size check will be done
auto image_view = as_span(image_ptr, imgSize).as_span(dim<>(height), dim<>(width), dim<3>());
iota(image_view.begin(), image_view.end(), 1);
int expected = 0;
for (auto i = 0; i < height; i++)
{
for (auto j = 0; j < width; j++)
{
CHECK(expected + 1 == image_view[i][j][0]);
CHECK(expected + 2 == image_view[i][j][1]);
CHECK(expected + 3 == image_view[i][j][2]);
auto val = image_view[{i, j, 0}];
CHECK(expected + 1 == val);
val = image_view[{i, j, 1}];
CHECK(expected + 2 == val);
val = image_view[{i, j, 2}];
CHECK(expected + 3 == val);
expected += 3;
}
}
}
TEST(span_factory_test)
{
{
int * arr = new int[150];
auto av = as_span(arr, dim<10>(), dim<>(3), dim<5>());
fill(av.begin(), av.end(), 24);
overloaded_func(av, 24);
delete[] arr;
array<int, 15> stdarr{ 0 };
auto av2 = as_span(stdarr);
overloaded_func(av2.as_span(dim<>(1), dim<3>(), dim<5>()), 0);
string str = "ttttttttttttttt"; // size = 15
auto t = str.data();
(void)t;
auto av3 = as_span(str);
overloaded_func(av3.as_span(dim<>(1), dim<3>(), dim<5>()), 't');
}
{
int a[3][4][5];
auto av = as_span(a);
const int (*b)[4][5];
b = a;
auto bv = as_span(b, 3);
CHECK(av == bv);
const std::array<double, 3> arr = {0.0, 0.0, 0.0};
auto cv = as_span(arr);
(void)cv;
vector<float> vec(3);
auto dv = as_span(vec);
(void)dv;
#ifdef CONFIRM_COMPILATION_ERRORS
auto dv2 = as_span(std::move(vec));
#endif
}
}
template <class Bounds> void fn(const Bounds&) { static_assert(Bounds::static_size == 60, "static bounds is wrong size"); }
TEST (span_reshape_test)
{
int a[3][4][5];
auto av = as_span(a);
fn(av.bounds());
auto av2 = av.as_span(dim<60>());
auto av3 = av2.as_span(dim<3>(), dim<4>(), dim<5>());
auto av4 = av3.as_span(dim<4>(), dim<>(3), dim<5>());
auto av5 = av4.as_span(dim<3>(), dim<4>(), dim<5>());
auto av6 = av5.as_span(dim<12>(), dim<>(5));
fill(av6.begin(), av6.end(), 1);
auto av7 = av6.as_bytes();
auto av8 = av7.as_span<int>();
CHECK(av8.size() == av6.size());
for (auto i = 0; i < av8.size(); i++)
{
CHECK(av8[i] == 1);
}
#ifdef CONFIRM_COMPILATION_ERRORS
struct Foo {char c[11];};
auto av9 = av7.as_span<Foo>();
#endif
}
TEST (span_section_test)
{
int a[30][4][5];
auto av = as_span(a);
auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2});
auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1});
(void)subsub;
}
TEST(span_section)
{
std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0);
const span<int, 5, 10> av = as_span(data).as_span(dim<5>(), dim<10>());
strided_span<int, 2> av_section_1 = av.section({ 1, 2 }, { 3, 4 });
CHECK((av_section_1[{0, 0}] == 12));
CHECK((av_section_1[{0, 1}] == 13));
CHECK((av_section_1[{1, 0}] == 22));
CHECK((av_section_1[{2, 3}] == 35));
strided_span<int, 2> av_section_2 = av_section_1.section({ 1, 2 }, { 2,2 });
CHECK((av_section_2[{0, 0}] == 24));
CHECK((av_section_2[{0, 1}] == 25));
CHECK((av_section_2[{1, 0}] == 34));
}
TEST(strided_span_constructors)
{
// Check stride constructor
{
int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
const int carr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
strided_span<int, 1> sav1{ arr, {{9}, {1}} }; // T -> T
CHECK(sav1.bounds().index_bounds() == index<1>{ 9 });
CHECK(sav1.bounds().stride() == 1);
CHECK(sav1[0] == 1 && sav1[8] == 9);
strided_span<const int, 1> sav2{ carr, {{ 4 }, { 2 }} }; // const T -> const T
CHECK(sav2.bounds().index_bounds() == index<1>{ 4 });
CHECK(sav2.bounds().strides() == index<1>{2});
CHECK(sav2[0] == 1 && sav2[3] == 7);
strided_span<int, 2> sav3{ arr, {{ 2, 2 },{ 6, 2 }} }; // T -> const T
CHECK((sav3.bounds().index_bounds() == index<2>{ 2, 2 }));
CHECK((sav3.bounds().strides() == index<2>{ 6, 2 }));
CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7));
}
// Check span constructor
{
int arr[] = { 1, 2 };
// From non-cv-qualified source
{
const span<int> src = arr;
strided_span<int, 1> sav{ src, {2, 1} };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav.bounds().strides() == index<1>{ 1 });
CHECK(sav[1] == 2);
#if _MSC_VER > 1800
//strided_span<const int, 1> sav_c{ {src}, {2, 1} };
strided_span<const int, 1> sav_c{ span<const int>{src}, strided_bounds<1>{2, 1} };
#else
strided_span<const int, 1> sav_c{ span<const int>{src}, strided_bounds<1>{2, 1} };
#endif
CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_c.bounds().strides() == index<1>{ 1 });
CHECK(sav_c[1] == 2);
#if _MSC_VER > 1800
strided_span<volatile int, 1> sav_v{ {src}, {2, 1} };
#else
strided_span<volatile int, 1> sav_v{ span<volatile int>{src}, strided_bounds<1>{2, 1} };
#endif
CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_v.bounds().strides() == index<1>{ 1 });
CHECK(sav_v[1] == 2);
#if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{ {src}, {2, 1} };
#else
strided_span<const volatile int, 1> sav_cv{ span<const volatile int>{src}, strided_bounds<1>{2, 1} };
#endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2);
}
// From const-qualified source
{
const span<const int> src{ arr };
strided_span<const int, 1> sav_c{ src, {2, 1} };
CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_c.bounds().strides() == index<1>{ 1 });
CHECK(sav_c[1] == 2);
#if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{ {src}, {2, 1} };
#else
strided_span<const volatile int, 1> sav_cv{ span<const volatile int>{src}, strided_bounds<1>{2, 1} };
#endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2);
}
// From volatile-qualified source
{
const span<volatile int> src{ arr };
strided_span<volatile int, 1> sav_v{ src, {2, 1} };
CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_v.bounds().strides() == index<1>{ 1 });
CHECK(sav_v[1] == 2);
#if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{ {src}, {2, 1} };
#else
strided_span<const volatile int, 1> sav_cv{ span<const volatile int>{src}, strided_bounds<1>{2, 1} };
#endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2);
}
// From cv-qualified source
{
const span<const volatile int> src{ arr };
strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2);
}
}
// Check const-casting constructor
{
int arr[2] = { 4, 5 };
const span<int, 2> av(arr, 2);
span<const int, 2> av2{ av };
CHECK(av2[1] == 5);
static_assert(std::is_convertible<const span<int, 2>, span<const int, 2>>::value, "ctor is not implicit!");
const strided_span<int, 1> src{ arr, {2, 1} };
strided_span<const int, 1> sav{ src };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav.bounds().stride() == 1);
CHECK(sav[1] == 5);
static_assert(std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value, "ctor is not implicit!");
}
// Check copy constructor
{
int arr1[2] = { 3, 4 };
const strided_span<int, 1> src1{ arr1, {2, 1} };
strided_span<int, 1> sav1{ src1 };
CHECK(sav1.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav1.bounds().stride() == 1);
CHECK(sav1[0] == 3);
int arr2[6] = { 1, 2, 3, 4, 5, 6 };
const strided_span<const int, 2> src2{ arr2, {{ 3, 2 }, { 2, 1 }} };
strided_span<const int, 2> sav2{ src2 };
CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 }));
CHECK((sav2.bounds().strides() == index<2>{ 2, 1 }));
CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
}
// Check const-casting assignment operator
{
int arr1[2] = { 1, 2 };
int arr2[6] = { 3, 4, 5, 6, 7, 8 };
const strided_span<int, 1> src{ arr1, {{2}, {1}} };
strided_span<const int, 1> sav{ arr2, {{3}, {2}} };
strided_span<const int, 1>& sav_ref = (sav = src);
CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav.bounds().strides() == index<1>{ 1 });
CHECK(sav[0] == 1);
CHECK(&sav_ref == &sav);
}
// Check copy assignment operator
{
int arr1[2] = { 3, 4 };
int arr1b[1] = { 0 };
const strided_span<int, 1> src1{ arr1, {2, 1} };
strided_span<int, 1> sav1{ arr1b, {1, 1} };
strided_span<int, 1>& sav1_ref = (sav1 = src1);
CHECK(sav1.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav1.bounds().strides() == index<1>{ 1 });
CHECK(sav1[0] == 3);
CHECK(&sav1_ref == &sav1);
const int arr2[6] = { 1, 2, 3, 4, 5, 6 };
const int arr2b[1] = { 0 };
const strided_span<const int, 2> src2{ arr2, {{ 3, 2 },{ 2, 1 }} };
strided_span<const int, 2> sav2{ arr2b, {{ 1, 1 },{ 1, 1 }} };
strided_span<const int, 2>& sav2_ref = (sav2 = src2);
CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 }));
CHECK((sav2.bounds().strides() == index<2>{ 2, 1 }));
CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
CHECK(&sav2_ref == &sav2);
}
}
TEST(strided_span_slice)
{
std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0);
const span<int, 5, 10> src = as_span(data).as_span(dim<5>(), dim<10>());
const strided_span<int, 2> sav{ src, {{5, 10}, {10, 1}} };
#ifdef CONFIRM_COMPILATION_ERRORS
const strided_span<const int, 2> csav{ {src},{ { 5, 10 },{ 10, 1 } } };
#endif
const strided_span<const int, 2> csav{ span<const int, 5, 10>{ src }, { { 5, 10 },{ 10, 1 } } };
strided_span<int, 1> sav_sl = sav[2];
CHECK(sav_sl[0] == 20);
CHECK(sav_sl[9] == 29);
strided_span<const int, 1> csav_sl = sav[3];
CHECK(csav_sl[0] == 30);
CHECK(csav_sl[9] == 39);
CHECK(sav[4][0] == 40);
CHECK(sav[4][9] == 49);
}
TEST(strided_span_column_major)
{
// strided_span may be used to accomodate more peculiar
// use cases, such as column-major multidimensional array
// (aka. "FORTRAN" layout).
int cm_array[3 * 5] = {
1, 4, 7, 10, 13,
2, 5, 8, 11, 14,
3, 6, 9, 12, 15
};
strided_span<int, 2> cm_sav{ cm_array, {{ 5, 3 },{ 1, 5 }} };
// Accessing elements
CHECK((cm_sav[{0, 0}] == 1));
CHECK((cm_sav[{0, 1}] == 2));
CHECK((cm_sav[{1, 0}] == 4));
CHECK((cm_sav[{4, 2}] == 15));
// Slice
strided_span<int, 1> cm_sl = cm_sav[3];
CHECK(cm_sl[0] == 10);
CHECK(cm_sl[1] == 11);
CHECK(cm_sl[2] == 12);
// Section
strided_span<int, 2> cm_sec = cm_sav.section( { 2, 1 }, { 3, 2 });
CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2}));
CHECK((cm_sec[{0, 0}] == 8));
CHECK((cm_sec[{0, 1}] == 9));
CHECK((cm_sec[{1, 0}] == 11));
CHECK((cm_sec[{2, 1}] == 15));
}
TEST(strided_span_bounds)
{
int arr[] = { 0, 1, 2, 3 };
span<int> av(arr);
{
// incorrect sections
CHECK_THROW(av.section(0, 0)[0], fail_fast);
CHECK_THROW(av.section(1, 0)[0], fail_fast);
CHECK_THROW(av.section(1, 1)[1], fail_fast);
CHECK_THROW(av.section(2, 5), fail_fast);
CHECK_THROW(av.section(5, 2), fail_fast);
CHECK_THROW(av.section(5, 0), fail_fast);
CHECK_THROW(av.section(0, 5), fail_fast);
CHECK_THROW(av.section(5, 5), fail_fast);
}
{
// zero stride
strided_span<int, 1> sav{ av,{ { 4 },{} } };
CHECK(sav[0] == 0);
CHECK(sav[3] == 0);
CHECK_THROW(sav[4], fail_fast);
}
{
// zero extent
strided_span<int, 1> sav{ av,{ {},{ 1 } } };
CHECK_THROW(sav[0], fail_fast);
}
{
// zero extent and stride
strided_span<int, 1> sav{ av,{ {},{} } };
CHECK_THROW(sav[0], fail_fast);
}
{
// strided array ctor with matching strided bounds
strided_span<int, 1> sav{ arr,{ 4, 1 } };
CHECK(sav.bounds().index_bounds() == index<1>{ 4 });
CHECK(sav[3] == 3);
CHECK_THROW(sav[4], fail_fast);
}
{
// strided array ctor with smaller strided bounds
strided_span<int, 1> sav{ arr,{ 2, 1 } };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav[1] == 1);
CHECK_THROW(sav[2], fail_fast);
}
{
// strided array ctor with fitting irregular bounds
strided_span<int, 1> sav{ arr,{ 2, 3 } };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav[0] == 0);
CHECK(sav[1] == 3);
CHECK_THROW(sav[2], fail_fast);
}
{
// bounds cross data boundaries - from static arrays
CHECK_THROW((strided_span<int, 1> { arr, { 3, 2 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 3, 3 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 4, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 5, 1 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 5, 5 } }), fail_fast);
}
{
// bounds cross data boundaries - from array view
CHECK_THROW((strided_span<int, 1> { av, { 3, 2 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 3, 3 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 4, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 5, 1 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 5, 5 } }), fail_fast);
}
{
// bounds cross data boundaries - from dynamic arrays
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 2 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 3 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 4, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 1 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 2, { 2, 2 } }), fail_fast);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
strided_span<int, 1> sav0{ av.data(), { 3, 2 } };
strided_span<int, 1> sav1{ arr, { 1 } };
strided_span<int, 1> sav2{ arr, { 1,1,1 } };
strided_span<int, 1> sav3{ av, { 1 } };
strided_span<int, 1> sav4{ av, { 1,1,1 } };
strided_span<int, 2> sav5{ av.as_span(dim<2>(), dim<2>()), { 1 } };
strided_span<int, 2> sav6{ av.as_span(dim<2>(), dim<2>()), { 1,1,1 } };
strided_span<int, 2> sav7{ av.as_span(dim<2>(), dim<2>()), { { 1,1 },{ 1,1 },{ 1,1 } } };
index<1> index{ 0, 1 };
strided_span<int, 1> sav8{ arr,{ 1,{ 1,1 } } };
strided_span<int, 1> sav9{ arr,{ { 1,1 },{ 1,1 } } };
strided_span<int, 1> sav10{ av,{ 1,{ 1,1 } } };
strided_span<int, 1> sav11{ av,{ { 1,1 },{ 1,1 } } };
strided_span<int, 2> sav12{ av.as_span(dim<2>(), dim<2>()),{ { 1 },{ 1 } } };
strided_span<int, 2> sav13{ av.as_span(dim<2>(), dim<2>()),{ { 1 },{ 1,1,1 } } };
strided_span<int, 2> sav14{ av.as_span(dim<2>(), dim<2>()),{ { 1,1,1 },{ 1 } } };
}
#endif
}
TEST(strided_span_type_conversion)
{
int arr[] = { 0, 1, 2, 3 };
span<int> av(arr);
{
strided_span<int, 1> sav{ av.data(), av.size(), { av.size() / 2, 2 } };
#ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif
}
{
strided_span<int, 1> sav{ av, { av.size() / 2, 2 } };
#ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif
}
span<const byte, dynamic_range> bytes = av.as_bytes();
// retype strided array with regular strides - from raw data
{
strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } };
strided_span<const byte, 2> sav2{ bytes.data(), bytes.size(), bounds };
strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>();
CHECK(sav3[0][0] == 0);
CHECK(sav3[1][0] == 2);
CHECK_THROW(sav3[1][1], fail_fast);
CHECK_THROW(sav3[0][1], fail_fast);
}
// retype strided array with regular strides - from span
{
strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } };
span<const byte, 2, dynamic_range> bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds };
strided_span<int, 2> sav3 = sav2.as_strided_span<int>();
CHECK(sav3[0][0] == 0);
CHECK(sav3[1][0] == 2);
CHECK_THROW(sav3[1][1], fail_fast);
CHECK_THROW(sav3[0][1], fail_fast);
}
// retype strided array with not enough elements - last dimension of the array is too small
{
strided_bounds<2> bounds{ { 4,2 },{ 4, 1 } };
span<const byte, 2, dynamic_range> bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with not enough elements - strides are too small
{
strided_bounds<2> bounds{ { 4,2 },{ 2, 1 } };
span<const byte, 2, dynamic_range> bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with not enough elements - last dimension does not divide by the new typesize
{
strided_bounds<2> bounds{ { 2,6 },{ 4, 1 } };
span<const byte, 2, dynamic_range> bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with not enough elements - strides does not divide by the new typesize
{
strided_bounds<2> bounds{ { 2, 1 },{ 6, 1 } };
span<const byte, 2, dynamic_range> bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with irregular strides - from raw data
{
strided_bounds<1> bounds{ bytes.size() / 2, 2 };
strided_span<const byte, 1> sav2{ bytes.data(), bytes.size(), bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
}
// retype strided array with irregular strides - from span
{
strided_bounds<1> bounds{ bytes.size() / 2, 2 };
strided_span<const byte, 1> sav2{ bytes, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
}
}
TEST(empty_arrays)
{
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, 1> empty;
strided_span<int, 2> empty2;
strided_span<int, 1> empty3{ nullptr,{ 0, 1 } };
}
#endif
{
span<int, 0> empty_av(nullptr);
CHECK(empty_av.bounds().index_bounds() == index<1>{ 0 });
CHECK_THROW(empty_av[0], fail_fast);
CHECK_THROW(empty_av.begin()[0], fail_fast);
CHECK_THROW(empty_av.cbegin()[0], fail_fast);
for (auto& v : empty_av)
{
(void)v;
CHECK(false);
}
}
{
span<int> empty_av = {};
CHECK(empty_av.bounds().index_bounds() == index<1>{ 0 });
CHECK_THROW(empty_av[0], fail_fast);
CHECK_THROW(empty_av.begin()[0], fail_fast);
CHECK_THROW(empty_av.cbegin()[0], fail_fast);
for (auto& v : empty_av)
{
(void)v;
CHECK(false);
}
}
{
span<int, 0> empty_av(nullptr);
strided_span<int, 1> empty_sav{ empty_av, { 0, 1 } };
CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 });
CHECK_THROW(empty_sav[0], fail_fast);
CHECK_THROW(empty_sav.begin()[0], fail_fast);
CHECK_THROW(empty_sav.cbegin()[0], fail_fast);
for (auto& v : empty_sav)
{
(void)v;
CHECK(false);
}
}
{
strided_span<int, 1> empty_sav{ nullptr, 0, { 0, 1 } };
CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 });
CHECK_THROW(empty_sav[0], fail_fast);
CHECK_THROW(empty_sav.begin()[0], fail_fast);
CHECK_THROW(empty_sav.cbegin()[0], fail_fast);
for (auto& v : empty_sav)
{
(void)v;
CHECK(false);
}
}
}
TEST(index_constructor)
{
auto arr = new int[8];
for (int i = 0; i < 4; ++i)
{
arr[2 * i] = 4 + i;
arr[2 * i + 1] = i;
}
span<int, dynamic_range> av(arr, 8);
ptrdiff_t a[1] = { 0 };
index<1> i = a;
CHECK(av[i] == 4);
auto av2 = av.as_span(dim<4>(), dim<>(2));
ptrdiff_t a2[2] = { 0, 1 };
index<2> i2 = a2;
CHECK(av2[i2] == 0);
CHECK(av2[0][i] == 4);
delete[] arr;
}
TEST(index_constructors)
{
{
// components of the same type
index<3> i1(0, 1, 2);
CHECK(i1[0] == 0);
// components of different types
size_t c0 = 0;
size_t c1 = 1;
index<3> i2(c0, c1, 2);
CHECK(i2[0] == 0);
// from array
index<3> i3 = { 0,1,2 };
CHECK(i3[0] == 0);
// from other index of the same size type
index<3> i4 = i3;
CHECK(i4[0] == 0);
// default
index<3> i7;
CHECK(i7[0] == 0);
// default
index<3> i9 = {};
CHECK(i9[0] == 0);
}
{
// components of the same type
index<1> i1(0);
CHECK(i1[0] == 0);
// components of different types
size_t c0 = 0;
index<1> i2(c0);
CHECK(i2[0] == 0);
// from array
index<1> i3 = { 0 };
CHECK(i3[0] == 0);
// from int
index<1> i4 = 0;
CHECK(i4[0] == 0);
// from other index of the same size type
index<1> i5 = i3;
CHECK(i5[0] == 0);
// default
index<1> i8;
CHECK(i8[0] == 0);
// default
index<1> i9 = {};
CHECK(i9[0] == 0);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
index<3> i1(0, 1);
index<3> i2(0, 1, 2, 3);
index<3> i3 = { 0 };
index<3> i4 = { 0, 1, 2, 3 };
index<1> i5 = { 0,1 };
}
#endif
}
TEST(index_operations)
{
ptrdiff_t a[3] = { 0, 1, 2 };
ptrdiff_t b[3] = { 3, 4, 5 };
index<3> i = a;
index<3> j = b;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
{
index<3> k = i + j;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 3);
CHECK(k[1] == 5);
CHECK(k[2] == 7);
}
{
index<3> k = i * 3;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 0);
CHECK(k[1] == 3);
CHECK(k[2] == 6);
}
{
index<3> k = 3 * i;
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 0);
CHECK(k[1] == 3);
CHECK(k[2] == 6);
}
{
index<2> k = details::shift_left(i);
CHECK(i[0] == 0);
CHECK(i[1] == 1);
CHECK(i[2] == 2);
CHECK(k[0] == 1);
CHECK(k[1] == 2);
}
}
void iterate_second_column(span<int, dynamic_range, dynamic_range> av)
{
auto length = av.size() / 2;
// view to the second column
auto section = av.section({ 0,1 }, { length,1 });
CHECK(section.size() == length);
for (auto i = 0; i < section.size(); ++i)
{
CHECK(section[i][0] == av[i][1]);
}
for (auto i = 0; i < section.size(); ++i)
{
auto idx = index<2>{ i,0 }; // avoid braces inside the CHECK macro
CHECK(section[idx] == av[i][1]);
}
CHECK(section.bounds().index_bounds()[0] == length);
CHECK(section.bounds().index_bounds()[1] == 1);
for (auto i = 0; i < section.bounds().index_bounds()[0]; ++i)
{
for (auto j = 0; j < section.bounds().index_bounds()[1]; ++j)
{
auto idx = index<2>{ i,j }; // avoid braces inside the CHECK macro
CHECK(section[idx] == av[i][1]);
}
}
size_t check_sum = 0;
for (auto i = 0; i < length; ++i)
{
check_sum += av[i][1];
}
{
auto idx = 0;
size_t sum = 0;
for (auto num : section)
{
CHECK(num == av[idx][1]);
sum += num;
idx++;
}
CHECK(sum == check_sum);
}
{
size_t idx = length - 1;
size_t sum = 0;
for (auto iter = section.rbegin(); iter != section.rend(); ++iter)
{
CHECK(*iter == av[idx][1]);
sum += *iter;
idx--;
}
CHECK(sum == check_sum);
}
}
TEST(span_section_iteration)
{
int arr[4][2] = { { 4,0 },{ 5,1 },{ 6,2 },{ 7,3 } };
// static bounds
{
span<int, 4, 2> av = arr;
iterate_second_column(av);
}
// first bound is dynamic
{
span<int, dynamic_range, 2> av = arr;
iterate_second_column(av);
}
// second bound is dynamic
{
span<int, 4, dynamic_range> av = arr;
iterate_second_column(av);
}
// both bounds are dynamic
{
span<int, dynamic_range, dynamic_range> av = arr;
iterate_second_column(av);
}
}
TEST(dynamic_span_section_iteration)
{
auto height = 4, width = 2;
auto size = height * width;
auto arr = new int[size];
for (auto i = 0; i < size; ++i)
{
arr[i] = i;
}
auto av = as_span(arr, size);
// first bound is dynamic
{
span<int, dynamic_range, 2> av2 = av.as_span(dim<>(height), dim<>(width));
iterate_second_column(av2);
}
// second bound is dynamic
{
span<int, 4, dynamic_range> av2 = av.as_span(dim<>(height), dim<>(width));
iterate_second_column(av2);
}
// both bounds are dynamic
{
span<int, dynamic_range, dynamic_range> av2 = av.as_span(dim<>(height), dim<>(width));
iterate_second_column(av2);
}
delete[] arr;
}
void iterate_every_other_element(span<int, dynamic_range> av)
{
// pick every other element
auto length = av.size() / 2;
#if _MSC_VER > 1800
auto bounds = strided_bounds<1>({ length }, { 2 });
#else
auto bounds = strided_bounds<1>(index<1>{ length }, index<1>{ 2 });
#endif
strided_span<int, 1> strided(&av.data()[1], av.size() - 1, bounds);
CHECK(strided.size() == length);
CHECK(strided.bounds().index_bounds()[0] == length);
for (auto i = 0; i < strided.size(); ++i)
{
CHECK(strided[i] == av[2 * i + 1]);
}
int idx = 0;
for (auto num : strided)
{
CHECK(num == av[2 * idx + 1]);
idx++;
}
}
TEST(strided_span_section_iteration)
{
int arr[8] = {4,0,5,1,6,2,7,3};
// static bounds
{
span<int, 8> av(arr, 8);
iterate_every_other_element(av);
}
// dynamic bounds
{
span<int, dynamic_range> av(arr, 8);
iterate_every_other_element(av);
}
}
TEST(dynamic_strided_span_section_iteration)
{
auto arr = new int[8];
for (int i = 0; i < 4; ++i)
{
arr[2 * i] = 4 + i;
arr[2 * i + 1] = i;
}
auto av = as_span(arr, 8);
iterate_every_other_element(av);
delete[] arr;
}
void iterate_second_slice(span<int, dynamic_range, dynamic_range, dynamic_range> av)
{
int expected[6] = { 2,3,10,11,18,19 };
auto section = av.section({ 0,1,0 }, { 3,1,2 });
for (auto i = 0; i < section.extent<0>(); ++i)
{
for (auto j = 0; j < section.extent<1>(); ++j)
for (auto k = 0; k < section.extent<2>(); ++k)
{
auto idx = index<3>{ i,j,k }; // avoid braces in the CHECK macro
CHECK(section[idx] == expected[2 * i + 2 * j + k]);
}
}
for (auto i = 0; i < section.extent<0>(); ++i)
{
for (auto j = 0; j < section.extent<1>(); ++j)
for (auto k = 0; k < section.extent<2>(); ++k)
CHECK(section[i][j][k] == expected[2 * i + 2 * j + k]);
}
int i = 0;
for (auto num : section)
{
CHECK(num == expected[i]);
i++;
}
}
TEST(strided_span_section_iteration_3d)
{
int arr[3][4][2];
for (auto i = 0; i < 3; ++i)
{
for (auto j = 0; j < 4; ++j)
for (auto k = 0; k < 2; ++k)
arr[i][j][k] = 8 * i + 2 * j + k;
}
{
span<int, 3, 4, 2> av = arr;
iterate_second_slice(av);
}
}
TEST(dynamic_strided_span_section_iteration_3d)
{
auto height = 12, width = 2;
auto size = height * width;
auto arr = new int[size];
for (auto i = 0; i < size; ++i)
{
arr[i] = i;
}
{
auto av = as_span(arr, 24).as_span(dim<3>(),dim<4>(),dim<2>());
iterate_second_slice(av);
}
{
auto av = as_span(arr, 24).as_span(dim<>(3), dim<4>(), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_span(arr, 24).as_span(dim<3>(), dim<>(4), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_span(arr, 24).as_span(dim<3>(), dim<4>(), dim<>(2));
iterate_second_slice(av);
}
delete[] arr;
}
TEST(strided_span_conversion)
{
// get an span of 'c' values from the list of X's
struct X { int a; int b; int c; };
X arr[4] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 },{ 9,10,11 } };
int s = sizeof(int) / sizeof(byte);
auto d2 = 3 * s;
auto d1 = sizeof(int) * 12 / d2;
// convert to 4x12 array of bytes
auto av = as_span(arr, 4).as_bytes().as_span(dim<>(d1), dim<>(d2));
CHECK(av.bounds().index_bounds()[0] == 4);
CHECK(av.bounds().index_bounds()[1] == 12);
// get the last 4 columns
auto section = av.section({ 0, 2 * s }, { 4, s }); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2], arr[0].c[3] } , { arr[1].c[0], ... } , ... }
// convert to array 4x1 array of integers
auto cs = section.as_strided_span<int>(); // { { arr[0].c }, {arr[1].c } , ... }
CHECK(cs.bounds().index_bounds()[0] == 4);
CHECK(cs.bounds().index_bounds()[1] == 1);
// transpose to 1x4 array
strided_bounds<2> reverse_bounds{
{ cs.bounds().index_bounds()[1] , cs.bounds().index_bounds()[0] },
{ cs.bounds().strides()[1], cs.bounds().strides()[0] }
};
strided_span<int, 2> transposed{ cs.data(), cs.bounds().total_size(), reverse_bounds };
// slice to get a one-dimensional array of c's
strided_span<int, 1> result = transposed[0];
CHECK(result.bounds().index_bounds()[0] == 4);
CHECK_THROW(result.bounds().index_bounds()[1], fail_fast);
int i = 0;
for (auto& num : result)
{
CHECK(num == arr[i].c);
i++;
}
}
TEST(constructors)
{
span<int, dynamic_range> av(nullptr);
CHECK(av.length() == 0);
span<int, dynamic_range> av2;
CHECK(av2.length() == 0);
span<int, dynamic_range> av3(nullptr, 0);
CHECK(av3.length() == 0);
// Constructing from a nullptr + length is specifically disallowed
auto f = [&]() {span<int, dynamic_range> av4(nullptr, 2);};
CHECK_THROW(f(), fail_fast);
int arr1[2][3];
span<int, 2, dynamic_range> av5(arr1);
array<int, 15> arr2;
span<int, 15> av6(arr2);
vector<int> vec1(19);
span<int> av7(vec1);
CHECK(av7.length() == 19);
span<int> av8;
CHECK(av8.length() == 0);
span<int> av9(arr2);
CHECK(av9.length() == 15);
#ifdef CONFIRM_COMPILATION_ERRORS
span<int, 4> av10;
DerivedClass *p = nullptr;
span<BaseClass> av11(p, 0);
#endif
}
TEST(copyandassignment)
{
span<int, dynamic_range> av1;
int arr[] = {3, 4, 5};
av1 = arr;
span<const int, dynamic_range> av2;
av2 = av1;
}
TEST(span_first)
{
int arr[5] = { 1, 2, 3, 4, 5 };
{
span<int, 5> av = arr;
CHECK((av.first<2>().bounds() == static_bounds<2>()));
CHECK(av.first<2>().length() == 2);
CHECK(av.first(2).length() == 2);
}
{
span<int, 5> av = arr;
CHECK((av.first<0>().bounds() == static_bounds<0>()));
CHECK(av.first<0>().length() == 0);
CHECK(av.first(0).length() == 0);
}
{
span<int, 5> av = arr;
CHECK((av.first<5>().bounds() == static_bounds<5>()));
CHECK(av.first<5>().length() == 5);
CHECK(av.first(5).length() == 5);
}
{
span<int, 5> av = arr;
#ifdef CONFIRM_COMPILATION_ERRORS
CHECK(av.first<6>().bounds() == static_bounds<6>());
CHECK(av.first<6>().length() == 6);
#endif
CHECK_THROW(av.first(6).length(), fail_fast);
}
{
span<int, dynamic_range> av;
CHECK((av.first<0>().bounds() == static_bounds<0>()));
CHECK(av.first<0>().length() == 0);
CHECK(av.first(0).length() == 0);
}
}
TEST(span_last)
{
int arr[5] = { 1, 2, 3, 4, 5 };
{
span<int, 5> av = arr;
CHECK((av.last<2>().bounds() == static_bounds<2>()));
CHECK(av.last<2>().length() == 2);
CHECK(av.last(2).length() == 2);
}
{
span<int, 5> av = arr;
CHECK((av.last<0>().bounds() == static_bounds<0>()));
CHECK(av.last<0>().length() == 0);
CHECK(av.last(0).length() == 0);
}
{
span<int, 5> av = arr;
CHECK((av.last<5>().bounds() == static_bounds<5>()));
CHECK(av.last<5>().length() == 5);
CHECK(av.last(5).length() == 5);
}
{
span<int, 5> av = arr;
#ifdef CONFIRM_COMPILATION_ERRORS
CHECK((av.last<6>().bounds() == static_bounds<6>()));
CHECK(av.last<6>().length() == 6);
#endif
CHECK_THROW(av.last(6).length(), fail_fast);
}
{
span<int, dynamic_range> av;
CHECK((av.last<0>().bounds() == static_bounds<0>()));
CHECK(av.last<0>().length() == 0);
CHECK(av.last(0).length() == 0);
}
}
TEST(custmized_span_size)
{
double (*arr)[3][4] = new double[100][3][4];
span<double, dynamic_range, 3, 4> av1(arr, 10);
struct EffectiveStructure
{
double* v1;
ptrdiff_t v2;
};
CHECK(sizeof(av1) == sizeof(EffectiveStructure));
CHECK_THROW(av1[10][3][4], fail_fast);
span<const double, dynamic_range, 6, 4> av2 = av1.as_span(dim<>(5), dim<6>(), dim<4>());
(void)av2;
}
TEST(span_sub)
{
int arr[5] = { 1, 2, 3, 4, 5 };
{
span<int, 5> av = arr;
CHECK((av.sub<2,2>().bounds() == static_bounds<2>()));
CHECK((av.sub<2,2>().length() == 2));
CHECK(av.sub(2,2).length() == 2);
CHECK(av.sub(2,3).length() == 3);
}
{
span<int, 5> av = arr;
CHECK((av.sub<0,0>().bounds() == static_bounds<0>()));
CHECK((av.sub<0,0>().length() == 0));
CHECK(av.sub(0,0).length() == 0);
}
{
span<int, 5> av = arr;
CHECK((av.sub<0,5>().bounds() == static_bounds<5>()));
CHECK((av.sub<0,5>().length() == 5));
CHECK(av.sub(0,5).length() == 5);
CHECK_THROW(av.sub(0,6).length(), fail_fast);
CHECK_THROW(av.sub(1,5).length(), fail_fast);
}
{
span<int, 5> av = arr;
CHECK((av.sub<5,0>().bounds() == static_bounds<0>()));
CHECK((av.sub<5, 0>().length() == 0));
CHECK(av.sub(5,0).length() == 0);
CHECK_THROW(av.sub(6,0).length(), fail_fast);
}
{
span<int, dynamic_range> av;
CHECK((av.sub<0,0>().bounds() == static_bounds<0>()));
CHECK((av.sub<0,0>().length() == 0));
CHECK(av.sub(0,0).length() == 0);
CHECK_THROW((av.sub<1,0>().length()), fail_fast);
}
{
span<int> av;
CHECK(av.sub(0).length() == 0);
CHECK_THROW(av.sub(1).length(), fail_fast);
}
{
span<int> av = arr;
CHECK(av.sub(0).length() == 5);
CHECK(av.sub(1).length() == 4);
CHECK(av.sub(4).length() == 1);
CHECK(av.sub(5).length() == 0);
CHECK_THROW(av.sub(6).length(), fail_fast);
auto av2 = av.sub(1);
for (int i = 0; i < 4; ++i)
CHECK(av2[i] == i+2);
}
{
span<int,5> av = arr;
CHECK(av.sub(0).length() == 5);
CHECK(av.sub(1).length() == 4);
CHECK(av.sub(4).length() == 1);
CHECK(av.sub(5).length() == 0);
CHECK_THROW(av.sub(6).length(), fail_fast);
auto av2 = av.sub(1);
for (int i = 0; i < 4; ++i)
CHECK(av2[i] == i+2);
}
}
void AssertNullEmptyProperties(span<int, dynamic_range>& av)
{
CHECK(av.length() == 0);
CHECK(av.data() == nullptr);
CHECK(!av);
}
template <class T, class U>
void AssertContentsMatch(T a1, U a2)
{
CHECK(a1.length() == a2.length());
for (auto i = 0; i < a1.length(); ++i)
CHECK(a1[i] == a2[i]);
}
TEST(TestNullConstruction)
{
span<int, dynamic_range> av;
AssertNullEmptyProperties(av);
span<int, dynamic_range> av2(nullptr);
AssertNullEmptyProperties(av2);
}
TEST(ArrayConstruction)
{
int a[] = { 1, 2, 3, 4 };
span<int, dynamic_range> av = { &a[1], 3 };
CHECK(av.length() == 3);
span<int, dynamic_range> av3 = { a, 2 };
CHECK(av3.length() == 2);
span<int, dynamic_range> av2 = a;
CHECK(av2.length() == 4);
}
TEST(NonConstConstConversions)
{
int a[] = { 1, 2, 3, 4 };
#ifdef CONFIRM_COMPILATION_ERRORS
span<const int, dynamic_range> cav = a;
span<int, dynamic_range> av = cav;
#else
span<int, dynamic_range> av = a;
span<const int, dynamic_range> cav = av;
#endif
AssertContentsMatch(av, cav);
}
TEST(FixedSizeConversions)
{
int arr[] = { 1, 2, 3, 4 };
// converting to an span from an equal size array is ok
span<int, 4> av4 = arr;
CHECK(av4.length() == 4);
// converting to dynamic_range a_v is always ok
{
span<int, dynamic_range> av = av4;
(void)av;
}
{
span<int, dynamic_range> av = arr;
(void)av;
}
// initialization or assignment to static span that REDUCES size is NOT ok
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, 2> av2 = arr;
}
{
span<int, 2> av2 = av4;
}
#endif
{
span<int, dynamic_range> av = arr;
span<int, 2> av2 = av;
(void)av2;
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, dynamic_range> av = arr;
span<int, 2, 1> av2 = av.as_span(dim<2>(), dim<2>());
}
#endif
{
span<int, dynamic_range> av = arr;
auto f = [&]() {span<int, 2, 1> av2 = av.as_span(dim<>(2), dim<>(2)); (void)av2; };
CHECK_THROW(f(), fail_fast);
}
// but doing so explicitly is ok
// you can convert statically
{
span<int, 2> av2 = {arr, 2};
(void)av2;
}
{
span<int, 1> av2 = av4.first<1>();
(void)av2;
}
// ...or dynamically
{
// NB: implicit conversion to span<int,2> from span<int,dynamic_range>
span<int, 1> av2 = av4.first(1);
(void)av2;
}
// initialization or assignment to static span that requires size INCREASE is not ok.
int arr2[2] = { 1, 2 };
#ifdef CONFIRM_COMPILATION_ERRORS
{
span<int, 4> av4 = arr2;
}
{
span<int, 2> av2 = arr2;
span<int, 4> av4 = av2;
}
#endif
{
auto f = [&]() {span<int, 4> av4 = {arr2, 2}; (void)av4; };
CHECK_THROW(f(), fail_fast);
}
// this should fail - we are trying to assign a small dynamic a_v to a fixed_size larger one
span<int, dynamic_range> av = arr2;
auto f = [&](){ span<int, 4> av2 = av; (void)av2; };
CHECK_THROW(f(), fail_fast);
}
TEST(AsWriteableBytes)
{
int a[] = { 1, 2, 3, 4 };
{
#ifdef CONFIRM_COMPILATION_ERRORS
// you should not be able to get writeable bytes for const objects
span<const int, dynamic_range> av = a;
auto wav = av.as_writeable_bytes();
#endif
}
{
span<int, dynamic_range> av;
auto wav = av.as_writeable_bytes();
CHECK(wav.length() == av.length());
CHECK(wav.length() == 0);
CHECK(wav.bytes() == 0);
}
{
span<int, dynamic_range> av = a;
auto wav = av.as_writeable_bytes();
CHECK(wav.data() == (byte*)&a[0]);
CHECK(wav.length() == sizeof(a));
}
}
TEST(NonConstIterator)
{
int a[] = { 1, 2, 3, 4 };
{
span<int, dynamic_range> av = a;
auto wav = av.as_writeable_bytes();
for (auto& b : wav)
{
b = byte(0);
}
for (size_t i = 0; i < 4; ++i)
{
CHECK(a[i] == 0);
}
}
{
span<int, dynamic_range> av = a;
for (auto& n : av)
{
n = 1;
}
for (size_t i = 0; i < 4; ++i)
{
CHECK(a[i] == 1);
}
}
}
TEST(ArrayViewComparison)
{
{
int arr[10][2];
auto av1 = as_span(arr);
span<const int, dynamic_range, 2> av2 = av1;
CHECK(av1 == av2);
span<int, 20> av3 = av1.as_span(dim<>(20));
CHECK(av3 == av2 && av3 == av1);
}
{
auto av1 = nullptr;
auto av2 = nullptr;
CHECK(av1 == av2);
CHECK(!(av1 != av2));
CHECK(!(av1 < av2));
CHECK(av1 <= av2);
CHECK(!(av1 > av2));
CHECK(av1 >= av2);
CHECK(av2 == av1);
CHECK(!(av2 != av1));
CHECK(!(av2 < av1));
CHECK(av2 <= av1);
CHECK(!(av2 > av1));
CHECK(av2 >= av1);
}
{
int arr[] = { 2, 1 }; // bigger
span<int> av1 = nullptr;
span<int> av2 = arr;
CHECK(av1 != av2);
CHECK(av2 != av1);
CHECK(!(av1 == av2));
CHECK(!(av2 == av1));
CHECK(av1 < av2);
CHECK(!(av2 < av1));
CHECK(av1 <= av2);
CHECK(!(av2 <= av1));
CHECK(av2 > av1);
CHECK(!(av1 > av2));
CHECK(av2 >= av1);
CHECK(!(av1 >= av2));
}
{
int arr1[] = { 1, 2 };
int arr2[] = { 1, 2 };
span<int> av1 = arr1;
span<int> av2 = arr2;
CHECK(av1 == av2);
CHECK(!(av1 != av2));
CHECK(!(av1 < av2));
CHECK(av1 <= av2);
CHECK(!(av1 > av2));
CHECK(av1 >= av2);
CHECK(av2 == av1);
CHECK(!(av2 != av1));
CHECK(!(av2 < av1));
CHECK(av2 <= av1);
CHECK(!(av2 > av1));
CHECK(av2 >= av1);
}
{
int arr[] = { 1, 2, 3 };
span<int> av1 = { &arr[0], 2 }; // shorter
span<int> av2 = arr; // longer
CHECK(av1 != av2);
CHECK(av2 != av1);
CHECK(!(av1 == av2));
CHECK(!(av2 == av1));
CHECK(av1 < av2);
CHECK(!(av2 < av1));
CHECK(av1 <= av2);
CHECK(!(av2 <= av1));
CHECK(av2 > av1);
CHECK(!(av1 > av2));
CHECK(av2 >= av1);
CHECK(!(av1 >= av2));
}
{
int arr1[] = { 1, 2 }; // smaller
int arr2[] = { 2, 1 }; // bigger
span<int> av1 = arr1;
span<int> av2 = arr2;
CHECK(av1 != av2);
CHECK(av2 != av1);
CHECK(!(av1 == av2));
CHECK(!(av2 == av1));
CHECK(av1 < av2);
CHECK(!(av2 < av1));
CHECK(av1 <= av2);
CHECK(!(av2 <= av1));
CHECK(av2 > av1);
CHECK(!(av1 > av2));
CHECK(av2 >= av1);
CHECK(!(av1 >= av2));
}
}
}
int main(int, const char *[])
{
return UnitTest::RunAllTests();
}