GSL/include/gsl.h
saurabh singh 437791e504 GSL::finally can make use of move semantics
for eg consider this case
[code]
string value = "someVeryLongErrorMessageIAm";
finally([value] { PrintErrorMessage(value); }
[/code]
With the current changes before the call to PrintErrorMessage there will be 3 calls to copy constructor for string(1 when it's captured in closure, 2nd when finally is called and 3rd when it's passed to Final_act . With my patch there will be 1 call to the copy constructor and 2 to the move constructor for the scenario in example, so 2 potential deep copies will be saved for some objects.
Validated that code builds from root, and all tests pass after my change. Also validated that indeed copy constructor calls are saved for objects that support move semantics.
2015-09-27 16:11:12 +05:30

298 lines
9.0 KiB
C++

///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#pragma once
#ifndef GSL_GSL_H
#define GSL_GSL_H
#include "array_view.h" // array_view, strided_array_view...
#include "string_view.h" // zstring, string_view, zstring_builder...
#include <memory>
namespace Guide
{
//
// GSL.owner: ownership pointers
//
using std::unique_ptr;
using std::shared_ptr;
template <class T>
using owner = T;
//
// GSL.assert: assertions
//
#define Expects(x) Guide::fail_fast_assert((x))
#define Ensures(x) Guide::fail_fast_assert((x))
//
// GSL.util: utilities
//
// Final_act allows you to ensure something gets run at the end of a scope
template <class F>
class Final_act
{
public:
explicit Final_act(F f) : f_(std::move(f)) {}
Final_act(const Final_act&& other) : f_(other.f_) {}
Final_act(const Final_act&) = delete;
Final_act& operator=(const Final_act&) = delete;
~Final_act() { f_(); }
private:
F f_;
};
// finally() - convenience function to generate a Final_act
template <class F>
Final_act<F> finally(const F &f) { return Final_act<F>(f); }
template <class F>
Final_act<F> finally(F &&f) { return Final_act<F>(std::forward<F>(f)); }
// narrow_cast(): a searchable way to do narrowing casts of values
template<class T, class U>
T narrow_cast(U u) { return static_cast<T>(u); }
struct narrowing_error : public std::exception {};
// narrow() : a checked version of narrow_cast() that throws if the cast changed the value
template<class T, class U>
T narrow(U u) { T t = narrow_cast<T>(u); if (static_cast<U>(t) != u) throw narrowing_error(); return t; }
//
// at() - Bounds-checked way of accessing static arrays, std::array, std::vector
//
template <class T, size_t N>
T& at(T(&arr)[N], size_t index) { fail_fast_assert(index < N); return arr[index]; }
template <class T, size_t N>
T& at(std::array<T, N>& arr, size_t index) { fail_fast_assert(index < N); return arr[index]; }
template <class Cont>
typename Cont::value_type& at(Cont& cont, size_t index) { fail_fast_assert(index < cont.size()); return cont[index]; }
//
// not_null
//
// Restricts a pointer or smart pointer to only hold non-null values.
//
// Has zero size overhead over T.
//
// If T is a pointer (i.e. T == U*) then
// - allow construction from U* or U&
// - disallow construction from nullptr_t
// - disallow default construction
// - ensure construction from U* fails with nullptr
// - allow implicit conversion to U*
//
template<class T>
class not_null
{
public:
not_null(T t) : ptr_(t) { ensure_invariant(); }
// deleting these two prevents compilation when initialized with a nullptr or literal 0
not_null(std::nullptr_t) = delete;
not_null(int) = delete;
not_null(const not_null &other) = default;
template <typename U, typename Dummy = std::enable_if_t<std::is_convertible<U, T>::value>>
not_null(const not_null<U> &other) : ptr_(other.get())
{
}
not_null<T>& operator=(const T& t) { ptr_ = t; ensure_invariant(); return *this; }
// prevents compilation when someone attempts to assign a nullptr
not_null<T>& operator=(std::nullptr_t) = delete;
not_null<T>& operator=(int) = delete;
T get() const {
#ifdef _MSC_VER
__assume(ptr_ != nullptr);
#endif
return ptr_;
} // the assume() should help the optimizer
operator T() const { return get(); }
T operator->() const { return get(); }
bool operator==(const T& rhs) const { return ptr_ == rhs; }
bool operator!=(const T& rhs) const { return !(*this == rhs); }
private:
T ptr_;
// we assume that the compiler can hoist/prove away most of the checks inlined from this function
// if not, we could make them optional via conditional compilation
void ensure_invariant() const { fail_fast_assert(ptr_ != nullptr); }
// unwanted operators...pointers only point to single objects!
// TODO ensure all arithmetic ops on this type are unavailable
not_null<T>& operator++() = delete;
not_null<T>& operator--() = delete;
not_null<T> operator++(int) = delete;
not_null<T> operator--(int) = delete;
not_null<T>& operator+(size_t) = delete;
not_null<T>& operator+=(size_t) = delete;
not_null<T>& operator-(size_t) = delete;
not_null<T>& operator-=(size_t) = delete;
};
//
// maybe_null
//
// Describes an optional pointer - provides symmetry with not_null
//
template<class T>
class maybe_null_dbg
{
public:
maybe_null_dbg() : ptr_(nullptr), tested_(false) {}
maybe_null_dbg(const T& p) : ptr_(p), tested_(false) {}
maybe_null_dbg(const maybe_null_dbg& rhs) : ptr_(rhs.ptr_), tested_(false) {}
template <typename U, typename Dummy = std::enable_if_t<std::is_convertible<U, T>::value>>
maybe_null_dbg(const not_null<U> &other) : ptr_(other.get()), tested_(false)
{
}
template <typename U, typename Dummy = std::enable_if_t<std::is_convertible<U, T>::value>>
maybe_null_dbg(const maybe_null_dbg<U> &other) : ptr_(other.get()), tested_(false)
{
}
maybe_null_dbg& operator=(const T& p)
{
if (ptr_ != p)
{
ptr_ = p;
tested_ = false;
}
return *this;
}
maybe_null_dbg& operator=(const maybe_null_dbg& rhs)
{
if (this != &rhs)
{
ptr_ = rhs.ptr_;
tested_ = false;
}
return *this;
}
bool present() const { tested_ = true; return ptr_ != nullptr; }
bool operator==(const T& rhs) const { tested_ = true; return ptr_ == rhs; }
bool operator!=(const T& rhs) const { return !(*this == rhs); }
bool operator==(const maybe_null_dbg& rhs) const { tested_ = true; rhs.tested_ = true; return ptr_ == rhs.ptr_; }
bool operator!=(const maybe_null_dbg& rhs) const { return !(*this == rhs); }
T get() const {
fail_fast_assert(tested_);
#ifdef _MSC_VER
__assume(ptr_ != nullptr);
#endif
return ptr_;
}
operator T() const { return get(); }
T operator->() const { return get(); }
private:
const size_t ptee_size_ = sizeof(*ptr_); // T must be a pointer type
// unwanted operators...pointers only point to single objects!
// TODO ensure all arithmetic ops on this type are unavailable
maybe_null_dbg<T>& operator++() = delete;
maybe_null_dbg<T>& operator--() = delete;
maybe_null_dbg<T> operator++(int) = delete;
maybe_null_dbg<T> operator--(int) = delete;
maybe_null_dbg<T>& operator+(size_t) = delete;
maybe_null_dbg<T>& operator+=(size_t) = delete;
maybe_null_dbg<T>& operator-(size_t) = delete;
maybe_null_dbg<T>& operator-=(size_t) = delete;
T ptr_;
mutable bool tested_;
};
template<class T>
class maybe_null_ret
{
public:
maybe_null_ret() : ptr_(nullptr) {}
maybe_null_ret(std::nullptr_t) : ptr_(nullptr) {}
maybe_null_ret(const T& p) : ptr_(p) {}
maybe_null_ret(const maybe_null_ret& rhs) = default;
template <typename U, typename Dummy = std::enable_if_t<std::is_convertible<U, T>::value>>
maybe_null_ret(const not_null<U> &other) : ptr_(other.get())
{
}
template <typename U, typename Dummy = std::enable_if_t<std::is_convertible<U, T>::value>>
maybe_null_ret(const maybe_null_ret<U> &other) : ptr_(other.get())
{
}
template <typename U, typename Dummy = std::enable_if_t<std::is_convertible<U, T>::value>>
maybe_null_ret(const maybe_null_dbg<U> &other) : ptr_(other.get())
{
}
maybe_null_ret& operator=(const T& p) { if (ptr_ != p) { ptr_ = p; } return *this; }
maybe_null_ret& operator=(const maybe_null_ret& rhs) = default;
bool present() const { return ptr_ != nullptr; }
T get() const { return ptr_; }
operator T() const { return get(); }
T operator->() const { return get(); }
private:
// unwanted operators...pointers only point to single objects!
// TODO ensure all arithmetic ops on this type are unavailable
maybe_null_ret<T>& operator++() = delete;
maybe_null_ret<T>& operator--() = delete;
maybe_null_ret<T> operator++(int) = delete;
maybe_null_ret<T> operator--(int) = delete;
maybe_null_ret<T>& operator+(size_t) = delete;
maybe_null_ret<T>& operator+=(size_t) = delete;
maybe_null_ret<T>& operator-(size_t) = delete;
maybe_null_ret<T>& operator-=(size_t) = delete;
const size_t ptee_size_ = sizeof(*ptr_); // T must be a pointer type
T ptr_;
};
template<class T> using maybe_null = maybe_null_ret<T>;
} // namespace Guide
#endif // GSL_GSL_H