GSL/include/array_view.h
2015-10-12 18:35:21 -07:00

2242 lines
71 KiB
C++

///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#pragma once
#ifndef GSL_ARRAY_VIEW_H
#define GSL_ARRAY_VIEW_H
#include <new>
#include <stdexcept>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>
#include <utility>
#include <array>
#include <iterator>
#include <algorithm>
#include "fail_fast.h"
#ifdef _MSC_VER
// No MSVC does constexpr fully yet
#pragma push_macro("constexpr")
#define constexpr /* nothing */
// VS 2013 workarounds
#if _MSC_VER <= 1800
// noexcept is not understood
#ifndef GSL_THROWS_FOR_TESTING
#define noexcept /* nothing */
#endif
// turn off some misguided warnings
#pragma warning(push)
#pragma warning(disable: 4351) // warns about newly introduced aggregate initializer behavior
#endif // _MSC_VER <= 1800
#endif // _MSC_VER
// In order to test the library, we need it to throw exceptions that we can catch
#ifdef GSL_THROWS_FOR_TESTING
#define noexcept /* nothing */
#endif // GSL_THROWS_FOR_TESTING
namespace gsl {
/*
** begin definitions of index and bounds
*/
namespace details
{
template <typename SizeType>
struct SizeTypeTraits
{
static const SizeType max_value = std::is_signed<SizeType>::value ? static_cast<typename std::make_unsigned<SizeType>::type>(-1) / 2 : static_cast<SizeType>(-1);
};
template <typename T>
class arrow_proxy
{
public:
explicit arrow_proxy(T t)
: val(t)
{}
const T operator*() const noexcept
{
return val;
}
const T* operator->() const noexcept
{
return &val;
}
private:
T val;
};
}
template <size_t Rank, typename ValueType = size_t>
class index final
{
static_assert(std::is_integral<ValueType>::value, "ValueType must be an integral type!");
static_assert(Rank > 0, "Rank must be greater than 0!");
template <size_t OtherRank, typename OtherValueType>
friend class index;
public:
static const size_t rank = Rank;
using value_type = std::remove_reference_t<ValueType>;
using reference = std::add_lvalue_reference_t<value_type>;
using const_reference = std::add_lvalue_reference_t<std::add_const_t<value_type>>;
constexpr index() noexcept
{}
constexpr index(const value_type(&values)[Rank]) noexcept
{
std::copy(values, values + Rank, elems);
}
// Preconditions: il.size() == rank
constexpr index(std::initializer_list<value_type> il) noexcept
{
fail_fast_assert(il.size() == Rank, "The size of the initializer list must match the rank of the array");
std::copy(begin(il), end(il), elems);
}
constexpr index(const index& other) noexcept = default;
// copy from index over smaller domain
template <typename OtherValueType,
bool Enabled = (details::SizeTypeTraits<OtherValueType>::max_value <= details::SizeTypeTraits<value_type>::max_value),
typename Other = std::enable_if_t<Enabled, index<Rank, OtherValueType>>>
constexpr index(const index<Rank, OtherValueType>& other) noexcept
{
std::copy(other.elems, other.elems + Rank, elems);
}
// copy from index over larger domain
template <typename OtherValueType,
bool Enabled = (details::SizeTypeTraits<OtherValueType>::max_value > details::SizeTypeTraits<value_type>::max_value),
typename Other = std::enable_if_t<Enabled, index<Rank, OtherValueType>>>
constexpr index(const index<Rank, OtherValueType>& other, void* ptr = 0) noexcept
{
bool ok = std::accumulate(other.elems, other.elems + Rank, true,
[&](bool b, OtherValueType val) { return b && (val <= static_cast<OtherValueType>(details::SizeTypeTraits<value_type>::max_value)); }
);
fail_fast_assert(ok, "other value must fit in the new domain");
std::transform(other.elems, other.elems + rank, elems, [&](OtherValueType val) { return static_cast<value_type>(val); });
}
constexpr index& operator=(const index& rhs) noexcept = default;
// Preconditions: component_idx < rank
constexpr reference operator[](size_t component_idx)
{
fail_fast_assert(component_idx < Rank, "Component index must be less than rank");
return elems[component_idx];
}
// Preconditions: component_idx < rank
constexpr const_reference operator[](size_t component_idx) const noexcept
{
fail_fast_assert(component_idx < Rank, "Component index must be less than rank");
return elems[component_idx];
}
constexpr bool operator==(const index& rhs) const noexcept
{
return std::equal(elems, elems + rank, rhs.elems);
}
constexpr bool operator!=(const index& rhs) const noexcept
{
return !(this == rhs);
}
constexpr index operator+() const noexcept
{
return *this;
}
constexpr index operator-() const noexcept
{
index ret = *this;
std::transform(ret, ret + rank, ret, std::negate<ValueType>{});
return ret;
}
constexpr index operator+(const index& rhs) const noexcept
{
index ret = *this;
ret += rhs;
return ret;
}
constexpr index operator-(const index& rhs) const noexcept
{
index ret = *this;
ret -= rhs;
return ret;
}
constexpr index& operator+=(const index& rhs) noexcept
{
std::transform(elems, elems + rank, rhs.elems, elems, std::plus<ValueType>{});
return *this;
}
constexpr index& operator-=(const index& rhs) noexcept
{
std::transform(elems, elems + rank, rhs.elems, elems, std::minus<ValueType>{});
return *this;
}
constexpr index operator*(value_type v) const noexcept
{
index ret = *this;
ret *= v;
return ret;
}
constexpr index operator/(value_type v) const noexcept
{
index ret = *this;
ret /= v;
return ret;
}
friend constexpr index operator*(value_type v, const index& rhs) noexcept
{
return rhs * v;
}
constexpr index& operator*=(value_type v) noexcept
{
std::transform(elems, elems + rank, elems, [v](value_type x) { return std::multiplies<ValueType>{}(x, v); });
return *this;
}
constexpr index& operator/=(value_type v) noexcept
{
std::transform(elems, elems + rank, elems, [v](value_type x) { return std::divides<ValueType>{}(x, v); });
return *this;
}
private:
value_type elems[Rank] = {};
};
template <typename ValueType>
class index<1, ValueType>
{
template <size_t, typename OtherValueType>
friend class index;
public:
static const size_t rank = 1;
using value_type = std::remove_reference_t<ValueType>;
using reference = std::add_lvalue_reference_t<value_type>;
using const_reference = std::add_lvalue_reference_t<std::add_const_t<value_type>>;
constexpr index() noexcept : value(0)
{}
constexpr index(value_type e) noexcept : value(e)
{}
constexpr index(const value_type(&values)[1]) noexcept : index(values[0])
{}
constexpr index(const index &) noexcept = default;
template <typename OtherValueType,
bool Enabled = (details::SizeTypeTraits<OtherValueType>::max_value <= details::SizeTypeTraits<value_type>::max_value),
typename Other = std::enable_if_t<Enabled, index<1, OtherValueType>>>
constexpr index(const index<1, OtherValueType>& other) noexcept
{
value = static_cast<ValueType>(other.value);
}
template <typename OtherValueType,
bool Enabled = (details::SizeTypeTraits<OtherValueType>::max_value > details::SizeTypeTraits<value_type>::max_value),
typename Other = std::enable_if_t<Enabled, index<1, OtherValueType>>>
constexpr index(const index<1, OtherValueType>& other, void* ptr=0) noexcept
{
fail_fast_assert(other.value <= static_cast<OtherValueType>(details::SizeTypeTraits<value_type>::max_value));
value = static_cast<value_type>(other.value);
}
// Preconditions: component_idx < 1
constexpr reference operator[](value_type component_idx) noexcept
{
fail_fast_assert(component_idx == 0, "Component index must be less than rank");
(void)(component_idx);
return value;
}
// Preconditions: component_idx < 1
constexpr const_reference operator[](value_type component_idx) const noexcept
{
fail_fast_assert(component_idx == 0, "Component index must be less than rank");
(void)(component_idx);
return value;
}
constexpr bool operator==(const index& rhs) const noexcept
{
return value == rhs.value;
}
constexpr bool operator!=(const index& rhs) const noexcept
{
return !(*this == rhs);
}
constexpr index operator+() const noexcept
{
return *this;
}
constexpr index operator-() const noexcept
{
return index(-value);
}
constexpr index operator+(const index& rhs) const noexcept
{
return index(value + rhs.value);
}
constexpr index operator-(const index& rhs) const noexcept
{
return index(value - rhs.value);
}
constexpr index& operator+=(const index& rhs) noexcept
{
value += rhs.value;
return *this;
}
constexpr index& operator-=(const index& rhs) noexcept
{
value -= rhs.value;
return *this;
}
constexpr index& operator++() noexcept
{
++value;
return *this;
}
constexpr index operator++(int) noexcept
{
index ret = *this;
++(*this);
return ret;
}
constexpr index& operator--() noexcept
{
--value;
return *this;
}
constexpr index operator--(int) noexcept
{
index ret = *this;
--(*this);
return ret;
}
constexpr index operator*(value_type v) const noexcept
{
return index(value * v);
}
constexpr index operator/(value_type v) const noexcept
{
return index(value / v);
}
constexpr index& operator*=(value_type v) noexcept
{
value *= v;
return *this;
}
constexpr index& operator/=(value_type v) noexcept
{
value /= v;
return *this;
}
friend constexpr index operator*(value_type v, const index& rhs) noexcept
{
return{ rhs * v };
}
private:
value_type value;
};
#ifndef _MSC_VER
struct static_bounds_dynamic_range_t
{
template <typename T, typename Dummy = std::enable_if_t<std::is_integral<T>::value>>
constexpr operator T() const noexcept
{
return static_cast<T>(-1);
}
template <typename T, typename Dummy = std::enable_if_t<std::is_integral<T>::value>>
constexpr bool operator ==(T other) const noexcept
{
return static_cast<T>(-1) == other;
}
template <typename T, typename Dummy = std::enable_if_t<std::is_integral<T>::value>>
constexpr bool operator !=(T other) const noexcept
{
return static_cast<T>(-1) != other;
}
};
template <typename T, typename Dummy = std::enable_if_t<std::is_integral<T>::value>>
constexpr bool operator ==(T left, static_bounds_dynamic_range_t right) noexcept
{
return right == left;
}
template <typename T, typename Dummy = std::enable_if_t<std::is_integral<T>::value>>
constexpr bool operator !=(T left, static_bounds_dynamic_range_t right) noexcept
{
return right != left;
}
constexpr static_bounds_dynamic_range_t dynamic_range{};
#else
const char dynamic_range = -1;
#endif
struct generalized_mapping_tag {};
struct contiguous_mapping_tag : generalized_mapping_tag {};
namespace details
{
template <typename SizeType, SizeType Fact1, SizeType Fact2, SizeType ConstBound>
struct StaticSizeHelperImpl
{
static_assert(static_cast<size_t>(Fact1) * static_cast<size_t>(Fact2) <= SizeTypeTraits<SizeType>::max_value, "Value out of the range of SizeType");
static const SizeType value = Fact1 * Fact2;
};
template <typename SizeType, SizeType Fact1, SizeType ConstBound>
struct StaticSizeHelperImpl<SizeType, Fact1, ConstBound, ConstBound>
{
static const SizeType value = ConstBound;
};
template <typename SizeType, SizeType Fact2, SizeType ConstBound>
struct StaticSizeHelperImpl<SizeType, ConstBound, Fact2, ConstBound>
{
static const SizeType value = ConstBound;
};
template <typename SizeType, SizeType ConstBound>
struct StaticSizeHelperImpl<SizeType, ConstBound, ConstBound, ConstBound>
{
static const SizeType value = static_cast<SizeType>(ConstBound);
};
template <typename SizeType, SizeType Fact1, SizeType Fact2>
struct StaticSizeHelper
{
static const SizeType value = StaticSizeHelperImpl<SizeType, static_cast<SizeType>(Fact1), static_cast<SizeType>(Fact2), static_cast<SizeType>(dynamic_range)>::value;
};
template <size_t Left, size_t Right>
struct LessThan
{
static const bool value = Left < Right;
};
template <typename SizeType, size_t... Ranges>
struct BoundsRanges {
static const size_t Depth = 0;
static const size_t DynamicNum = 0;
static const SizeType CurrentRange = 1;
static const SizeType TotalSize = 1;
BoundsRanges (const BoundsRanges &) = default;
// TODO : following signature is for work around VS bug
template <typename OtherType>
BoundsRanges (const OtherType &, bool /* firstLevel */) {}
BoundsRanges(const SizeType * const) { }
BoundsRanges() = default;
template <typename T, size_t Dim>
void serialize(T &) const {
}
template <typename T, size_t Dim>
SizeType linearize(const T &) const {
return 0;
}
template <typename T, size_t Dim>
ptrdiff_t contains(const T &) const {
return 0;
}
size_t totalSize() const noexcept {
return TotalSize;
}
bool operator == (const BoundsRanges &) const noexcept
{
return true;
}
};
template <typename SizeType, size_t... RestRanges>
struct BoundsRanges <SizeType, dynamic_range, RestRanges...> : BoundsRanges<SizeType, RestRanges...>{
using Base = BoundsRanges <SizeType, RestRanges... >;
static const size_t Depth = Base::Depth + 1;
static const size_t DynamicNum = Base::DynamicNum + 1;
static const SizeType CurrentRange = dynamic_range;
static const SizeType TotalSize = dynamic_range;
const SizeType m_bound;
BoundsRanges (const BoundsRanges &) = default;
BoundsRanges(const SizeType * const arr) : Base(arr + 1), m_bound(static_cast<SizeType>(*arr * this->Base::totalSize()))
{
fail_fast_assert(0 <= *arr);
fail_fast_assert(*arr * this->Base::totalSize() <= details::SizeTypeTraits<SizeType>::max_value);
}
BoundsRanges() : m_bound(0) {}
template <typename OtherSizeType, size_t OtherRange, size_t... RestOtherRanges>
BoundsRanges(const BoundsRanges<OtherSizeType, OtherRange, RestOtherRanges...> &other, bool /* firstLevel */ = true) :
Base(static_cast<const BoundsRanges<OtherSizeType, RestOtherRanges...>&>(other), false), m_bound (static_cast<SizeType>(other.totalSize()))
{
}
template <typename T, size_t Dim = 0>
void serialize(T & arr) const {
arr[Dim] = elementNum();
this->Base::template serialize<T, Dim + 1>(arr);
}
template <typename T, size_t Dim = 0>
SizeType linearize(const T & arr) const {
const size_t index = this->Base::totalSize() * arr[Dim];
fail_fast_assert(index < static_cast<size_t>(m_bound));
return static_cast<SizeType>(index) + this->Base::template linearize<T, Dim + 1>(arr);
}
template <typename T, size_t Dim = 0>
ptrdiff_t contains(const T & arr) const {
const ptrdiff_t last = this->Base::template contains<T, Dim + 1>(arr);
if (last == -1)
return -1;
const ptrdiff_t cur = this->Base::totalSize() * arr[Dim];
return static_cast<size_t>(cur) < static_cast<size_t>(m_bound) ? cur + last : -1;
}
size_t totalSize() const noexcept {
return m_bound;
}
SizeType elementNum() const noexcept {
return static_cast<SizeType>(totalSize() / this->Base::totalSize());
}
SizeType elementNum(size_t dim) const noexcept{
if (dim > 0)
return this->Base::elementNum(dim - 1);
else
return elementNum();
}
bool operator == (const BoundsRanges & rhs) const noexcept
{
return m_bound == rhs.m_bound && static_cast<const Base &>(*this) == static_cast<const Base &>(rhs);
}
};
template <typename SizeType, size_t CurRange, size_t... RestRanges>
struct BoundsRanges <SizeType, CurRange, RestRanges...> : BoundsRanges<SizeType, RestRanges...>{
using Base = BoundsRanges <SizeType, RestRanges... >;
static const size_t Depth = Base::Depth + 1;
static const size_t DynamicNum = Base::DynamicNum;
static const SizeType CurrentRange = static_cast<SizeType>(CurRange);
static const SizeType TotalSize = StaticSizeHelper<SizeType, Base::TotalSize, CurrentRange>::value;
static_assert (CurRange <= SizeTypeTraits<SizeType>::max_value, "CurRange must be smaller than SizeType limits");
BoundsRanges (const BoundsRanges &) = default;
BoundsRanges(const SizeType * const arr) : Base(arr) { }
BoundsRanges() = default;
template <typename OtherSizeType, size_t OtherRange, size_t... RestOtherRanges>
BoundsRanges(const BoundsRanges<OtherSizeType, OtherRange, RestOtherRanges...> &other, bool firstLevel = true) : Base(static_cast<const BoundsRanges<OtherSizeType, RestOtherRanges...>&>(other), false)
{
fail_fast_assert((firstLevel && totalSize() <= other.totalSize()) || totalSize() == other.totalSize());
}
template <typename T, size_t Dim = 0>
void serialize(T & arr) const {
arr[Dim] = elementNum();
this->Base::template serialize<T, Dim + 1>(arr);
}
template <typename T, size_t Dim = 0>
SizeType linearize(const T & arr) const {
fail_fast_assert(arr[Dim] < CurrentRange, "Index is out of range");
return static_cast<SizeType>(this->Base::totalSize()) * arr[Dim] + this->Base::template linearize<T, Dim + 1>(arr);
}
template <typename T, size_t Dim = 0>
ptrdiff_t contains(const T & arr) const {
if (static_cast<size_t>(arr[Dim]) >= CurrentRange)
return -1;
const ptrdiff_t last = this->Base::template contains<T, Dim + 1>(arr);
if (last == -1)
return -1;
return static_cast<ptrdiff_t>(this->Base::totalSize() * arr[Dim]) + last;
}
size_t totalSize() const noexcept{
return CurrentRange * this->Base::totalSize();
}
SizeType elementNum() const noexcept{
return CurrentRange;
}
SizeType elementNum(size_t dim) const noexcept{
if (dim > 0)
return this->Base::elementNum(dim - 1);
else
return elementNum();
}
bool operator == (const BoundsRanges & rhs) const noexcept
{
return static_cast<const Base &>(*this) == static_cast<const Base &>(rhs);
}
};
template <typename SourceType, typename TargetType, size_t Rank>
struct BoundsRangeConvertible2;
// TODO: I have to rewrite BoundsRangeConvertible into following way to workaround VS 2013 bugs
template <size_t Rank, typename SourceType, typename TargetType, typename Ret = BoundsRangeConvertible2<typename SourceType::Base, typename TargetType::Base, Rank>>
auto helpBoundsRangeConvertible(SourceType, TargetType, std::true_type) -> Ret;
template <size_t Rank, typename SourceType, typename TargetType>
auto helpBoundsRangeConvertible(SourceType, TargetType, ...) -> std::false_type;
template <typename SourceType, typename TargetType, size_t Rank>
struct BoundsRangeConvertible2 : decltype(helpBoundsRangeConvertible<Rank - 1>(SourceType(), TargetType(),
std::integral_constant<bool, SourceType::Depth == TargetType::Depth
&& (SourceType::CurrentRange == TargetType::CurrentRange || TargetType::CurrentRange == dynamic_range || SourceType::CurrentRange == dynamic_range)>()))
{};
template <typename SourceType, typename TargetType>
struct BoundsRangeConvertible2<SourceType, TargetType, 0> : std::true_type {};
template <typename SourceType, typename TargetType, size_t Rank = TargetType::Depth>
struct BoundsRangeConvertible : decltype(helpBoundsRangeConvertible<Rank - 1>(SourceType(), TargetType(),
std::integral_constant<bool, SourceType::Depth == TargetType::Depth
&& (!LessThan<size_t(SourceType::CurrentRange), size_t(TargetType::CurrentRange)>::value || TargetType::CurrentRange == dynamic_range || SourceType::CurrentRange == dynamic_range)>()))
{};
template <typename SourceType, typename TargetType>
struct BoundsRangeConvertible<SourceType, TargetType, 0> : std::true_type {};
template <typename TypeChain>
struct TypeListIndexer
{
const TypeChain & obj;
TypeListIndexer(const TypeChain & obj) :obj(obj){}
template<size_t N>
const TypeChain & getObj(std::true_type)
{
return obj;
}
template<size_t N, typename MyChain = TypeChain, typename MyBase = typename MyChain::Base>
auto getObj(std::false_type) -> decltype(TypeListIndexer<MyBase>(static_cast<const MyBase &>(obj)).template get<N>())
{
return TypeListIndexer<MyBase>(static_cast<const MyBase &>(obj)).template get<N>();
}
template <size_t N>
auto get() -> decltype(getObj<N - 1>(std::integral_constant<bool, true>()))
{
return getObj<N - 1>(std::integral_constant<bool, N == 0>());
}
};
template <typename TypeChain>
TypeListIndexer<TypeChain> createTypeListIndexer(const TypeChain &obj)
{
return TypeListIndexer<TypeChain>(obj);
}
}
template <typename IndexType>
class bounds_iterator;
template <typename SizeType, size_t... Ranges>
class static_bounds {
public:
static_bounds(const details::BoundsRanges<SizeType, Ranges...> &) {
}
};
template <typename SizeType, size_t FirstRange, size_t... RestRanges>
class static_bounds<SizeType, FirstRange, RestRanges...>
{
using MyRanges = details::BoundsRanges <SizeType, FirstRange, RestRanges... >;
static_assert(std::is_integral<SizeType>::value
&& details::SizeTypeTraits<SizeType>::max_value <= SIZE_MAX, "SizeType must be an integral type and its numeric limits must be smaller than SIZE_MAX");
MyRanges m_ranges;
constexpr static_bounds(const MyRanges & range) : m_ranges(range) { }
template <typename SizeType2, size_t... Ranges2>
friend class static_bounds;
public:
static const size_t rank = MyRanges::Depth;
static const size_t dynamic_rank = MyRanges::DynamicNum;
static const SizeType static_size = static_cast<SizeType>(MyRanges::TotalSize);
using size_type = SizeType;
using index_type = index<rank, size_type>;
using iterator = bounds_iterator<index_type>;
using const_iterator = bounds_iterator<index_type>;
using difference_type = ptrdiff_t;
using sliced_type = static_bounds<SizeType, RestRanges...>;
using mapping_type = contiguous_mapping_tag;
public:
constexpr static_bounds(const static_bounds &) = default;
template <typename OtherSizeType, size_t... Ranges, typename Dummy = std::enable_if_t<
details::BoundsRangeConvertible<details::BoundsRanges<OtherSizeType, Ranges...>, details::BoundsRanges <SizeType, FirstRange, RestRanges... >>::value>>
constexpr static_bounds(const static_bounds<OtherSizeType, Ranges...> &other):
m_ranges(other.m_ranges)
{
}
constexpr static_bounds(std::initializer_list<size_type> il) : m_ranges(il.begin())
{
fail_fast_assert(MyRanges::DynamicNum == il.size(), "Size of the initializer list must match the rank of the array");
fail_fast_assert(m_ranges.totalSize() <= details::SizeTypeTraits<size_type>::max_value, "Size of the range is larger than the max element of the size type");
}
constexpr static_bounds() = default;
constexpr static_bounds & operator = (const static_bounds & otherBounds)
{
new(&m_ranges) MyRanges (otherBounds.m_ranges);
return *this;
}
constexpr sliced_type slice() const noexcept
{
return sliced_type{static_cast<const details::BoundsRanges<SizeType, RestRanges...> &>(m_ranges)};
}
constexpr size_type stride() const noexcept
{
return rank > 1 ? slice().size() : 1;
}
constexpr size_type size() const noexcept
{
return static_cast<size_type>(m_ranges.totalSize());
}
constexpr size_type total_size() const noexcept
{
return static_cast<size_type>(m_ranges.totalSize());
}
constexpr size_type linearize(const index_type & idx) const
{
return m_ranges.linearize(idx);
}
constexpr bool contains(const index_type& idx) const noexcept
{
return m_ranges.contains(idx) != -1;
}
constexpr size_type operator[](size_t index) const noexcept
{
return m_ranges.elementNum(index);
}
template <size_t Dim = 0>
constexpr size_type extent() const noexcept
{
static_assert(Dim < rank, "dimension should be less than rank (dimension count starts from 0)");
return details::createTypeListIndexer(m_ranges).template get<Dim>().elementNum();
}
constexpr index_type index_bounds() const noexcept
{
size_type extents[rank];
m_ranges.serialize(extents);
return{ extents };
}
template <typename OtherSizeTypes, size_t... Ranges>
constexpr bool operator == (const static_bounds<OtherSizeTypes, Ranges...> & rhs) const noexcept
{
return this->size() == rhs.size();
}
template <typename OtherSizeTypes, size_t... Ranges>
constexpr bool operator != (const static_bounds<OtherSizeTypes, Ranges...> & rhs) const noexcept
{
return !(*this == rhs);
}
constexpr const_iterator begin() const noexcept
{
return const_iterator(*this);
}
constexpr const_iterator end() const noexcept
{
return const_iterator(*this, this->index_bounds());
}
};
template <size_t Rank, typename SizeType = size_t>
class strided_bounds
{
template <size_t OtherRank, typename OtherSizeType>
friend class strided_bounds;
public:
static const size_t rank = Rank;
using reference = typename SizeType&;
using const_reference = typename const SizeType&;
using size_type = typename SizeType;
using difference_type = typename SizeType;
using value_type = typename SizeType;
using index_type = index<rank, size_type>;
using iterator = bounds_iterator<index_type>;
using const_iterator = bounds_iterator<index_type>;
static const int dynamic_rank = rank;
static const size_t static_size = dynamic_range;
using sliced_type = std::conditional_t<rank != 0, strided_bounds<rank - 1>, void>;
using mapping_type = generalized_mapping_tag;
constexpr strided_bounds(const strided_bounds &) noexcept = default;
template <typename OtherSizeType>
constexpr strided_bounds(const strided_bounds<rank, OtherSizeType> &other) noexcept
: m_extents(other.extents), m_strides(other.strides)
{}
constexpr strided_bounds(const index_type &extents, const index_type &strides) noexcept
: m_extents(extents), m_strides(strides)
{}
constexpr index_type strides() const noexcept
{
return m_strides;
}
constexpr size_type total_size() const noexcept
{
size_type ret = 0;
for (size_t i = 0; i < rank; ++i)
{
ret += (m_extents[i] - 1) * m_strides[i];
}
return ret + 1;
}
constexpr size_type size() const noexcept
{
size_type ret = 1;
for (size_t i = 0; i < rank; ++i)
{
ret *= m_extents[i];
}
return ret;
}
constexpr bool contains(const index_type& idx) const noexcept
{
for (size_t i = 0; i < rank; ++i)
{
if (idx[i] < 0 || idx[i] >= m_extents[i])
return false;
}
return true;
}
constexpr size_type linearize(const index_type & idx) const noexcept
{
size_type ret = 0;
for (size_t i = 0; i < rank; i++)
{
fail_fast_assert(idx[i] < m_extents[i], "index is out of bounds of the array");
ret += idx[i] * m_strides[i];
}
return ret;
}
constexpr size_type stride() const noexcept
{
return m_strides[0];
}
template <bool Enabled = (rank > 1), typename Ret = std::enable_if_t<Enabled, sliced_type>>
constexpr sliced_type slice() const
{
return{ details::shift_left(m_extents), details::shift_left(m_strides) };
}
template <size_t Dim = 0>
constexpr size_type extent() const noexcept
{
static_assert(Dim < Rank, "dimension should be less than rank (dimension count starts from 0)");
return m_extents[Dim];
}
constexpr index_type index_bounds() const noexcept
{
return m_extents;
}
const_iterator begin() const noexcept
{
return const_iterator{ *this };
}
const_iterator end() const noexcept
{
return const_iterator{ *this, index_bounds() };
}
private:
index_type m_extents;
index_type m_strides;
};
template <typename T>
struct is_bounds : std::integral_constant<bool, false> {};
template <typename SizeType, size_t... Ranges>
struct is_bounds<static_bounds<SizeType, Ranges...>> : std::integral_constant<bool, true> {};
template <size_t Rank, typename SizeType>
struct is_bounds<strided_bounds<Rank, SizeType>> : std::integral_constant<bool, true> {};
template <typename IndexType>
class bounds_iterator
: public std::iterator<std::random_access_iterator_tag,
IndexType,
ptrdiff_t,
const details::arrow_proxy<IndexType>,
const IndexType>
{
private:
using Base = std::iterator <std::random_access_iterator_tag, IndexType, ptrdiff_t, const details::arrow_proxy<IndexType>, const IndexType>;
public:
static const size_t rank = IndexType::rank;
using typename Base::reference;
using typename Base::pointer;
using typename Base::difference_type;
using typename Base::value_type;
using index_type = value_type;
using index_size_type = typename IndexType::value_type;
template <typename Bounds>
explicit bounds_iterator(const Bounds& bnd, value_type curr = value_type{}) noexcept
: boundary(bnd.index_bounds())
, curr(std::move(curr))
{
static_assert(is_bounds<Bounds>::value, "Bounds type must be provided");
}
reference operator*() const noexcept
{
return curr;
}
pointer operator->() const noexcept
{
return details::arrow_proxy<value_type>{ curr };
}
bounds_iterator& operator++() noexcept
{
for (size_t i = rank; i-- > 0;)
{
if (++curr[i] < boundary[i])
{
return *this;
}
else
{
curr[i] = 0;
}
}
// If we're here we've wrapped over - set to past-the-end.
for (size_t i = 0; i < rank; ++i)
{
curr[i] = boundary[i];
}
return *this;
}
bounds_iterator operator++(int) noexcept
{
auto ret = *this;
++(*this);
return ret;
}
bounds_iterator& operator--() noexcept
{
for (size_t i = rank; i-- > 0;)
{
if (curr[i]-- > 0)
{
return *this;
}
else
{
curr[i] = boundary[i] - 1;
}
}
// If we're here the preconditions were violated
// "pre: there exists s such that r == ++s"
fail_fast_assert(false);
return *this;
}
bounds_iterator operator--(int) noexcept
{
auto ret = *this;
--(*this);
return ret;
}
bounds_iterator operator+(difference_type n) const noexcept
{
bounds_iterator ret{ *this };
return ret += n;
}
bounds_iterator& operator+=(difference_type n) noexcept
{
auto linear_idx = linearize(curr) + n;
value_type stride;
stride[rank - 1] = 1;
for (size_t i = rank - 1; i-- > 0;)
{
stride[i] = stride[i + 1] * boundary[i + 1];
}
for (size_t i = 0; i < rank; ++i)
{
curr[i] = linear_idx / stride[i];
linear_idx = linear_idx % stride[i];
}
return *this;
}
bounds_iterator operator-(difference_type n) const noexcept
{
bounds_iterator ret{ *this };
return ret -= n;
}
bounds_iterator& operator-=(difference_type n) noexcept
{
return *this += -n;
}
difference_type operator-(const bounds_iterator& rhs) const noexcept
{
return linearize(curr) - linearize(rhs.curr);
}
reference operator[](difference_type n) const noexcept
{
return *(*this + n);
}
bool operator==(const bounds_iterator& rhs) const noexcept
{
return curr == rhs.curr;
}
bool operator!=(const bounds_iterator& rhs) const noexcept
{
return !(*this == rhs);
}
bool operator<(const bounds_iterator& rhs) const noexcept
{
for (size_t i = 0; i < rank; ++i)
{
if (curr[i] < rhs.curr[i])
return true;
}
return false;
}
bool operator<=(const bounds_iterator& rhs) const noexcept
{
return !(rhs < *this);
}
bool operator>(const bounds_iterator& rhs) const noexcept
{
return rhs < *this;
}
bool operator>=(const bounds_iterator& rhs) const noexcept
{
return !(rhs > *this);
}
void swap(bounds_iterator& rhs) noexcept
{
std::swap(boundary, rhs.boundary);
std::swap(curr, rhs.curr);
}
private:
index_size_type linearize(const value_type& idx) const noexcept
{
// TODO: Smarter impl.
// Check if past-the-end
bool pte = true;
for (size_t i = 0; i < rank; ++i)
{
if (idx[i] != boundary[i])
{
pte = false;
break;
}
}
index_size_type multiplier = 1;
index_size_type res = 0;
if (pte)
{
res = 1;
for (size_t i = rank; i-- > 0;)
{
res += (idx[i] - 1) * multiplier;
multiplier *= boundary[i];
}
}
else
{
for (size_t i = rank; i-- > 0;)
{
res += idx[i] * multiplier;
multiplier *= boundary[i];
}
}
return res;
}
value_type boundary;
value_type curr;
};
template <typename SizeType>
class bounds_iterator<index<1, SizeType>>
: public std::iterator<std::random_access_iterator_tag,
index<1, SizeType>,
ptrdiff_t,
const details::arrow_proxy<index<1, SizeType>>,
const index<1, SizeType>>
{
using Base = std::iterator<std::random_access_iterator_tag, index<1, SizeType>, ptrdiff_t, const details::arrow_proxy<index<1, SizeType>>, const index<1, SizeType>>;
public:
using typename Base::reference;
using typename Base::pointer;
using typename Base::difference_type;
using typename Base::value_type;
using index_type = value_type;
using index_size_type = typename index_type::value_type;
template <typename Bounds>
explicit bounds_iterator(const Bounds &, value_type curr = value_type{}) noexcept
: curr( std::move(curr) )
{}
reference operator*() const noexcept
{
return curr;
}
pointer operator->() const noexcept
{
return details::arrow_proxy<value_type>{ curr };
}
bounds_iterator& operator++() noexcept
{
++curr;
return *this;
}
bounds_iterator operator++(int) noexcept
{
auto ret = *this;
++(*this);
return ret;
}
bounds_iterator& operator--() noexcept
{
curr--;
return *this;
}
bounds_iterator operator--(int) noexcept
{
auto ret = *this;
--(*this);
return ret;
}
bounds_iterator operator+(difference_type n) const noexcept
{
bounds_iterator ret{ *this };
return ret += n;
}
bounds_iterator& operator+=(difference_type n) noexcept
{
curr += n;
return *this;
}
bounds_iterator operator-(difference_type n) const noexcept
{
bounds_iterator ret{ *this };
return ret -= n;
}
bounds_iterator& operator-=(difference_type n) noexcept
{
return *this += -n;
}
difference_type operator-(const bounds_iterator& rhs) const noexcept
{
return curr[0] - rhs.curr[0];
}
reference operator[](difference_type n) const noexcept
{
return curr + n;
}
bool operator==(const bounds_iterator& rhs) const noexcept
{
return curr == rhs.curr;
}
bool operator!=(const bounds_iterator& rhs) const noexcept
{
return !(*this == rhs);
}
bool operator<(const bounds_iterator& rhs) const noexcept
{
return curr[0] < rhs.curr[0];
}
bool operator<=(const bounds_iterator& rhs) const noexcept
{
return !(rhs < *this);
}
bool operator>(const bounds_iterator& rhs) const noexcept
{
return rhs < *this;
}
bool operator>=(const bounds_iterator& rhs) const noexcept
{
return !(rhs > *this);
}
void swap(bounds_iterator& rhs) noexcept
{
std::swap(curr, rhs.curr);
}
private:
value_type curr;
};
template <typename IndexType>
bounds_iterator<IndexType> operator+(typename bounds_iterator<IndexType>::difference_type n, const bounds_iterator<IndexType>& rhs) noexcept
{
return rhs + n;
}
/*
** begin definitions of basic_array_view
*/
namespace details
{
template <typename Bounds>
constexpr std::enable_if_t<std::is_same<typename Bounds::mapping_type, generalized_mapping_tag>::value, typename Bounds::index_type> make_stride(const Bounds& bnd) noexcept
{
return bnd.strides();
}
// Make a stride vector from bounds, assuming contiguous memory.
template <typename Bounds>
constexpr std::enable_if_t<std::is_same<typename Bounds::mapping_type, contiguous_mapping_tag>::value, typename Bounds::index_type> make_stride(const Bounds& bnd) noexcept
{
auto extents = bnd.index_bounds();
Bounds::size_type stride[Bounds::rank];
stride[Bounds::rank - 1] = 1;
for (size_t i = 1; i < Bounds::rank; ++i)
{
stride[Bounds::rank - i - 1] = stride[Bounds::rank - i] * extents[Bounds::rank - i];
}
return{ stride };
}
template <size_t Rank, typename ValueType, bool Enabled = (Rank > 1), typename Ret = std::enable_if_t<Enabled, index<Rank-1, ValueType>>>
constexpr Ret shift_left(const index<Rank, ValueType>& other) noexcept
{
Ret ret;
for (size_t i = 0; i < Rank - 1; ++i)
{
ret[i] = other[i + 1];
}
return ret;
}
template <typename BoundsSrc, typename BoundsDest>
void verifyBoundsReshape(const BoundsSrc &src, const BoundsDest &dest)
{
static_assert(is_bounds<BoundsSrc>::value && is_bounds<BoundsDest>::value, "The src type and dest type must be bounds");
static_assert(std::is_same<typename BoundsSrc::mapping_type, contiguous_mapping_tag>::value, "The source type must be a contiguous bounds");
static_assert(BoundsDest::static_size == dynamic_range || BoundsSrc::static_size == dynamic_range || BoundsDest::static_size == BoundsSrc::static_size, "The source bounds must have same size as dest bounds");
fail_fast_assert(src.size() == dest.size());
}
} // namespace details
template <typename ArrayView>
class contiguous_array_view_iterator;
template <typename ArrayView>
class general_array_view_iterator;
enum class byte : std::uint8_t {};
template <typename ValueType, typename BoundsType>
class basic_array_view
{
public:
static const size_t rank = BoundsType::rank;
using bounds_type = BoundsType;
using size_type = typename bounds_type::size_type;
using index_type = typename bounds_type::index_type;
using value_type = ValueType;
using pointer = ValueType*;
using reference = ValueType&;
using iterator = std::conditional_t<std::is_same<typename BoundsType::mapping_type, contiguous_mapping_tag>::value, contiguous_array_view_iterator<basic_array_view>, general_array_view_iterator<basic_array_view>>;
using const_iterator = std::conditional_t<std::is_same<typename BoundsType::mapping_type, contiguous_mapping_tag>::value, contiguous_array_view_iterator<basic_array_view<const ValueType, BoundsType>>, general_array_view_iterator<basic_array_view<const ValueType, BoundsType>>>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using sliced_type = std::conditional_t<rank == 1, value_type, basic_array_view<value_type, typename BoundsType::sliced_type>>;
private:
pointer m_pdata;
bounds_type m_bounds;
public:
constexpr bounds_type bounds() const noexcept
{
return m_bounds;
}
template <size_t Dim = 0>
constexpr size_type extent() const noexcept
{
static_assert(Dim < rank, "dimension should be less than rank (dimension count starts from 0)");
return m_bounds.template extent<Dim>();
}
constexpr size_type size() const noexcept
{
return m_bounds.size();
}
constexpr reference operator[](const index_type& idx) const
{
return m_pdata[m_bounds.linearize(idx)];
}
constexpr pointer data() const noexcept
{
return m_pdata;
}
template <bool Enabled = (rank > 1), typename Ret = std::enable_if_t<Enabled, sliced_type>>
constexpr Ret operator[](size_type idx) const
{
fail_fast_assert(idx < m_bounds.size(), "index is out of bounds of the array");
const size_type ridx = idx * m_bounds.stride();
fail_fast_assert(ridx < m_bounds.total_size(), "index is out of bounds of the underlying data");
return Ret {m_pdata + ridx, m_bounds.slice()};
}
constexpr operator bool () const noexcept
{
return m_pdata != nullptr;
}
constexpr iterator begin() const
{
return iterator {this, true};
}
constexpr iterator end() const
{
return iterator {this};
}
constexpr const_iterator cbegin() const
{
return const_iterator {reinterpret_cast<const basic_array_view<const value_type, bounds_type> *>(this), true};
}
constexpr const_iterator cend() const
{
return const_iterator {reinterpret_cast<const basic_array_view<const value_type, bounds_type> *>(this)};
}
constexpr reverse_iterator rbegin() const
{
return reverse_iterator {end()};
}
constexpr reverse_iterator rend() const
{
return reverse_iterator {begin()};
}
constexpr const_reverse_iterator crbegin() const
{
return const_reverse_iterator {cend()};
}
constexpr const_reverse_iterator crend() const
{
return const_reverse_iterator {cbegin()};
}
template <typename OtherValueType, typename OtherBoundsType, typename Dummy = std::enable_if_t<std::is_same<std::remove_cv_t<value_type>, std::remove_cv_t<OtherValueType>>::value>>
constexpr bool operator== (const basic_array_view<OtherValueType, OtherBoundsType> & other) const noexcept
{
return m_bounds.size() == other.m_bounds.size() &&
(m_pdata == other.m_pdata || std::equal(this->begin(), this->end(), other.begin()));
}
template <typename OtherValueType, typename OtherBoundsType, typename Dummy = std::enable_if_t<std::is_same<std::remove_cv_t<value_type>, std::remove_cv_t<OtherValueType>>::value>>
constexpr bool operator!= (const basic_array_view<OtherValueType, OtherBoundsType> & other) const noexcept
{
return !(*this == other);
}
template <typename OtherValueType, typename OtherBoundsType, typename Dummy = std::enable_if_t<std::is_same<std::remove_cv_t<value_type>, std::remove_cv_t<OtherValueType>>::value>>
constexpr bool operator< (const basic_array_view<OtherValueType, OtherBoundsType> & other) const noexcept
{
return std::lexicographical_compare(this->begin(), this->end(), other.begin(), other.end());
}
template <typename OtherValueType, typename OtherBoundsType, typename Dummy = std::enable_if_t<std::is_same<std::remove_cv_t<value_type>, std::remove_cv_t<OtherValueType>>::value>>
constexpr bool operator<= (const basic_array_view<OtherValueType, OtherBoundsType> & other) const noexcept
{
return !(other < *this);
}
template <typename OtherValueType, typename OtherBoundsType, typename Dummy = std::enable_if_t<std::is_same<std::remove_cv_t<value_type>, std::remove_cv_t<OtherValueType>>::value>>
constexpr bool operator> (const basic_array_view<OtherValueType, OtherBoundsType> & other) const noexcept
{
return (other < *this);
}
template <typename OtherValueType, typename OtherBoundsType, typename Dummy = std::enable_if_t<std::is_same<std::remove_cv_t<value_type>, std::remove_cv_t<OtherValueType>>::value>>
constexpr bool operator>= (const basic_array_view<OtherValueType, OtherBoundsType> & other) const noexcept
{
return !(*this < other);
}
public:
template <typename OtherValueType, typename OtherBounds,
typename Dummy = std::enable_if_t<std::is_convertible<OtherValueType(*)[], value_type(*)[]>::value
&& std::is_convertible<OtherBounds, bounds_type>::value>>
constexpr basic_array_view(const basic_array_view<OtherValueType, OtherBounds> & other ) noexcept
: m_pdata(other.m_pdata), m_bounds(other.m_bounds)
{
}
protected:
constexpr basic_array_view(pointer data, bounds_type bound) noexcept
: m_pdata(data)
, m_bounds(std::move(bound))
{
fail_fast_assert((m_bounds.size() > 0 && data != nullptr) || m_bounds.size() == 0);
}
template <typename T>
constexpr basic_array_view(T *data, std::enable_if_t<std::is_same<value_type, std::remove_all_extents_t<T>>::value, bounds_type> bound) noexcept
: m_pdata(reinterpret_cast<pointer>(data))
, m_bounds(std::move(bound))
{
fail_fast_assert((m_bounds.size() > 0 && data != nullptr) || m_bounds.size() == 0);
}
template <typename DestBounds>
constexpr basic_array_view<value_type, DestBounds> as_array_view(const DestBounds &bounds)
{
details::verifyBoundsReshape(m_bounds, bounds);
return {m_pdata, bounds};
}
private:
friend iterator;
friend const_iterator;
template <typename ValueType2, typename BoundsType2>
friend class basic_array_view;
};
template <size_t DimSize = dynamic_range>
struct dim
{
static const size_t value = DimSize;
};
template <>
struct dim<dynamic_range>
{
static const size_t value = dynamic_range;
const size_t dvalue;
dim(size_t size) : dvalue(size) {}
};
template <typename ValueTypeOpt, size_t FirstDimension = dynamic_range, size_t... RestDimensions>
class array_view;
template <typename ValueTypeOpt, size_t Rank>
class strided_array_view;
namespace details
{
template <typename T, typename = std::true_type>
struct ArrayViewTypeTraits
{
using value_type = T;
using size_type = size_t;
};
template <typename Traits>
struct ArrayViewTypeTraits<Traits, typename std::is_reference<typename Traits::array_view_traits &>::type>
{
using value_type = typename Traits::array_view_traits::value_type;
using size_type = typename Traits::array_view_traits::size_type;
};
template <typename T, typename SizeType, size_t... Ranks>
struct ArrayViewArrayTraits {
using type = array_view<T, Ranks...>;
using value_type = T;
using bounds_type = static_bounds<SizeType, Ranks...>;
using pointer = T*;
using reference = T&;
};
template <typename T, typename SizeType, size_t N, size_t... Ranks>
struct ArrayViewArrayTraits<T[N], SizeType, Ranks...> : ArrayViewArrayTraits<T, SizeType, Ranks..., N> {};
template <typename BoundsType>
BoundsType newBoundsHelperImpl(size_t totalSize, std::true_type) // dynamic size
{
fail_fast_assert(totalSize <= details::SizeTypeTraits<typename BoundsType::size_type>::max_value);
return BoundsType{static_cast<typename BoundsType::size_type>(totalSize)};
}
template <typename BoundsType>
BoundsType newBoundsHelperImpl(size_t totalSize, std::false_type) // static size
{
fail_fast_assert(BoundsType::static_size == totalSize);
return {};
}
template <typename BoundsType>
BoundsType newBoundsHelper(size_t totalSize)
{
static_assert(BoundsType::dynamic_rank <= 1, "dynamic rank must less or equal to 1");
return newBoundsHelperImpl<BoundsType>(totalSize, std::integral_constant<bool, BoundsType::dynamic_rank == 1>());
}
struct Sep{};
template <typename T, typename... Args>
T static_as_array_view_helper(Sep, Args... args)
{
return T{static_cast<typename T::size_type>(args)...};
}
template <typename T, typename Arg, typename... Args>
std::enable_if_t<!std::is_same<Arg, dim<dynamic_range>>::value && !std::is_same<Arg, Sep>::value, T> static_as_array_view_helper(Arg, Args... args)
{
return static_as_array_view_helper<T>(args...);
}
template <typename T, typename... Args>
T static_as_array_view_helper(dim<dynamic_range> val, Args ... args)
{
return static_as_array_view_helper<T>(args..., val.dvalue);
}
template <typename SizeType, typename ...Dimensions>
struct static_as_array_view_static_bounds_helper
{
using type = static_bounds<SizeType, (Dimensions::value)...>;
};
template <typename T>
struct is_array_view_oracle : std::false_type
{};
template <typename ValueType, size_t FirstDimension, size_t... RestDimensions>
struct is_array_view_oracle<array_view<ValueType, FirstDimension, RestDimensions...>> : std::true_type
{};
template <typename ValueType, size_t Rank>
struct is_array_view_oracle<strided_array_view<ValueType, Rank>> : std::true_type
{};
template <typename T>
struct is_array_view : is_array_view_oracle<std::remove_cv_t<T>>
{};
}
template <typename ValueType, typename SizeType>
struct array_view_options
{
struct array_view_traits
{
using value_type = ValueType;
using size_type = SizeType;
};
};
template <typename ValueTypeOpt, size_t FirstDimension, size_t... RestDimensions>
class array_view : public basic_array_view<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type,
static_bounds<typename details::ArrayViewTypeTraits<ValueTypeOpt>::size_type, FirstDimension, RestDimensions...>>
{
template <typename ValueTypeOpt2, size_t FirstDimension2, size_t... RestDimensions2>
friend class array_view;
using Base = basic_array_view<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type,
static_bounds<typename details::ArrayViewTypeTraits<ValueTypeOpt>::size_type, FirstDimension, RestDimensions...>>;
public:
using typename Base::bounds_type;
using typename Base::size_type;
using typename Base::pointer;
using typename Base::value_type;
using typename Base::index_type;
using typename Base::iterator;
using typename Base::const_iterator;
using typename Base::reference;
using Base::rank;
public:
// basic
constexpr array_view(pointer ptr, bounds_type bounds) : Base(ptr, std::move(bounds))
{
}
constexpr array_view(std::nullptr_t) : Base(nullptr, bounds_type{})
{
}
constexpr array_view(std::nullptr_t, size_type size) : Base(nullptr, bounds_type{})
{
fail_fast_assert(size == 0);
}
// default
template <size_t DynamicRank = bounds_type::dynamic_rank, typename Dummy = std::enable_if_t<DynamicRank != 0>>
constexpr array_view() : Base(nullptr, bounds_type())
{
}
// from n-dimensions dynamic array (e.g. new int[m][4]) (precedence will be lower than the 1-dimension pointer)
template <typename T, typename Helper = details::ArrayViewArrayTraits<T, size_type, dynamic_range>,
typename Dummy = std::enable_if_t<std::is_convertible<typename Helper::value_type (*)[], typename Base::value_type (*)[]>::value
&& std::is_convertible<typename Helper::bounds_type, typename Base::bounds_type>::value>>
constexpr array_view(T * const & data, size_type size) : Base(data, typename Helper::bounds_type{size})
{
}
// from n-dimensions static array
template <typename T, size_t N, typename Helper = details::ArrayViewArrayTraits<T, size_type, N>,
typename Dummy = std::enable_if_t<std::is_convertible<typename Helper::value_type(*)[], typename Base::value_type(*)[]>::value
&& std::is_convertible<typename Helper::bounds_type, typename Base::bounds_type>::value>>
constexpr array_view (T (&arr)[N]) : Base(arr, typename Helper::bounds_type())
{
}
// from n-dimensions static array with size
template <typename T, size_t N, typename Helper = details::ArrayViewArrayTraits<T, size_type, dynamic_range>,
typename Dummy = std::enable_if_t<std::is_convertible<typename Helper::value_type(*)[], typename Base::value_type(*)[]>::value
&& std::is_convertible<typename Helper::bounds_type, typename Base::bounds_type>::value >>
constexpr array_view(T(&arr)[N], size_type size) : Base(arr, typename Helper::bounds_type{ size })
{
fail_fast_assert(size <= N);
}
// from std array
template <size_t N, typename Dummy = std::enable_if_t<std::is_convertible<static_bounds<size_type, N>, typename Base::bounds_type>::value>>
constexpr array_view (std::array<std::remove_const_t<value_type>, N> & arr) : Base(arr.data(), static_bounds<size_type, N>())
{
}
template <size_t N, typename Dummy = std::enable_if_t<std::is_convertible<static_bounds<size_type, N>, typename Base::bounds_type>::value && std::is_const<value_type>::value>>
constexpr array_view (const std::array<std::remove_const_t<value_type>, N> & arr) : Base(arr.data(), static_bounds<size_type, N>())
{
}
// from begin, end pointers. We don't provide iterator pair since no way to guarantee the contiguity
template <typename Ptr,
typename Dummy = std::enable_if_t<std::is_convertible<Ptr, pointer>::value
&& details::LessThan<Base::bounds_type::dynamic_rank, 2>::value>> // remove literal 0 case
constexpr array_view (pointer begin, Ptr end) : Base(begin, details::newBoundsHelper<typename Base::bounds_type>(static_cast<pointer>(end) - begin))
{
}
// from containers. It must has .size() and .data() two function signatures
template <typename Cont, typename DataType = typename Cont::value_type, typename SizeType = typename Cont::size_type,
typename Dummy = std::enable_if_t<!details::is_array_view<Cont>::value
&& std::is_convertible<DataType (*)[], typename Base::value_type (*)[]>::value
&& std::is_convertible<static_bounds<SizeType, dynamic_range>, typename Base::bounds_type>::value
&& std::is_same<std::decay_t<decltype(std::declval<Cont>().size(), *std::declval<Cont>().data())>, DataType>::value>
>
constexpr array_view (Cont& cont) : Base(static_cast<pointer>(cont.data()), details::newBoundsHelper<typename Base::bounds_type>(cont.size()))
{
}
constexpr array_view(const array_view &) = default;
// convertible
template <typename OtherValueTypeOpt, size_t... OtherDimensions,
typename BaseType = basic_array_view<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type, static_bounds<typename details::ArrayViewTypeTraits<ValueTypeOpt>::size_type, FirstDimension, RestDimensions...>>,
typename OtherBaseType = basic_array_view<typename details::ArrayViewTypeTraits<OtherValueTypeOpt>::value_type, static_bounds<typename details::ArrayViewTypeTraits<OtherValueTypeOpt>::size_type, OtherDimensions...>>,
typename Dummy = std::enable_if_t<std::is_convertible<OtherBaseType, BaseType>::value>
>
constexpr array_view(const array_view<OtherValueTypeOpt, OtherDimensions...> &av) : Base(static_cast<const typename array_view<OtherValueTypeOpt, OtherDimensions...>::Base &>(av)) {} // static_cast is required
// reshape
template <typename... Dimensions2>
constexpr array_view<ValueTypeOpt, Dimensions2::value...> as_array_view(Dimensions2... dims)
{
static_assert(sizeof...(Dimensions2) > 0, "the target array_view must have at least one dimension.");
using BoundsType = typename array_view<ValueTypeOpt, (Dimensions2::value)...>::bounds_type;
auto tobounds = details::static_as_array_view_helper<BoundsType>(dims..., details::Sep{});
details::verifyBoundsReshape(this->bounds(), tobounds);
return {this->data(), tobounds};
}
// to bytes array
template <bool Enabled = std::is_standard_layout<std::decay_t<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type>>::value>
constexpr auto as_bytes() const noexcept ->
array_view<array_view_options<const byte, size_type>, static_cast<size_t>(details::StaticSizeHelper<size_type, Base::bounds_type::static_size, sizeof(value_type)>::value)>
{
static_assert(Enabled, "The value_type of array_view must be standarded layout");
return { reinterpret_cast<const byte*>(this->data()), this->bytes() };
}
template <bool Enabled = std::is_standard_layout<std::decay_t<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type>>::value>
constexpr auto as_writeable_bytes() const noexcept ->
array_view<array_view_options<byte, size_type>, static_cast<size_t>(details::StaticSizeHelper<size_type, Base::bounds_type::static_size, sizeof(value_type)>::value)>
{
static_assert(Enabled, "The value_type of array_view must be standarded layout");
return { reinterpret_cast<byte*>(this->data()), this->bytes() };
}
// from bytes array
template<typename U, bool IsByte = std::is_same<value_type, const byte>::value, typename Dummy = std::enable_if_t<IsByte && sizeof...(RestDimensions) == 0>>
constexpr auto as_array_view() const noexcept -> array_view<const U, (Base::bounds_type::dynamic_rank == 0 ? Base::bounds_type::static_size / sizeof(U) : static_cast<size_type>(dynamic_range))>
{
static_assert(std::is_standard_layout<U>::value && (Base::bounds_type::static_size == dynamic_range || Base::bounds_type::static_size % sizeof(U) == 0),
"Target type must be standard layout and its size must match the byte array size");
fail_fast_assert((this->bytes() % sizeof(U)) == 0);
return { reinterpret_cast<const U*>(this->data()), this->bytes() / sizeof(U) };
}
template<typename U, bool IsByte = std::is_same<value_type, byte>::value, typename Dummy = std::enable_if_t<IsByte && sizeof...(RestDimensions) == 0>>
constexpr auto as_array_view() const noexcept -> array_view<U, (Base::bounds_type::dynamic_rank == 0 ? Base::bounds_type::static_size / sizeof(U) : static_cast<size_type>(dynamic_range))>
{
static_assert(std::is_standard_layout<U>::value && (Base::bounds_type::static_size == dynamic_range || Base::bounds_type::static_size % sizeof(U) == 0),
"Target type must be standard layout and its size must match the byte array size");
fail_fast_assert((this->bytes() % sizeof(U)) == 0);
return { reinterpret_cast<U*>(this->data()), this->bytes() / sizeof(U) };
}
// section on linear space
template<size_t Count>
constexpr array_view<ValueTypeOpt, Count> first() const noexcept
{
static_assert(bounds_type::static_size == dynamic_range || Count <= bounds_type::static_size, "Index is out of bound");
fail_fast_assert(bounds_type::static_size != dynamic_range || Count <= this->size()); // ensures we only check condition when needed
return { this->data(), Count };
}
constexpr array_view<ValueTypeOpt, dynamic_range> first(size_type count) const noexcept
{
fail_fast_assert(count <= this->size());
return { this->data(), count };
}
template<size_t Count>
constexpr array_view<ValueTypeOpt, Count> last() const noexcept
{
static_assert(bounds_type::static_size == dynamic_range || Count <= bounds_type::static_size, "Index is out of bound");
fail_fast_assert(bounds_type::static_size != dynamic_range || Count <= this->size());
return { this->data() + this->size() - Count, Count };
}
constexpr array_view<ValueTypeOpt, dynamic_range> last(size_type count) const noexcept
{
fail_fast_assert(count <= this->size());
return { this->data() + this->size() - count, count };
}
template<size_t Offset, size_t Count>
constexpr array_view<ValueTypeOpt, Count> sub() const noexcept
{
static_assert(bounds_type::static_size == dynamic_range || ((Offset == 0 || Offset <= bounds_type::static_size) && Offset + Count <= bounds_type::static_size), "Index is out of bound");
fail_fast_assert(bounds_type::static_size != dynamic_range || ((Offset == 0 || Offset <= this->size()) && Offset + Count <= this->size()));
return { this->data() + Offset, Count };
}
constexpr array_view<ValueTypeOpt, dynamic_range> sub(size_type offset, size_type count = dynamic_range) const noexcept
{
fail_fast_assert((offset == 0 || offset <= this->size()) && (count == dynamic_range || (offset + count) <= this->size()));
return { this->data() + offset, count == dynamic_range ? this->length() - offset : count };
}
// size
constexpr size_type length() const noexcept
{
return this->size();
}
constexpr size_type used_length() const noexcept
{
return length();
}
constexpr size_type bytes() const noexcept
{
return sizeof(value_type) * this->size();
}
constexpr size_type used_bytes() const noexcept
{
return bytes();
}
// section
constexpr strided_array_view<ValueTypeOpt, rank> section(index_type origin, index_type extents) const
{
size_type size = this->bounds().total_size() - this->bounds().linearize(origin);
return{ &this->operator[](origin), size, strided_bounds<rank, size_type> {extents, details::make_stride(Base::bounds())} };
}
constexpr reference operator[](const index_type& idx) const
{
return Base::operator[](idx);
}
template <bool Enabled = (rank > 1), typename Dummy = std::enable_if_t<Enabled>>
constexpr array_view<ValueTypeOpt, RestDimensions...> operator[](size_type idx) const
{
auto ret = Base::operator[](idx);
return{ ret.data(), ret.bounds() };
}
using Base::operator==;
using Base::operator!=;
using Base::operator<;
using Base::operator<=;
using Base::operator>;
using Base::operator>=;
};
template <typename T, size_t... Dimensions>
constexpr auto as_array_view(T * const & ptr, dim<Dimensions>... args) -> array_view<std::remove_all_extents_t<T>, Dimensions...>
{
return {reinterpret_cast<std::remove_all_extents_t<T>*>(ptr), details::static_as_array_view_helper<static_bounds<size_t, Dimensions...>>(args..., details::Sep{})};
}
template <typename T>
constexpr auto as_array_view (T * arr, size_t len) -> typename details::ArrayViewArrayTraits<T, size_t, dynamic_range>::type
{
return {arr, len};
}
template <typename T, size_t N>
constexpr auto as_array_view (T (&arr)[N]) -> typename details::ArrayViewArrayTraits<T, size_t, N>::type
{
return {arr};
}
template <typename T, size_t N>
constexpr array_view<const T, N> as_array_view(const std::array<T, N> &arr)
{
return {arr};
}
template <typename T, size_t N>
constexpr array_view<const T, N> as_array_view(const std::array<T, N> &&) = delete;
template <typename T, size_t N>
constexpr array_view<T, N> as_array_view(std::array<T, N> &arr)
{
return {arr};
}
template <typename T>
constexpr array_view<T, dynamic_range> as_array_view(T *begin, T *end)
{
return {begin, end};
}
template <typename Cont>
constexpr auto as_array_view(Cont &arr) -> std::enable_if_t<!details::is_array_view<std::decay_t<Cont>>::value,
array_view<std::remove_reference_t<decltype(arr.size(), *arr.data())>, dynamic_range>>
{
return {arr.data(), arr.size()};
}
template <typename Cont>
constexpr auto as_array_view(Cont &&arr) -> std::enable_if_t<!details::is_array_view<std::decay_t<Cont>>::value,
array_view<std::remove_reference_t<decltype(arr.size(), *arr.data())>, dynamic_range>> = delete;
template <typename ValueTypeOpt, size_t Rank>
class strided_array_view : public basic_array_view<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type, strided_bounds<Rank, typename details::ArrayViewTypeTraits<ValueTypeOpt>::size_type>>
{
using Base = basic_array_view<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type, strided_bounds<Rank, typename details::ArrayViewTypeTraits<ValueTypeOpt>::size_type>>;
template<typename OtherValueOpt, size_t OtherRank>
friend class strided_array_view;
public:
using Base::rank;
using typename Base::bounds_type;
using typename Base::size_type;
using typename Base::pointer;
using typename Base::value_type;
using typename Base::index_type;
using typename Base::iterator;
using typename Base::const_iterator;
using typename Base::reference;
// from static array of size N
template<size_type N>
strided_array_view(value_type(&values)[N], bounds_type bounds) : Base(values, std::move(bounds))
{
fail_fast_assert(this->bounds().total_size() <= N, "Bounds cross data boundaries");
}
// from raw data
strided_array_view(pointer ptr, size_type size, bounds_type bounds): Base(ptr, std::move(bounds))
{
fail_fast_assert(this->bounds().total_size() <= size, "Bounds cross data boundaries");
}
// from array view
template <size_t... Dimensions, typename Dummy = std::enable_if<sizeof...(Dimensions) == Rank>>
strided_array_view(array_view<ValueTypeOpt, Dimensions...> av, bounds_type bounds) : Base(av.data(), std::move(bounds))
{
fail_fast_assert(this->bounds().total_size() <= av.bounds().total_size(), "Bounds cross data boundaries");
}
// convertible
template <typename OtherValueTypeOpt,
typename BaseType = basic_array_view<typename details::ArrayViewTypeTraits<ValueTypeOpt>::value_type, strided_bounds<Rank, typename details::ArrayViewTypeTraits<ValueTypeOpt>::size_type>>,
typename OtherBaseType = basic_array_view<typename details::ArrayViewTypeTraits<OtherValueTypeOpt>::value_type, strided_bounds<Rank, typename details::ArrayViewTypeTraits<OtherValueTypeOpt>::size_type>>,
typename Dummy = std::enable_if_t<std::is_convertible<OtherBaseType, BaseType>::value>
>
constexpr strided_array_view(const strided_array_view<OtherValueTypeOpt, Rank> &av): Base(static_cast<const typename strided_array_view<OtherValueTypeOpt, Rank>::Base &>(av)) // static_cast is required
{
}
// convert from bytes
template <typename OtherValueType>
strided_array_view<typename std::enable_if<std::is_same<value_type, const byte>::value, OtherValueType>::type, rank> as_strided_array_view() const
{
static_assert((sizeof(OtherValueType) >= sizeof(value_type)) && (sizeof(OtherValueType) % sizeof(value_type) == 0), "OtherValueType should have a size to contain a multiple of ValueTypes");
auto d = sizeof(OtherValueType) / sizeof(value_type);
size_type size = this->bounds().total_size() / d;
return{ (OtherValueType*)this->data(), size, bounds_type{ resize_extent(this->bounds().index_bounds(), d), resize_stride(this->bounds().strides(), d)} };
}
strided_array_view section(index_type origin, index_type extents) const
{
size_type size = this->bounds().total_size() - this->bounds().linearize(origin);
return { &this->operator[](origin), size, bounds_type {extents, details::make_stride(Base::bounds())}};
}
constexpr reference operator[](const index_type& idx) const
{
return Base::operator[](idx);
}
template <bool Enabled = (rank > 1), typename Dummy = std::enable_if_t<Enabled>>
constexpr strided_array_view<value_type, rank-1> operator[](size_type idx) const
{
auto ret = Base::operator[](idx);
return{ ret.data(), ret.bounds().total_size(), ret.bounds() };
}
private:
static index_type resize_extent(const index_type& extent, size_t d)
{
fail_fast_assert(extent[rank - 1] >= d && (extent[rank-1] % d == 0), "The last dimension of the array needs to contain a multiple of new type elements");
index_type ret = extent;
ret[rank - 1] /= d;
return ret;
}
template <bool Enabled = (rank == 1), typename Dummy = std::enable_if_t<Enabled>>
static index_type resize_stride(const index_type& strides, size_t , void * = 0)
{
fail_fast_assert(strides[rank - 1] == 1, "Only strided arrays with regular strides can be resized");
return strides;
}
template <bool Enabled = (rank > 1), typename Dummy = std::enable_if_t<Enabled>>
static index_type resize_stride(const index_type& strides, size_t d)
{
fail_fast_assert(strides[rank - 1] == 1, "Only strided arrays with regular strides can be resized");
fail_fast_assert(strides[rank - 2] >= d && (strides[rank - 2] % d == 0), "The strides must have contiguous chunks of memory that can contain a multiple of new type elements");
for (size_t i = rank - 1; i > 0; --i)
fail_fast_assert((strides[i-1] >= strides[i]) && (strides[i-1] % strides[i] == 0), "Only strided arrays with regular strides can be resized");
index_type ret = strides / d;
ret[rank - 1] = 1;
return ret;
}
};
template <typename ArrayView>
class contiguous_array_view_iterator : public std::iterator<std::random_access_iterator_tag, typename ArrayView::value_type>
{
using Base = std::iterator<std::random_access_iterator_tag, typename ArrayView::value_type>;
public:
using typename Base::reference;
using typename Base::pointer;
using typename Base::difference_type;
private:
template <typename ValueType, typename Bounds>
friend class basic_array_view;
pointer m_pdata;
const ArrayView * m_validator;
void validateThis() const
{
fail_fast_assert(m_pdata >= m_validator->m_pdata && m_pdata < m_validator->m_pdata + m_validator->size(), "iterator is out of range of the array");
}
contiguous_array_view_iterator (const ArrayView *container, bool isbegin = false) :
m_pdata(isbegin ? container->m_pdata : container->m_pdata + container->size()), m_validator(container) { }
public:
reference operator*() const noexcept
{
validateThis();
return *m_pdata;
}
pointer operator->() const noexcept
{
validateThis();
return m_pdata;
}
contiguous_array_view_iterator& operator++() noexcept
{
++m_pdata;
return *this;
}
contiguous_array_view_iterator operator++(int)noexcept
{
auto ret = *this;
++(*this);
return ret;
}
contiguous_array_view_iterator& operator--() noexcept
{
--m_pdata;
return *this;
}
contiguous_array_view_iterator operator--(int)noexcept
{
auto ret = *this;
--(*this);
return ret;
}
contiguous_array_view_iterator operator+(difference_type n) const noexcept
{
contiguous_array_view_iterator ret{ *this };
return ret += n;
}
contiguous_array_view_iterator& operator+=(difference_type n) noexcept
{
m_pdata += n;
return *this;
}
contiguous_array_view_iterator operator-(difference_type n) const noexcept
{
contiguous_array_view_iterator ret{ *this };
return ret -= n;
}
contiguous_array_view_iterator& operator-=(difference_type n) noexcept
{
return *this += -n;
}
difference_type operator-(const contiguous_array_view_iterator& rhs) const noexcept
{
fail_fast_assert(m_validator == rhs.m_validator);
return m_pdata - rhs.m_pdata;
}
reference operator[](difference_type n) const noexcept
{
return *(*this + n);
}
bool operator==(const contiguous_array_view_iterator& rhs) const noexcept
{
fail_fast_assert(m_validator == rhs.m_validator);
return m_pdata == rhs.m_pdata;
}
bool operator!=(const contiguous_array_view_iterator& rhs) const noexcept
{
return !(*this == rhs);
}
bool operator<(const contiguous_array_view_iterator& rhs) const noexcept
{
fail_fast_assert(m_validator == rhs.m_validator);
return m_pdata < rhs.m_pdata;
}
bool operator<=(const contiguous_array_view_iterator& rhs) const noexcept
{
return !(rhs < *this);
}
bool operator>(const contiguous_array_view_iterator& rhs) const noexcept
{
return rhs < *this;
}
bool operator>=(const contiguous_array_view_iterator& rhs) const noexcept
{
return !(rhs > *this);
}
void swap(contiguous_array_view_iterator& rhs) noexcept
{
std::swap(m_pdata, rhs.m_pdata);
std::swap(m_validator, rhs.m_validator);
}
};
template <typename ArrayView>
contiguous_array_view_iterator<ArrayView> operator+(typename contiguous_array_view_iterator<ArrayView>::difference_type n, const contiguous_array_view_iterator<ArrayView>& rhs) noexcept
{
return rhs + n;
}
template <typename ArrayView>
class general_array_view_iterator : public std::iterator<std::random_access_iterator_tag, typename ArrayView::value_type>
{
using Base = std::iterator<std::random_access_iterator_tag, typename ArrayView::value_type>;
public:
using typename Base::reference;
using typename Base::pointer;
using typename Base::difference_type;
using typename Base::value_type;
private:
template <typename ValueType, typename Bounds>
friend class basic_array_view;
const ArrayView * m_container;
typename ArrayView::bounds_type::iterator m_itr;
general_array_view_iterator(const ArrayView *container, bool isbegin = false) :
m_container(container), m_itr(isbegin ? m_container->bounds().begin() : m_container->bounds().end())
{
}
public:
reference operator*() const noexcept
{
return (*m_container)[*m_itr];
}
pointer operator->() const noexcept
{
return &(*m_container)[*m_itr];
}
general_array_view_iterator& operator++() noexcept
{
++m_itr;
return *this;
}
general_array_view_iterator operator++(int)noexcept
{
auto ret = *this;
++(*this);
return ret;
}
general_array_view_iterator& operator--() noexcept
{
--m_itr;
return *this;
}
general_array_view_iterator operator--(int)noexcept
{
auto ret = *this;
--(*this);
return ret;
}
general_array_view_iterator operator+(difference_type n) const noexcept
{
general_array_view_iterator ret{ *this };
return ret += n;
}
general_array_view_iterator& operator+=(difference_type n) noexcept
{
m_itr += n;
return *this;
}
general_array_view_iterator operator-(difference_type n) const noexcept
{
general_array_view_iterator ret{ *this };
return ret -= n;
}
general_array_view_iterator& operator-=(difference_type n) noexcept
{
return *this += -n;
}
difference_type operator-(const general_array_view_iterator& rhs) const noexcept
{
fail_fast_assert(m_container == rhs.m_container);
return m_itr - rhs.m_itr;
}
value_type operator[](difference_type n) const noexcept
{
return (*m_container)[m_itr[n]];;
}
bool operator==(const general_array_view_iterator& rhs) const noexcept
{
fail_fast_assert(m_container == rhs.m_container);
return m_itr == rhs.m_itr;
}
bool operator !=(const general_array_view_iterator& rhs) const noexcept
{
return !(*this == rhs);
}
bool operator<(const general_array_view_iterator& rhs) const noexcept
{
fail_fast_assert(m_container == rhs.m_container);
return m_itr < rhs.m_itr;
}
bool operator<=(const general_array_view_iterator& rhs) const noexcept
{
return !(rhs < *this);
}
bool operator>(const general_array_view_iterator& rhs) const noexcept
{
return rhs < *this;
}
bool operator>=(const general_array_view_iterator& rhs) const noexcept
{
return !(rhs > *this);
}
void swap(general_array_view_iterator& rhs) noexcept
{
std::swap(m_itr, rhs.m_itr);
std::swap(m_container, rhs.m_container);
}
};
template <typename ArrayView>
general_array_view_iterator<ArrayView> operator+(typename general_array_view_iterator<ArrayView>::difference_type n, const general_array_view_iterator<ArrayView>& rhs) noexcept
{
return rhs + n;
}
} // namespace gsl
#ifdef _MSC_VER
#undef constexpr
#pragma pop_macro("constexpr")
#if _MSC_VER <= 1800
#pragma warning(pop)
#ifndef GSL_THROWS_FOR_TESTING
#pragma undef noexcept
#endif // GSL_THROWS_FOR_TESTING
#endif // _MSC_VER <= 1800
#endif // _MSC_VER
#if defined(GSL_THROWS_FOR_TESTING)
#undef noexcept
#endif // GSL_THROWS_FOR_TESTING
#endif // GSL_ARRAY_VIEW_H