GSL/tests/notnull_tests.cpp
Jordan Maples [MSFT] 9150ce9a95
Adding std::hash<not_null<T>> tests to notnull_tests.cpp (#947)
* added std::hash<not_null> tests

* nl
2020-11-03 16:56:09 -08:00

551 lines
16 KiB
C++

///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <gtest/gtest.h>
#include <gsl/pointers> // for not_null, operator<, operator<=, operator>
#include <algorithm> // for addressof
#include <memory> // for shared_ptr, make_shared, operator<, opera...
#include <sstream> // for operator<<, ostringstream, basic_ostream:...
#include <stdint.h> // for uint16_t
#include <string> // for basic_string, operator==, string, operator<<
#include <typeinfo> // for type_info
using namespace gsl;
namespace
{
static constexpr char deathstring[] = "Expected Death";
} //namespace
struct MyBase
{
};
struct MyDerived : public MyBase
{
};
struct Unrelated
{
};
// stand-in for a user-defined ref-counted class
template <typename T>
struct RefCounted
{
RefCounted(T* p) : p_(p) {}
operator T*() { return p_; }
T* p_;
};
// user defined smart pointer with comparison operators returning non bool value
template <typename T>
struct CustomPtr
{
CustomPtr(T* p) : p_(p) {}
operator T*() { return p_; }
bool operator!=(std::nullptr_t) const { return p_ != nullptr; }
T* p_ = nullptr;
};
template <typename T, typename U>
std::string operator==(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return reinterpret_cast<const void*>(lhs.p_) == reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator!=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return reinterpret_cast<const void*>(lhs.p_) != reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator<(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return reinterpret_cast<const void*>(lhs.p_) < reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator>(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return reinterpret_cast<const void*>(lhs.p_) > reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator<=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return reinterpret_cast<const void*>(lhs.p_) <= reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
template <typename T, typename U>
std::string operator>=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return reinterpret_cast<const void*>(lhs.p_) >= reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
struct NonCopyableNonMovable
{
NonCopyableNonMovable() = default;
NonCopyableNonMovable(const NonCopyableNonMovable&) = delete;
NonCopyableNonMovable& operator=(const NonCopyableNonMovable&) = delete;
NonCopyableNonMovable(NonCopyableNonMovable&&) = delete;
NonCopyableNonMovable& operator=(NonCopyableNonMovable&&) = delete;
};
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
bool helper(not_null<int*> p) { return *p == 12; }
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
bool helper_const(not_null<const int*> p) { return *p == 12; }
int* return_pointer() { return nullptr; }
TEST(notnull_tests, TestNotNullConstructors)
{
{
#ifdef CONFIRM_COMPILATION_ERRORS
not_null<int*> p = nullptr; // yay...does not compile!
not_null<std::vector<char>*> p1 = 0; // yay...does not compile!
not_null<int*> p2; // yay...does not compile!
std::unique_ptr<int> up = std::make_unique<int>(120);
not_null<int*> p3 = up;
// Forbid non-nullptr assignable types
not_null<std::vector<int>> f(std::vector<int>{1});
not_null<int> z(10);
not_null<std::vector<int>> y({1, 2});
#endif
}
std::set_terminate([] {
std::cerr << "Expected Death. TestNotNullConstructors";
std::abort();
});
{
// from shared pointer
int i = 12;
auto rp = RefCounted<int>(&i);
not_null<int*> p(rp);
EXPECT_TRUE(p.get() == &i);
not_null<std::shared_ptr<int>> x(
std::make_shared<int>(10)); // shared_ptr<int> is nullptr assignable
int* pi = nullptr;
EXPECT_DEATH((not_null<decltype(pi)>(pi)), deathstring);
}
{
// from pointer to local
int t = 42;
not_null<int*> x = &t;
helper(&t);
helper_const(&t);
EXPECT_TRUE(*x == 42);
}
{
// from raw pointer
// from not_null pointer
int t = 42;
int* p = &t;
not_null<int*> x = p;
helper(p);
helper_const(p);
helper(x);
helper_const(x);
EXPECT_TRUE(*x == 42);
}
{
// from raw const pointer
// from not_null const pointer
int t = 42;
const int* cp = &t;
not_null<const int*> x = cp;
helper_const(cp);
helper_const(x);
EXPECT_TRUE(*x == 42);
}
{
// from not_null const pointer, using auto
int t = 42;
const int* cp = &t;
auto x = not_null<const int*>{cp};
EXPECT_TRUE(*x == 42);
}
{
// from returned pointer
EXPECT_DEATH(helper(return_pointer()), deathstring);
EXPECT_DEATH(helper_const(return_pointer()), deathstring);
}
}
template <typename T>
void ostream_helper(T v)
{
not_null<T*> p(&v);
{
std::ostringstream os;
std::ostringstream ref;
os << static_cast<void*>(p);
ref << static_cast<void*>(&v);
EXPECT_TRUE(os.str() == ref.str());
}
{
std::ostringstream os;
std::ostringstream ref;
os << *p;
ref << v;
EXPECT_TRUE(os.str() == ref.str());
}
}
TEST(notnull_tests, TestNotNullostream)
{
ostream_helper<int>(17);
ostream_helper<float>(21.5f);
ostream_helper<double>(3.4566e-7);
ostream_helper<char>('c');
ostream_helper<uint16_t>(0x0123u);
ostream_helper<const char*>("cstring");
ostream_helper<std::string>("string");
}
TEST(notnull_tests, TestNotNullCasting)
{
MyBase base;
MyDerived derived;
Unrelated unrelated;
not_null<Unrelated*> u{&unrelated};
(void) u;
not_null<MyDerived*> p{&derived};
not_null<MyBase*> q(&base);
q = p; // allowed with heterogeneous copy ctor
EXPECT_TRUE(q == p);
#ifdef CONFIRM_COMPILATION_ERRORS
q = u; // no viable conversion possible between MyBase* and Unrelated*
p = q; // not possible to implicitly convert MyBase* to MyDerived*
not_null<Unrelated*> r = p;
not_null<Unrelated*> s = reinterpret_cast<Unrelated*>(p);
#endif
not_null<Unrelated*> t(reinterpret_cast<Unrelated*>(p.get()));
EXPECT_TRUE(reinterpret_cast<void*>(p.get()) == reinterpret_cast<void*>(t.get()));
}
TEST(notnull_tests, TestNotNullAssignment)
{
std::set_terminate([] {
std::cerr << "Expected Death. TestNotNullAssignmentd";
std::abort();
});
int i = 12;
not_null<int*> p(&i);
EXPECT_TRUE(helper(p));
int* q = nullptr;
EXPECT_DEATH(p = not_null<int*>(q), deathstring);
}
TEST(notnull_tests, TestNotNullRawPointerComparison)
{
int ints[2] = {42, 43};
int* p1 = &ints[0];
const int* p2 = &ints[1];
using NotNull1 = not_null<decltype(p1)>;
using NotNull2 = not_null<decltype(p2)>;
EXPECT_TRUE((NotNull1(p1) == NotNull1(p1)) == true);
EXPECT_TRUE((NotNull1(p1) == NotNull2(p2)) == false);
EXPECT_TRUE((NotNull1(p1) != NotNull1(p1)) == false);
EXPECT_TRUE((NotNull1(p1) != NotNull2(p2)) == true);
EXPECT_TRUE((NotNull1(p1) < NotNull1(p1)) == false);
EXPECT_TRUE((NotNull1(p1) < NotNull2(p2)) == (p1 < p2));
EXPECT_TRUE((NotNull2(p2) < NotNull1(p1)) == (p2 < p1));
EXPECT_TRUE((NotNull1(p1) > NotNull1(p1)) == false);
EXPECT_TRUE((NotNull1(p1) > NotNull2(p2)) == (p1 > p2));
EXPECT_TRUE((NotNull2(p2) > NotNull1(p1)) == (p2 > p1));
EXPECT_TRUE((NotNull1(p1) <= NotNull1(p1)) == true);
EXPECT_TRUE((NotNull1(p1) <= NotNull2(p2)) == (p1 <= p2));
EXPECT_TRUE((NotNull2(p2) <= NotNull1(p1)) == (p2 <= p1));
}
TEST(notnull_tests, TestNotNullDereferenceOperator)
{
{
auto sp1 = std::make_shared<NonCopyableNonMovable>();
using NotNullSp1 = not_null<decltype(sp1)>;
EXPECT_TRUE(typeid(*sp1) == typeid(*NotNullSp1(sp1)));
EXPECT_TRUE(std::addressof(*NotNullSp1(sp1)) == std::addressof(*sp1));
}
{
int ints[1] = {42};
CustomPtr<int> p1(&ints[0]);
using NotNull1 = not_null<decltype(p1)>;
EXPECT_TRUE(typeid(*NotNull1(p1)) == typeid(*p1));
EXPECT_TRUE(*NotNull1(p1) == 42);
*NotNull1(p1) = 43;
EXPECT_TRUE(ints[0] == 43);
}
{
int v = 42;
gsl::not_null<int*> p(&v);
EXPECT_TRUE(typeid(*p) == typeid(*(&v)));
*p = 43;
EXPECT_TRUE(v == 43);
}
}
TEST(notnull_tests, TestNotNullSharedPtrComparison)
{
auto sp1 = std::make_shared<int>(42);
auto sp2 = std::make_shared<const int>(43);
using NotNullSp1 = not_null<decltype(sp1)>;
using NotNullSp2 = not_null<decltype(sp2)>;
EXPECT_TRUE((NotNullSp1(sp1) == NotNullSp1(sp1)) == true);
EXPECT_TRUE((NotNullSp1(sp1) == NotNullSp2(sp2)) == false);
EXPECT_TRUE((NotNullSp1(sp1) != NotNullSp1(sp1)) == false);
EXPECT_TRUE((NotNullSp1(sp1) != NotNullSp2(sp2)) == true);
EXPECT_TRUE((NotNullSp1(sp1) < NotNullSp1(sp1)) == false);
EXPECT_TRUE((NotNullSp1(sp1) < NotNullSp2(sp2)) == (sp1 < sp2));
EXPECT_TRUE((NotNullSp2(sp2) < NotNullSp1(sp1)) == (sp2 < sp1));
EXPECT_TRUE((NotNullSp1(sp1) > NotNullSp1(sp1)) == false);
EXPECT_TRUE((NotNullSp1(sp1) > NotNullSp2(sp2)) == (sp1 > sp2));
EXPECT_TRUE((NotNullSp2(sp2) > NotNullSp1(sp1)) == (sp2 > sp1));
EXPECT_TRUE((NotNullSp1(sp1) <= NotNullSp1(sp1)) == true);
EXPECT_TRUE((NotNullSp1(sp1) <= NotNullSp2(sp2)) == (sp1 <= sp2));
EXPECT_TRUE((NotNullSp2(sp2) <= NotNullSp1(sp1)) == (sp2 <= sp1));
EXPECT_TRUE((NotNullSp1(sp1) >= NotNullSp1(sp1)) == true);
EXPECT_TRUE((NotNullSp1(sp1) >= NotNullSp2(sp2)) == (sp1 >= sp2));
EXPECT_TRUE((NotNullSp2(sp2) >= NotNullSp1(sp1)) == (sp2 >= sp1));
}
TEST(notnull_tests, TestNotNullCustomPtrComparison)
{
int ints[2] = {42, 43};
CustomPtr<int> p1(&ints[0]);
CustomPtr<const int> p2(&ints[1]);
using NotNull1 = not_null<decltype(p1)>;
using NotNull2 = not_null<decltype(p2)>;
EXPECT_TRUE((NotNull1(p1) == NotNull1(p1)) == "true");
EXPECT_TRUE((NotNull1(p1) == NotNull2(p2)) == "false");
EXPECT_TRUE((NotNull1(p1) != NotNull1(p1)) == "false");
EXPECT_TRUE((NotNull1(p1) != NotNull2(p2)) == "true");
EXPECT_TRUE((NotNull1(p1) < NotNull1(p1)) == "false");
EXPECT_TRUE((NotNull1(p1) < NotNull2(p2)) == (p1 < p2));
EXPECT_TRUE((NotNull2(p2) < NotNull1(p1)) == (p2 < p1));
EXPECT_TRUE((NotNull1(p1) > NotNull1(p1)) == "false");
EXPECT_TRUE((NotNull1(p1) > NotNull2(p2)) == (p1 > p2));
EXPECT_TRUE((NotNull2(p2) > NotNull1(p1)) == (p2 > p1));
EXPECT_TRUE((NotNull1(p1) <= NotNull1(p1)) == "true");
EXPECT_TRUE((NotNull1(p1) <= NotNull2(p2)) == (p1 <= p2));
EXPECT_TRUE((NotNull2(p2) <= NotNull1(p1)) == (p2 <= p1));
EXPECT_TRUE((NotNull1(p1) >= NotNull1(p1)) == "true");
EXPECT_TRUE((NotNull1(p1) >= NotNull2(p2)) == (p1 >= p2));
EXPECT_TRUE((NotNull2(p2) >= NotNull1(p1)) == (p2 >= p1));
}
#if defined(__cplusplus) && (__cplusplus >= 201703L)
TEST(notnull_tests, TestNotNullConstructorTypeDeduction)
{
{
int i = 42;
not_null x{&i};
helper(not_null{&i});
helper_const(not_null{&i});
EXPECT_TRUE(*x == 42);
}
{
int i = 42;
int* p = &i;
not_null x{p};
helper(not_null{p});
helper_const(not_null{p});
EXPECT_TRUE(*x == 42);
}
std::set_terminate([] {
std::cerr << "Expected Death. TestNotNullConstructorTypeDeduction";
std::abort();
});
{
auto workaround_macro = []() {
int* p1 = nullptr;
const not_null x{p1};
};
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
auto workaround_macro = []() {
const int* p1 = nullptr;
const not_null x{p1};
};
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
int* p = nullptr;
EXPECT_DEATH(helper(not_null{p}), deathstring);
EXPECT_DEATH(helper_const(not_null{p}), deathstring);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
not_null x{nullptr};
helper(not_null{nullptr});
helper_const(not_null{nullptr});
}
#endif
}
#endif // #if defined(__cplusplus) && (__cplusplus >= 201703L)
TEST(notnull_tests, TestMakeNotNull)
{
{
int i = 42;
const auto x = make_not_null(&i);
helper(make_not_null(&i));
helper_const(make_not_null(&i));
EXPECT_TRUE(*x == 42);
}
{
int i = 42;
int* p = &i;
const auto x = make_not_null(p);
helper(make_not_null(p));
helper_const(make_not_null(p));
EXPECT_TRUE(*x == 42);
}
std::set_terminate([] {
std::cerr << "Expected Death. TestMakeNotNull";
std::abort();
});
{
const auto workaround_macro = []() {
int* p1 = nullptr;
const auto x = make_not_null(p1);
EXPECT_TRUE(*x == 42);
};
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
const auto workaround_macro = []() {
const int* p1 = nullptr;
const auto x = make_not_null(p1);
EXPECT_TRUE(*x == 42);
};
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
int* p = nullptr;
EXPECT_DEATH(helper(make_not_null(p)), deathstring);
EXPECT_DEATH(helper_const(make_not_null(p)), deathstring);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
EXPECT_DEATH(make_not_null(nullptr), deathstring);
EXPECT_DEATH(helper(make_not_null(nullptr)), deathstring);
EXPECT_DEATH(helper_const(make_not_null(nullptr)), deathstring);
}
#endif
}
TEST(notnull_tests, TestStdHash)
{
int x = 42;
int y = 99;
not_null<int*> nn{&x};
const not_null<int*> cnn{&x};
std::hash<not_null<int*>> hash_nn;
std::hash<int*> hash_intptr;
EXPECT_TRUE(hash_nn(nn) == hash_intptr(&x));
EXPECT_FALSE(hash_nn(nn) == hash_intptr(&y));
EXPECT_FALSE(hash_nn(nn) == hash_intptr(nullptr));
}