/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #pragma once #ifndef GSL_SPAN_H #define GSL_SPAN_H #include #include #include #include #include #include #include #include #include #include #include #include #include "fail_fast.h" #ifdef _MSC_VER // No MSVC does constexpr fully yet #pragma push_macro("constexpr") #define constexpr /* nothing */ // VS 2013 workarounds #if _MSC_VER <= 1800 #pragma push_macro("GSL_MSVC_HAS_VARIADIC_CTOR_BUG") #define GSL_MSVC_HAS_VARIADIC_CTOR_BUG // noexcept is not understood #ifndef GSL_THROWS_FOR_TESTING #define noexcept /* nothing */ #endif // turn off some misguided warnings #pragma warning(push) #pragma warning(disable: 4351) // warns about newly introduced aggregate initializer behavior #pragma warning(disable: 4512) // warns that assignment op could not be generated #endif // _MSC_VER <= 1800 #endif // _MSC_VER // In order to test the library, we need it to throw exceptions that we can catch #ifdef GSL_THROWS_FOR_TESTING #define noexcept /* nothing */ #endif // GSL_THROWS_FOR_TESTING namespace gsl { /* ** begin definitions of index and bounds */ namespace details { template struct SizeTypeTraits { static const SizeType max_value = std::numeric_limits::max(); }; template class are_integral : public std::integral_constant {}; template class are_integral : public std::integral_constant::value && are_integral::value> {}; } template class index final { static_assert(Rank > 0, "Rank must be greater than 0!"); template friend class index; public: static const size_t rank = Rank; using value_type = std::ptrdiff_t; using size_type = value_type; using reference = std::add_lvalue_reference_t; using const_reference = std::add_lvalue_reference_t>; constexpr index() noexcept {} constexpr index(const value_type(&values)[Rank]) noexcept { std::copy(values, values + Rank, elems); } #ifdef GSL_MSVC_HAS_VARIADIC_CTOR_BUG template::value && details::are_integral::value>> constexpr index(T t, Ts... ds) : index({ static_cast(t), static_cast(ds)... }) {} #else template::value>> constexpr index(Ts... ds) noexcept : elems{ static_cast(ds)... } {} #endif constexpr index(const index& other) noexcept = default; constexpr index& operator=(const index& rhs) noexcept = default; // Preconditions: component_idx < rank constexpr reference operator[](size_t component_idx) { fail_fast_assert(component_idx < Rank, "Component index must be less than rank"); return elems[component_idx]; } // Preconditions: component_idx < rank constexpr const_reference operator[](size_t component_idx) const noexcept { fail_fast_assert(component_idx < Rank, "Component index must be less than rank"); return elems[component_idx]; } constexpr bool operator==(const index& rhs) const noexcept { return std::equal(elems, elems + rank, rhs.elems); } constexpr bool operator!=(const index& rhs) const noexcept { return !(this == rhs); } constexpr index operator+() const noexcept { return *this; } constexpr index operator-() const noexcept { index ret = *this; std::transform(ret, ret + rank, ret, std::negate{}); return ret; } constexpr index operator+(const index& rhs) const noexcept { index ret = *this; ret += rhs; return ret; } constexpr index operator-(const index& rhs) const noexcept { index ret = *this; ret -= rhs; return ret; } constexpr index& operator+=(const index& rhs) noexcept { std::transform(elems, elems + rank, rhs.elems, elems, std::plus{}); return *this; } constexpr index& operator-=(const index& rhs) noexcept { std::transform(elems, elems + rank, rhs.elems, elems, std::minus{}); return *this; } constexpr index operator*(value_type v) const noexcept { index ret = *this; ret *= v; return ret; } constexpr index operator/(value_type v) const noexcept { index ret = *this; ret /= v; return ret; } friend constexpr index operator*(value_type v, const index& rhs) noexcept { return rhs * v; } constexpr index& operator*=(value_type v) noexcept { std::transform(elems, elems + rank, elems, [v](value_type x) { return std::multiplies{}(x, v); }); return *this; } constexpr index& operator/=(value_type v) noexcept { std::transform(elems, elems + rank, elems, [v](value_type x) { return std::divides{}(x, v); }); return *this; } private: value_type elems[Rank] = {}; }; #ifndef _MSC_VER struct static_bounds_dynamic_range_t { template ::value>> constexpr operator T() const noexcept { return static_cast(-1); } template ::value>> constexpr bool operator ==(T other) const noexcept { return static_cast(-1) == other; } template ::value>> constexpr bool operator !=(T other) const noexcept { return static_cast(-1) != other; } }; template ::value>> constexpr bool operator ==(T left, static_bounds_dynamic_range_t right) noexcept { return right == left; } template ::value>> constexpr bool operator !=(T left, static_bounds_dynamic_range_t right) noexcept { return right != left; } constexpr static_bounds_dynamic_range_t dynamic_range{}; #else const std::ptrdiff_t dynamic_range = -1; #endif struct generalized_mapping_tag {}; struct contiguous_mapping_tag : generalized_mapping_tag {}; namespace details { template struct LessThan { static const bool value = Left < Right; }; template struct BoundsRanges { using size_type = std::ptrdiff_t; static const size_type Depth = 0; static const size_type DynamicNum = 0; static const size_type CurrentRange = 1; static const size_type TotalSize = 1; // TODO : following signature is for work around VS bug template BoundsRanges(const OtherRange&, bool /* firstLevel */) {} BoundsRanges (const BoundsRanges&) = default; BoundsRanges& operator=(const BoundsRanges&) = default; BoundsRanges(const std::ptrdiff_t* const) { } BoundsRanges() = default; template void serialize(T&) const {} template size_type linearize(const T&) const { return 0; } template bool contains(const T&) const { return 0; } size_type totalSize() const noexcept { return TotalSize; } bool operator==(const BoundsRanges&) const noexcept { return true; } }; template struct BoundsRanges : BoundsRanges{ using Base = BoundsRanges ; using size_type = std::ptrdiff_t; static const size_t Depth = Base::Depth + 1; static const size_t DynamicNum = Base::DynamicNum + 1; static const size_type CurrentRange = dynamic_range; static const size_type TotalSize = dynamic_range; const size_type m_bound; BoundsRanges (const BoundsRanges&) = default; BoundsRanges(const std::ptrdiff_t* const arr) : Base(arr + 1), m_bound(*arr * this->Base::totalSize()) { fail_fast_assert(0 <= *arr); } BoundsRanges() : m_bound(0) {} template BoundsRanges(const BoundsRanges& other, bool /* firstLevel */ = true) : Base(static_cast&>(other), false), m_bound(other.totalSize()) {} template void serialize(T& arr) const { arr[Dim] = elementNum(); this->Base::template serialize(arr); } template size_type linearize(const T& arr) const { const size_type index = this->Base::totalSize() * arr[Dim]; fail_fast_assert(index < m_bound); return index + this->Base::template linearize(arr); } template size_type contains(const T & arr) const { const ptrdiff_t last = this->Base::template contains(arr); if (last == -1) return -1; const ptrdiff_t cur = this->Base::totalSize() * arr[Dim]; return cur < m_bound ? cur + last : -1; } size_type totalSize() const noexcept { return m_bound; } size_type elementNum() const noexcept { return totalSize() / this->Base::totalSize(); } size_type elementNum(size_t dim) const noexcept { if (dim > 0) return this->Base::elementNum(dim - 1); else return elementNum(); } bool operator == (const BoundsRanges & rhs) const noexcept { return m_bound == rhs.m_bound && static_cast(*this) == static_cast(rhs); } }; template struct BoundsRanges : BoundsRanges { using Base = BoundsRanges ; using size_type = std::ptrdiff_t; static const size_t Depth = Base::Depth + 1; static const size_t DynamicNum = Base::DynamicNum; static const size_type CurrentRange = CurRange; static const size_type TotalSize = Base::TotalSize == dynamic_range ? dynamic_range : CurrentRange * Base::TotalSize; BoundsRanges (const BoundsRanges&) = default; BoundsRanges(const std::ptrdiff_t* const arr) : Base(arr) { } BoundsRanges() = default; template BoundsRanges(const BoundsRanges&other, bool firstLevel = true) : Base(static_cast&>(other), false) { fail_fast_assert((firstLevel && totalSize() <= other.totalSize()) || totalSize() == other.totalSize()); } template void serialize(T& arr) const { arr[Dim] = elementNum(); this->Base::template serialize(arr); } template size_type linearize(const T& arr) const { fail_fast_assert(arr[Dim] < CurrentRange, "Index is out of range"); return this->Base::totalSize() * arr[Dim] + this->Base::template linearize(arr); } template size_type contains(const T& arr) const { if (arr[Dim] >= CurrentRange) return -1; const size_type last = this->Base::template contains(arr); if (last == -1) return -1; return this->Base::totalSize() * arr[Dim] + last; } size_type totalSize() const noexcept { return CurrentRange * this->Base::totalSize(); } size_type elementNum() const noexcept { return CurrentRange; } size_type elementNum(size_t dim) const noexcept { if (dim > 0) return this->Base::elementNum(dim - 1); else return elementNum(); } bool operator== (const BoundsRanges& rhs) const noexcept { return static_cast(*this) == static_cast(rhs); } }; template struct BoundsRangeConvertible2; template > auto helpBoundsRangeConvertible(SourceType, TargetType, std::true_type) -> Ret; template auto helpBoundsRangeConvertible(SourceType, TargetType, ...) -> std::false_type; template struct BoundsRangeConvertible2 : decltype(helpBoundsRangeConvertible(SourceType(), TargetType(), std::integral_constant())) {}; template struct BoundsRangeConvertible2 : std::true_type {}; template struct BoundsRangeConvertible : decltype(helpBoundsRangeConvertible(SourceType(), TargetType(), std::integral_constant::value || TargetType::CurrentRange == dynamic_range || SourceType::CurrentRange == dynamic_range)>())) {}; template struct BoundsRangeConvertible : std::true_type {}; template struct TypeListIndexer { const TypeChain & obj; TypeListIndexer(const TypeChain & obj) :obj(obj){} template const TypeChain & getObj(std::true_type) { return obj; } template auto getObj(std::false_type) -> decltype(TypeListIndexer(static_cast(obj)).template get()) { return TypeListIndexer(static_cast(obj)).template get(); } template auto get() -> decltype(getObj(std::integral_constant())) { return getObj(std::integral_constant()); } }; template TypeListIndexer createTypeListIndexer(const TypeChain &obj) { return TypeListIndexer(obj); } template 1), typename Ret = std::enable_if_t>> constexpr Ret shift_left(const index& other) noexcept { Ret ret{}; for (size_t i = 0; i < Rank - 1; ++i) { ret[i] = other[i + 1]; } return ret; } } template class bounds_iterator; template class static_bounds { public: static_bounds(const details::BoundsRanges&) { } }; template class static_bounds { using MyRanges = details::BoundsRanges; MyRanges m_ranges; constexpr static_bounds(const MyRanges& range) : m_ranges(range) {} template friend class static_bounds; public: static const size_t rank = MyRanges::Depth; static const size_t dynamic_rank = MyRanges::DynamicNum; static const std::ptrdiff_t static_size = MyRanges::TotalSize; using size_type = std::ptrdiff_t; using index_type = index; using const_index_type = std::add_const_t; using iterator = bounds_iterator; using const_iterator = bounds_iterator; using difference_type = std::ptrdiff_t; using sliced_type = static_bounds; using mapping_type = contiguous_mapping_tag; constexpr static_bounds(const static_bounds&) = default; template , details::BoundsRanges >::value>> constexpr static_bounds(const static_bounds& other) : m_ranges(other.m_ranges) {} constexpr static_bounds(std::initializer_list il) : m_ranges((const std::ptrdiff_t*)il.begin()) { fail_fast_assert((MyRanges::DynamicNum == 0 && il.size() == 1 && *il.begin() == static_size) || MyRanges::DynamicNum == il.size(), "Size of the initializer list must match the rank of the array"); fail_fast_assert(m_ranges.totalSize() <= PTRDIFF_MAX, "Size of the range is larger than the max element of the size type"); } constexpr static_bounds() = default; constexpr static_bounds& operator=(const static_bounds& otherBounds) { new(&m_ranges) MyRanges (otherBounds.m_ranges); return *this; } constexpr sliced_type slice() const noexcept { return sliced_type{static_cast &>(m_ranges)}; } constexpr size_type stride() const noexcept { return rank > 1 ? slice().size() : 1; } constexpr size_type size() const noexcept { return m_ranges.totalSize(); } constexpr size_type total_size() const noexcept { return m_ranges.totalSize(); } constexpr size_type linearize(const index_type & idx) const { return m_ranges.linearize(idx); } constexpr bool contains(const index_type& idx) const noexcept { return m_ranges.contains(idx) != -1; } constexpr size_type operator[](size_t index) const noexcept { return m_ranges.elementNum(index); } template constexpr size_type extent() const noexcept { static_assert(Dim < rank, "dimension should be less than rank (dimension count starts from 0)"); return details::createTypeListIndexer(m_ranges).template get().elementNum(); } constexpr index_type index_bounds() const noexcept { size_type extents[rank] = {}; m_ranges.serialize(extents); return{ extents }; } template constexpr bool operator == (const static_bounds& rhs) const noexcept { return this->size() == rhs.size(); } template constexpr bool operator != (const static_bounds& rhs) const noexcept { return !(*this == rhs); } constexpr const_iterator begin() const noexcept { return const_iterator(*this, index_type{}); } constexpr const_iterator end() const noexcept { return const_iterator(*this, this->index_bounds()); } }; template class strided_bounds { template friend class strided_bounds; public: static const size_t rank = Rank; using value_type = std::ptrdiff_t; using reference = std::add_lvalue_reference_t; using const_reference = std::add_const_t; using size_type = value_type; using difference_type = value_type; using index_type = index; using const_index_type = std::add_const_t; using iterator = bounds_iterator; using const_iterator = bounds_iterator; static const value_type dynamic_rank = rank; static const value_type static_size = dynamic_range; using sliced_type = std::conditional_t, void>; using mapping_type = generalized_mapping_tag; constexpr strided_bounds(const strided_bounds &) noexcept = default; constexpr strided_bounds & operator=(const strided_bounds &) noexcept = default; constexpr strided_bounds(const value_type(&values)[rank], index_type strides) : m_extents(values), m_strides(std::move(strides)) {} constexpr strided_bounds(const index_type &extents, const index_type &strides) noexcept : m_extents(extents), m_strides(strides) {} constexpr index_type strides() const noexcept { return m_strides; } constexpr size_type total_size() const noexcept { size_type ret = 0; for (size_t i = 0; i < rank; ++i) { ret += (m_extents[i] - 1) * m_strides[i]; } return ret + 1; } constexpr size_type size() const noexcept { size_type ret = 1; for (size_t i = 0; i < rank; ++i) { ret *= m_extents[i]; } return ret; } constexpr bool contains(const index_type& idx) const noexcept { for (size_t i = 0; i < rank; ++i) { if (idx[i] < 0 || idx[i] >= m_extents[i]) return false; } return true; } constexpr size_type linearize(const index_type& idx) const noexcept { size_type ret = 0; for (size_t i = 0; i < rank; i++) { fail_fast_assert(idx[i] < m_extents[i], "index is out of bounds of the array"); ret += idx[i] * m_strides[i]; } return ret; } constexpr size_type stride() const noexcept { return m_strides[0]; } template 1), typename Ret = std::enable_if_t> constexpr sliced_type slice() const { return{ details::shift_left(m_extents), details::shift_left(m_strides) }; } template constexpr size_type extent() const noexcept { static_assert(Dim < Rank, "dimension should be less than rank (dimension count starts from 0)"); return m_extents[Dim]; } constexpr index_type index_bounds() const noexcept { return m_extents; } constexpr const_iterator begin() const noexcept { return const_iterator{ *this, index_type{} }; } constexpr const_iterator end() const noexcept { return const_iterator{ *this, index_bounds() }; } private: index_type m_extents; index_type m_strides; }; template struct is_bounds : std::integral_constant {}; template struct is_bounds> : std::integral_constant {}; template struct is_bounds> : std::integral_constant {}; template class bounds_iterator: public std::iterator { private: using Base = std::iterator ; public: static const size_t rank = IndexType::rank; using typename Base::reference; using typename Base::pointer; using typename Base::difference_type; using typename Base::value_type; using index_type = value_type; using index_size_type = typename IndexType::value_type; template explicit bounds_iterator(const Bounds& bnd, value_type curr) noexcept : boundary(bnd.index_bounds()), curr(std::move(curr)) { static_assert(is_bounds::value, "Bounds type must be provided"); } constexpr reference operator*() const noexcept { return curr; } constexpr pointer operator->() const noexcept { return &curr; } constexpr bounds_iterator& operator++() noexcept { for (size_t i = rank; i-- > 0;) { if (curr[i] < boundary[i] - 1) { curr[i]++; return *this; } curr[i] = 0; } // If we're here we've wrapped over - set to past-the-end. curr = boundary; return *this; } constexpr bounds_iterator operator++(int) noexcept { auto ret = *this; ++(*this); return ret; } constexpr bounds_iterator& operator--() noexcept { if (!less(curr, boundary)) { // if at the past-the-end, set to last element for (size_t i = 0; i < rank; ++i) { curr[i] = boundary[i] - 1; } return *this; } for (size_t i = rank; i-- > 0;) { if (curr[i] >= 1) { curr[i]--; return *this; } curr[i] = boundary[i] - 1; } // If we're here the preconditions were violated // "pre: there exists s such that r == ++s" fail_fast_assert(false); return *this; } constexpr bounds_iterator operator--(int) noexcept { auto ret = *this; --(*this); return ret; } constexpr bounds_iterator operator+(difference_type n) const noexcept { bounds_iterator ret{ *this }; return ret += n; } constexpr bounds_iterator& operator+=(difference_type n) noexcept { auto linear_idx = linearize(curr) + n; std::remove_const_t stride = 0; stride[rank - 1] = 1; for (size_t i = rank - 1; i-- > 0;) { stride[i] = stride[i + 1] * boundary[i + 1]; } for (size_t i = 0; i < rank; ++i) { curr[i] = linear_idx / stride[i]; linear_idx = linear_idx % stride[i]; } fail_fast_assert(!less(curr, index_type{}) && !less(boundary, curr), "index is out of bounds of the array"); return *this; } constexpr bounds_iterator operator-(difference_type n) const noexcept { bounds_iterator ret{ *this }; return ret -= n; } constexpr bounds_iterator& operator-=(difference_type n) noexcept { return *this += -n; } constexpr difference_type operator-(const bounds_iterator& rhs) const noexcept { return linearize(curr) - linearize(rhs.curr); } constexpr value_type operator[](difference_type n) const noexcept { return *(*this + n); } constexpr bool operator==(const bounds_iterator& rhs) const noexcept { return curr == rhs.curr; } constexpr bool operator!=(const bounds_iterator& rhs) const noexcept { return !(*this == rhs); } constexpr bool operator<(const bounds_iterator& rhs) const noexcept { return less(curr, rhs.curr); } constexpr bool operator<=(const bounds_iterator& rhs) const noexcept { return !(rhs < *this); } constexpr bool operator>(const bounds_iterator& rhs) const noexcept { return rhs < *this; } constexpr bool operator>=(const bounds_iterator& rhs) const noexcept { return !(rhs > *this); } void swap(bounds_iterator& rhs) noexcept { std::swap(boundary, rhs.boundary); std::swap(curr, rhs.curr); } private: constexpr bool less(index_type& one, index_type& other) const noexcept { for (size_t i = 0; i < rank; ++i) { if (one[i] < other[i]) return true; } return false; } constexpr index_size_type linearize(const value_type& idx) const noexcept { // TODO: Smarter impl. // Check if past-the-end index_size_type multiplier = 1; index_size_type res = 0; if (!less(idx, boundary)) { res = 1; for (size_t i = rank; i-- > 0;) { res += (idx[i] - 1) * multiplier; multiplier *= boundary[i]; } } else { for (size_t i = rank; i-- > 0;) { res += idx[i] * multiplier; multiplier *= boundary[i]; } } return res; } value_type boundary; std::remove_const_t curr; }; template bounds_iterator operator+(typename bounds_iterator::difference_type n, const bounds_iterator& rhs) noexcept { return rhs + n; } // // begin definitions of basic_span // namespace details { template constexpr std::enable_if_t::value, typename Bounds::index_type> make_stride(const Bounds& bnd) noexcept { return bnd.strides(); } // Make a stride vector from bounds, assuming contiguous memory. template constexpr std::enable_if_t::value, typename Bounds::index_type> make_stride(const Bounds& bnd) noexcept { auto extents = bnd.index_bounds(); typename Bounds::size_type stride[Bounds::rank] = {}; stride[Bounds::rank - 1] = 1; for (size_t i = 1; i < Bounds::rank; ++i) { stride[Bounds::rank - i - 1] = stride[Bounds::rank - i] * extents[Bounds::rank - i]; } return{ stride }; } template void verifyBoundsReshape(const BoundsSrc &src, const BoundsDest &dest) { static_assert(is_bounds::value && is_bounds::value, "The src type and dest type must be bounds"); static_assert(std::is_same::value, "The source type must be a contiguous bounds"); static_assert(BoundsDest::static_size == dynamic_range || BoundsSrc::static_size == dynamic_range || BoundsDest::static_size == BoundsSrc::static_size, "The source bounds must have same size as dest bounds"); fail_fast_assert(src.size() == dest.size()); } } // namespace details template class contiguous_span_iterator; template class general_span_iterator; enum class byte : std::uint8_t {}; template class basic_span { public: static const size_t rank = BoundsType::rank; using bounds_type = BoundsType; using size_type = typename bounds_type::size_type; using index_type = typename bounds_type::index_type; using value_type = ValueType; using const_value_type = std::add_const_t; using pointer = ValueType*; using reference = ValueType&; using iterator = std::conditional_t::value, contiguous_span_iterator, general_span_iterator>; using const_iterator = std::conditional_t::value, contiguous_span_iterator>, general_span_iterator>>; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using sliced_type = std::conditional_t>; private: pointer m_pdata; bounds_type m_bounds; public: constexpr bounds_type bounds() const noexcept { return m_bounds; } template constexpr size_type extent() const noexcept { static_assert(Dim < rank, "dimension should be less than rank (dimension count starts from 0)"); return m_bounds.template extent(); } constexpr size_type size() const noexcept { return m_bounds.size(); } constexpr reference operator[](const index_type& idx) const { return m_pdata[m_bounds.linearize(idx)]; } constexpr pointer data() const noexcept { return m_pdata; } template 1), typename Ret = std::enable_if_t> constexpr Ret operator[](size_type idx) const { fail_fast_assert(idx < m_bounds.size(), "index is out of bounds of the array"); const size_type ridx = idx * m_bounds.stride(); fail_fast_assert(ridx < m_bounds.total_size(), "index is out of bounds of the underlying data"); return Ret {m_pdata + ridx, m_bounds.slice()}; } constexpr operator bool () const noexcept { return m_pdata != nullptr; } constexpr iterator begin() const { return iterator {this, true}; } constexpr iterator end() const { return iterator {this, false}; } constexpr const_iterator cbegin() const { return const_iterator {reinterpret_cast *>(this), true}; } constexpr const_iterator cend() const { return const_iterator {reinterpret_cast *>(this), false}; } constexpr reverse_iterator rbegin() const { return reverse_iterator {end()}; } constexpr reverse_iterator rend() const { return reverse_iterator {begin()}; } constexpr const_reverse_iterator crbegin() const { return const_reverse_iterator {cend()}; } constexpr const_reverse_iterator crend() const { return const_reverse_iterator {cbegin()}; } template , std::remove_cv_t>::value>> constexpr bool operator== (const basic_span & other) const noexcept { return m_bounds.size() == other.m_bounds.size() && (m_pdata == other.m_pdata || std::equal(this->begin(), this->end(), other.begin())); } template , std::remove_cv_t>::value>> constexpr bool operator!= (const basic_span & other) const noexcept { return !(*this == other); } template , std::remove_cv_t>::value>> constexpr bool operator< (const basic_span & other) const noexcept { return std::lexicographical_compare(this->begin(), this->end(), other.begin(), other.end()); } template , std::remove_cv_t>::value>> constexpr bool operator<= (const basic_span & other) const noexcept { return !(other < *this); } template , std::remove_cv_t>::value>> constexpr bool operator> (const basic_span & other) const noexcept { return (other < *this); } template , std::remove_cv_t>::value>> constexpr bool operator>= (const basic_span & other) const noexcept { return !(*this < other); } public: template ::value && std::is_convertible::value>> constexpr basic_span(const basic_span & other ) noexcept : m_pdata(other.m_pdata), m_bounds(other.m_bounds) { } protected: constexpr basic_span(pointer data, bounds_type bound) noexcept : m_pdata(data) , m_bounds(std::move(bound)) { fail_fast_assert((m_bounds.size() > 0 && data != nullptr) || m_bounds.size() == 0); } template constexpr basic_span(T *data, std::enable_if_t>::value, bounds_type> bound) noexcept : m_pdata(reinterpret_cast(data)) , m_bounds(std::move(bound)) { fail_fast_assert((m_bounds.size() > 0 && data != nullptr) || m_bounds.size() == 0); } template constexpr basic_span as_span(const DestBounds &bounds) { details::verifyBoundsReshape(m_bounds, bounds); return {m_pdata, bounds}; } private: friend iterator; friend const_iterator; template friend class basic_span; }; template struct dim { static const std::ptrdiff_t value = DimSize; }; template <> struct dim { static const std::ptrdiff_t value = dynamic_range; const std::ptrdiff_t dvalue; dim(std::ptrdiff_t size) : dvalue(size) {} }; template class span; template class strided_span; namespace details { template struct ArrayViewTypeTraits { using value_type = T; using size_type = size_t; }; template struct ArrayViewTypeTraits::type> { using value_type = typename Traits::span_traits::value_type; using size_type = typename Traits::span_traits::size_type; }; template struct ArrayViewArrayTraits { using type = span; using value_type = T; using bounds_type = static_bounds; using pointer = T*; using reference = T&; }; template struct ArrayViewArrayTraits : ArrayViewArrayTraits {}; template BoundsType newBoundsHelperImpl(std::ptrdiff_t totalSize, std::true_type) // dynamic size { fail_fast_assert(totalSize <= PTRDIFF_MAX); return BoundsType{totalSize}; } template BoundsType newBoundsHelperImpl(std::ptrdiff_t totalSize, std::false_type) // static size { fail_fast_assert(BoundsType::static_size == totalSize); return {}; } template BoundsType newBoundsHelper(std::ptrdiff_t totalSize) { static_assert(BoundsType::dynamic_rank <= 1, "dynamic rank must less or equal to 1"); return newBoundsHelperImpl(totalSize, std::integral_constant()); } struct Sep{}; template T static_as_span_helper(Sep, Args... args) { return T{static_cast(args)...}; } template std::enable_if_t>::value && !std::is_same::value, T> static_as_span_helper(Arg, Args... args) { return static_as_span_helper(args...); } template T static_as_span_helper(dim val, Args ... args) { return static_as_span_helper(args..., val.dvalue); } template struct static_as_span_static_bounds_helper { using type = static_bounds<(Dimensions::value)...>; }; template struct is_span_oracle : std::false_type {}; template struct is_span_oracle> : std::true_type {}; template struct is_span_oracle> : std::true_type {}; template struct is_span : is_span_oracle> {}; } template class span : public basic_span > { template friend class span; using Base = basic_span>; public: using typename Base::bounds_type; using typename Base::size_type; using typename Base::pointer; using typename Base::value_type; using typename Base::index_type; using typename Base::iterator; using typename Base::const_iterator; using typename Base::reference; using Base::rank; public: // basic constexpr span(pointer ptr, size_type size) : Base(ptr, bounds_type{ size }) {} constexpr span(pointer ptr, bounds_type bounds) : Base(ptr, std::move(bounds)) {} constexpr span(std::nullptr_t) : Base(nullptr, bounds_type{}) {} constexpr span(std::nullptr_t, size_type size) : Base(nullptr, bounds_type{}) { fail_fast_assert(size == 0); } // default template > constexpr span() : Base(nullptr, bounds_type()) {} // from n-dimensions dynamic array (e.g. new int[m][4]) (precedence will be lower than the 1-dimension pointer) template /*typename Dummy = std::enable_if_t::value>*/> constexpr span(T* const& data, size_type size) : Base(data, typename Helper::bounds_type{size}) {} // from n-dimensions static array template , typename = std::enable_if_t::value>> constexpr span (T (&arr)[N]) : Base(arr, typename Helper::bounds_type()) {} // from n-dimensions static array with size template , typename = std::enable_if_t::value> > constexpr span(T(&arr)[N], size_type size) : Base(arr, typename Helper::bounds_type{size}) { fail_fast_assert(size <= N); } // from std array template , typename Base::bounds_type>::value> > constexpr span (std::array, N> & arr) : Base(arr.data(), static_bounds()) {} template , typename Base::bounds_type>::value && std::is_const::value> > constexpr span (const std::array, N> & arr) : Base(arr.data(), static_bounds()) {} // from begin, end pointers. We don't provide iterator pair since no way to guarantee the contiguity template ::value && details::LessThan::value> > // remove literal 0 case constexpr span (pointer begin, Ptr end) : Base(begin, details::newBoundsHelper(static_cast(end) - begin)) {} // from containers. It must has .size() and .data() two function signatures template ::value && std::is_convertible::value && std::is_same().size(), *std::declval().data())>, DataType>::value> > constexpr span (Cont& cont) : Base(static_cast(cont.data()), details::newBoundsHelper(cont.size())) {} constexpr span(const span &) = default; // convertible template >, typename OtherBaseType = basic_span>, typename Dummy = std::enable_if_t::value> > constexpr span(const span &av) : Base(static_cast::Base&>(av)) {} // reshape // DimCount here is a workaround for a bug in MSVC 2015 template 0)>> constexpr span as_span(Dimensions2... dims) { using BoundsType = typename span::bounds_type; auto tobounds = details::static_as_span_helper(dims..., details::Sep{}); details::verifyBoundsReshape(this->bounds(), tobounds); return {this->data(), tobounds}; } // to bytes array template >::value> auto as_bytes() const noexcept -> span { static_assert(Enabled, "The value_type of span must be standarded layout"); return { reinterpret_cast(this->data()), this->bytes() }; } template >::value> auto as_writeable_bytes() const noexcept -> span { static_assert(Enabled, "The value_type of span must be standarded layout"); return { reinterpret_cast(this->data()), this->bytes() }; } // from bytes array template::value, typename = std::enable_if_t> constexpr auto as_span() const noexcept -> span(static_cast(Base::bounds_type::static_size) / sizeof(U)) : dynamic_range)> { static_assert(std::is_standard_layout::value && (Base::bounds_type::static_size == dynamic_range || Base::bounds_type::static_size % static_cast(sizeof(U)) == 0), "Target type must be standard layout and its size must match the byte array size"); fail_fast_assert((this->bytes() % sizeof(U)) == 0 && (this->bytes() / sizeof(U)) < PTRDIFF_MAX); return { reinterpret_cast(this->data()), this->bytes() / static_cast(sizeof(U)) }; } template::value, typename = std::enable_if_t> constexpr auto as_span() const noexcept -> span(static_cast(Base::bounds_type::static_size) / sizeof(U)) : dynamic_range)> { static_assert(std::is_standard_layout::value && (Base::bounds_type::static_size == dynamic_range || Base::bounds_type::static_size % static_cast(sizeof(U)) == 0), "Target type must be standard layout and its size must match the byte array size"); fail_fast_assert((this->bytes() % sizeof(U)) == 0); return { reinterpret_cast(this->data()), this->bytes() / static_cast(sizeof(U)) }; } // section on linear space template constexpr span first() const noexcept { static_assert(bounds_type::static_size == dynamic_range || Count <= bounds_type::static_size, "Index is out of bound"); fail_fast_assert(bounds_type::static_size != dynamic_range || Count <= this->size()); // ensures we only check condition when needed return { this->data(), Count }; } constexpr span first(size_type count) const noexcept { fail_fast_assert(count <= this->size()); return { this->data(), count }; } template constexpr span last() const noexcept { static_assert(bounds_type::static_size == dynamic_range || Count <= bounds_type::static_size, "Index is out of bound"); fail_fast_assert(bounds_type::static_size != dynamic_range || Count <= this->size()); return { this->data() + this->size() - Count, Count }; } constexpr span last(size_type count) const noexcept { fail_fast_assert(count <= this->size()); return { this->data() + this->size() - count, count }; } template constexpr span sub() const noexcept { static_assert(bounds_type::static_size == dynamic_range || ((Offset == 0 || Offset <= bounds_type::static_size) && Offset + Count <= bounds_type::static_size), "Index is out of bound"); fail_fast_assert(bounds_type::static_size != dynamic_range || ((Offset == 0 || Offset <= this->size()) && Offset + Count <= this->size())); return { this->data() + Offset, Count }; } constexpr span sub(size_type offset, size_type count = dynamic_range) const noexcept { fail_fast_assert((offset == 0 || offset <= this->size()) && (count == dynamic_range || (offset + count) <= this->size())); return { this->data() + offset, count == dynamic_range ? this->length() - offset : count }; } // size constexpr size_type length() const noexcept { return this->size(); } constexpr size_type used_length() const noexcept { return length(); } constexpr size_type bytes() const noexcept { return sizeof(value_type) * this->size(); } constexpr size_type used_bytes() const noexcept { return bytes(); } // section constexpr strided_span section(index_type origin, index_type extents) const { size_type size = this->bounds().total_size() - this->bounds().linearize(origin); return{ &this->operator[](origin), size, strided_bounds {extents, details::make_stride(Base::bounds())} }; } constexpr reference operator[](const index_type& idx) const { return Base::operator[](idx); } template 1), typename Dummy = std::enable_if_t> constexpr span operator[](size_type idx) const { auto ret = Base::operator[](idx); return{ ret.data(), ret.bounds() }; } using Base::operator==; using Base::operator!=; using Base::operator<; using Base::operator<=; using Base::operator>; using Base::operator>=; }; template constexpr auto as_span(T* const& ptr, dim... args) -> span, Dimensions...> { return {reinterpret_cast*>(ptr), details::static_as_span_helper>(args..., details::Sep{})}; } template constexpr auto as_span (T* arr, std::ptrdiff_t len) -> typename details::ArrayViewArrayTraits::type { return {reinterpret_cast*>(arr), len}; } template constexpr auto as_span (T (&arr)[N]) -> typename details::ArrayViewArrayTraits::type { return {arr}; } template constexpr span as_span(const std::array &arr) { return {arr}; } template constexpr span as_span(const std::array &&) = delete; template constexpr span as_span(std::array &arr) { return {arr}; } template constexpr span as_span(T *begin, T *end) { return {begin, end}; } template constexpr auto as_span(Cont &arr) -> std::enable_if_t>::value, span, dynamic_range>> { fail_fast_assert(arr.size() < PTRDIFF_MAX); return {arr.data(), static_cast(arr.size())}; } template constexpr auto as_span(Cont &&arr) -> std::enable_if_t>::value, span, dynamic_range>> = delete; template class strided_span : public basic_span> { using Base = basic_span>; template friend class strided_span; public: using Base::rank; using typename Base::bounds_type; using typename Base::size_type; using typename Base::pointer; using typename Base::value_type; using typename Base::index_type; using typename Base::iterator; using typename Base::const_iterator; using typename Base::reference; // from static array of size N template strided_span(value_type(&values)[N], bounds_type bounds) : Base(values, std::move(bounds)) { fail_fast_assert(this->bounds().total_size() <= N, "Bounds cross data boundaries"); } // from raw data strided_span(pointer ptr, size_type size, bounds_type bounds): Base(ptr, std::move(bounds)) { fail_fast_assert(this->bounds().total_size() <= size, "Bounds cross data boundaries"); } // from array view template > strided_span(span av, bounds_type bounds) : Base(av.data(), std::move(bounds)) { fail_fast_assert(this->bounds().total_size() <= av.bounds().total_size(), "Bounds cross data boundaries"); } // convertible template >, typename OtherBaseType = basic_span>, typename Dummy = std::enable_if_t::value> > constexpr strided_span(const strided_span &av) : Base(static_cast::Base &>(av)) // static_cast is required {} // convert from bytes template strided_span::value, OtherValueType>::type, rank> as_strided_span() const { static_assert((sizeof(OtherValueType) >= sizeof(value_type)) && (sizeof(OtherValueType) % sizeof(value_type) == 0), "OtherValueType should have a size to contain a multiple of ValueTypes"); auto d = static_cast(sizeof(OtherValueType) / sizeof(value_type)); size_type size = this->bounds().total_size() / d; return{ (OtherValueType*)this->data(), size, bounds_type{ resize_extent(this->bounds().index_bounds(), d), resize_stride(this->bounds().strides(), d)} }; } strided_span section(index_type origin, index_type extents) const { size_type size = this->bounds().total_size() - this->bounds().linearize(origin); return { &this->operator[](origin), size, bounds_type {extents, details::make_stride(Base::bounds())}}; } constexpr reference operator[](const index_type& idx) const { return Base::operator[](idx); } template 1), typename Dummy = std::enable_if_t> constexpr strided_span operator[](size_type idx) const { auto ret = Base::operator[](idx); return{ ret.data(), ret.bounds().total_size(), ret.bounds() }; } private: static index_type resize_extent(const index_type& extent, std::ptrdiff_t d) { fail_fast_assert(extent[rank - 1] >= d && (extent[rank-1] % d == 0), "The last dimension of the array needs to contain a multiple of new type elements"); index_type ret = extent; ret[rank - 1] /= d; return ret; } template > static index_type resize_stride(const index_type& strides, std::ptrdiff_t , void * = 0) { fail_fast_assert(strides[rank - 1] == 1, "Only strided arrays with regular strides can be resized"); return strides; } template 1), typename Dummy = std::enable_if_t> static index_type resize_stride(const index_type& strides, std::ptrdiff_t d) { fail_fast_assert(strides[rank - 1] == 1, "Only strided arrays with regular strides can be resized"); fail_fast_assert(strides[rank - 2] >= d && (strides[rank - 2] % d == 0), "The strides must have contiguous chunks of memory that can contain a multiple of new type elements"); for (size_t i = rank - 1; i > 0; --i) fail_fast_assert((strides[i-1] >= strides[i]) && (strides[i-1] % strides[i] == 0), "Only strided arrays with regular strides can be resized"); index_type ret = strides / d; ret[rank - 1] = 1; return ret; } }; template class contiguous_span_iterator : public std::iterator { using Base = std::iterator; public: using typename Base::reference; using typename Base::pointer; using typename Base::difference_type; private: template friend class basic_span; pointer m_pdata; const ArrayView * m_validator; void validateThis() const { fail_fast_assert(m_pdata >= m_validator->m_pdata && m_pdata < m_validator->m_pdata + m_validator->size(), "iterator is out of range of the array"); } contiguous_span_iterator (const ArrayView *container, bool isbegin) : m_pdata(isbegin ? container->m_pdata : container->m_pdata + container->size()), m_validator(container) {} public: reference operator*() const noexcept { validateThis(); return *m_pdata; } pointer operator->() const noexcept { validateThis(); return m_pdata; } contiguous_span_iterator& operator++() noexcept { ++m_pdata; return *this; } contiguous_span_iterator operator++(int)noexcept { auto ret = *this; ++(*this); return ret; } contiguous_span_iterator& operator--() noexcept { --m_pdata; return *this; } contiguous_span_iterator operator--(int)noexcept { auto ret = *this; --(*this); return ret; } contiguous_span_iterator operator+(difference_type n) const noexcept { contiguous_span_iterator ret{ *this }; return ret += n; } contiguous_span_iterator& operator+=(difference_type n) noexcept { m_pdata += n; return *this; } contiguous_span_iterator operator-(difference_type n) const noexcept { contiguous_span_iterator ret{ *this }; return ret -= n; } contiguous_span_iterator& operator-=(difference_type n) noexcept { return *this += -n; } difference_type operator-(const contiguous_span_iterator& rhs) const noexcept { fail_fast_assert(m_validator == rhs.m_validator); return m_pdata - rhs.m_pdata; } reference operator[](difference_type n) const noexcept { return *(*this + n); } bool operator==(const contiguous_span_iterator& rhs) const noexcept { fail_fast_assert(m_validator == rhs.m_validator); return m_pdata == rhs.m_pdata; } bool operator!=(const contiguous_span_iterator& rhs) const noexcept { return !(*this == rhs); } bool operator<(const contiguous_span_iterator& rhs) const noexcept { fail_fast_assert(m_validator == rhs.m_validator); return m_pdata < rhs.m_pdata; } bool operator<=(const contiguous_span_iterator& rhs) const noexcept { return !(rhs < *this); } bool operator>(const contiguous_span_iterator& rhs) const noexcept { return rhs < *this; } bool operator>=(const contiguous_span_iterator& rhs) const noexcept { return !(rhs > *this); } void swap(contiguous_span_iterator& rhs) noexcept { std::swap(m_pdata, rhs.m_pdata); std::swap(m_validator, rhs.m_validator); } }; template contiguous_span_iterator operator+(typename contiguous_span_iterator::difference_type n, const contiguous_span_iterator& rhs) noexcept { return rhs + n; } template class general_span_iterator : public std::iterator { using Base = std::iterator; public: using typename Base::reference; using typename Base::pointer; using typename Base::difference_type; using typename Base::value_type; private: template friend class basic_span; const ArrayView * m_container; typename ArrayView::bounds_type::iterator m_itr; general_span_iterator(const ArrayView *container, bool isbegin) : m_container(container), m_itr(isbegin ? m_container->bounds().begin() : m_container->bounds().end()) {} public: reference operator*() noexcept { return (*m_container)[*m_itr]; } pointer operator->() noexcept { return &(*m_container)[*m_itr]; } general_span_iterator& operator++() noexcept { ++m_itr; return *this; } general_span_iterator operator++(int)noexcept { auto ret = *this; ++(*this); return ret; } general_span_iterator& operator--() noexcept { --m_itr; return *this; } general_span_iterator operator--(int)noexcept { auto ret = *this; --(*this); return ret; } general_span_iterator operator+(difference_type n) const noexcept { general_span_iterator ret{ *this }; return ret += n; } general_span_iterator& operator+=(difference_type n) noexcept { m_itr += n; return *this; } general_span_iterator operator-(difference_type n) const noexcept { general_span_iterator ret{ *this }; return ret -= n; } general_span_iterator& operator-=(difference_type n) noexcept { return *this += -n; } difference_type operator-(const general_span_iterator& rhs) const noexcept { fail_fast_assert(m_container == rhs.m_container); return m_itr - rhs.m_itr; } value_type operator[](difference_type n) const noexcept { return (*m_container)[m_itr[n]];; } bool operator==(const general_span_iterator& rhs) const noexcept { fail_fast_assert(m_container == rhs.m_container); return m_itr == rhs.m_itr; } bool operator !=(const general_span_iterator& rhs) const noexcept { return !(*this == rhs); } bool operator<(const general_span_iterator& rhs) const noexcept { fail_fast_assert(m_container == rhs.m_container); return m_itr < rhs.m_itr; } bool operator<=(const general_span_iterator& rhs) const noexcept { return !(rhs < *this); } bool operator>(const general_span_iterator& rhs) const noexcept { return rhs < *this; } bool operator>=(const general_span_iterator& rhs) const noexcept { return !(rhs > *this); } void swap(general_span_iterator& rhs) noexcept { std::swap(m_itr, rhs.m_itr); std::swap(m_container, rhs.m_container); } }; template general_span_iterator operator+(typename general_span_iterator::difference_type n, const general_span_iterator& rhs) noexcept { return rhs + n; } } // namespace gsl #ifdef _MSC_VER #undef constexpr #pragma pop_macro("constexpr") #if _MSC_VER <= 1800 #pragma warning(pop) #ifndef GSL_THROWS_FOR_TESTING #pragma undef noexcept #endif // GSL_THROWS_FOR_TESTING #undef GSL_MSVC_HAS_VARIADIC_CTOR_BUG #pragma pop_macro("GSL_MSVC_HAS_VARIADIC_CTOR_BUG") #endif // _MSC_VER <= 1800 #endif // _MSC_VER #if defined(GSL_THROWS_FOR_TESTING) #undef noexcept #endif // GSL_THROWS_FOR_TESTING #endif // GSL_SPAN_H