/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include using namespace std; using namespace gsl; namespace { struct BaseClass {}; struct DerivedClass : BaseClass {}; } SUITE(span_tests) { TEST(basics) { auto ptr = as_span(new int[10], 10); fill(ptr.begin(), ptr.end(), 99); for (int num : ptr) { CHECK(num == 99); } delete[] ptr.data(); static_bounds<4, dynamic_range, 2> bounds{ 3 }; #ifdef CONFIRM_COMPILATION_ERRORS span av(nullptr, bounds); av.extent(); av.extent<2>(); av[8][4][3]; #endif } TEST (span_convertible) { #ifdef CONFIRM_COMPILATION_ERRORS span av1(nullptr, b1); #endif auto f = [&]() { span av1(nullptr); }; CHECK_THROW(f(), fail_fast); span av1(nullptr); #ifdef CONFIRM_COMPILATION_ERRORS static_bounds b12(b11); b12 = b11; b11 = b12; span av1 = nullptr; span av2(av1); span av2(av1); #endif span avd; #ifdef CONFIRM_COMPILATION_ERRORS span avb = avd; #endif span avcd = avd; (void)avcd; } TEST(boundary_checks) { int arr[10][2]; auto av = as_span(arr); fill(begin(av), end(av), 0); av[2][0] = 1; av[1][1] = 3; // out of bounds CHECK_THROW(av[1][3] = 3, fail_fast); CHECK_THROW((av[{1, 3}] = 3), fail_fast); CHECK_THROW(av[10][2], fail_fast); CHECK_THROW((av[{10,2}]), fail_fast); } void overloaded_func(span exp, int expected_value) { for (auto val : exp) { CHECK(val == expected_value); } } void overloaded_func(span exp, char expected_value) { for (auto val : exp) { CHECK(val == expected_value); } } void fixed_func(span exp, int expected_value) { for (auto val : exp) { CHECK(val == expected_value); } } TEST(span_parameter_test) { auto data = new int[4][3][5]; auto av = as_span(data, 4); CHECK(av.size() == 60); fill(av.begin(), av.end(), 34); int count = 0; for_each(av.rbegin(), av.rend(), [&](int val) { count += val; }); CHECK(count == 34 * 60); overloaded_func(av, 34); overloaded_func(av.as_span(dim<>(4), dim<>(3), dim<>(5)), 34); //fixed_func(av, 34); delete[] data; } TEST(md_access) { auto width = 5, height = 20; auto imgSize = width * height; auto image_ptr = new int[imgSize][3]; // size check will be done auto image_view = as_span(image_ptr, imgSize).as_span(dim<>(height), dim<>(width), dim<3>()); iota(image_view.begin(), image_view.end(), 1); int expected = 0; for (auto i = 0; i < height; i++) { for (auto j = 0; j < width; j++) { CHECK(expected + 1 == image_view[i][j][0]); CHECK(expected + 2 == image_view[i][j][1]); CHECK(expected + 3 == image_view[i][j][2]); auto val = image_view[{i, j, 0}]; CHECK(expected + 1 == val); val = image_view[{i, j, 1}]; CHECK(expected + 2 == val); val = image_view[{i, j, 2}]; CHECK(expected + 3 == val); expected += 3; } } } TEST(span_factory_test) { { int * arr = new int[150]; auto av = as_span(arr, dim<10>(), dim<>(3), dim<5>()); fill(av.begin(), av.end(), 24); overloaded_func(av, 24); delete[] arr; array stdarr{ 0 }; auto av2 = as_span(stdarr); overloaded_func(av2.as_span(dim<>(1), dim<3>(), dim<5>()), 0); string str = "ttttttttttttttt"; // size = 15 auto t = str.data(); (void)t; auto av3 = as_span(str); overloaded_func(av3.as_span(dim<>(1), dim<3>(), dim<5>()), 't'); } { int a[3][4][5]; auto av = as_span(a); const int (*b)[4][5]; b = a; auto bv = as_span(b, 3); CHECK(av == bv); const std::array arr = {0.0, 0.0, 0.0}; auto cv = as_span(arr); (void)cv; vector vec(3); auto dv = as_span(vec); (void)dv; #ifdef CONFIRM_COMPILATION_ERRORS auto dv2 = as_span(std::move(vec)); #endif } } template void fn(const Bounds&) { static_assert(Bounds::static_size == 60, "static bounds is wrong size"); } TEST (span_reshape_test) { int a[3][4][5]; auto av = as_span(a); fn(av.bounds()); auto av2 = av.as_span(dim<60>()); auto av3 = av2.as_span(dim<3>(), dim<4>(), dim<5>()); auto av4 = av3.as_span(dim<4>(), dim<>(3), dim<5>()); auto av5 = av4.as_span(dim<3>(), dim<4>(), dim<5>()); auto av6 = av5.as_span(dim<12>(), dim<>(5)); fill(av6.begin(), av6.end(), 1); auto av7 = av6.as_bytes(); auto av8 = av7.as_span(); CHECK(av8.size() == av6.size()); for (auto i = 0; i < av8.size(); i++) { CHECK(av8[i] == 1); } #ifdef CONFIRM_COMPILATION_ERRORS struct Foo {char c[11];}; auto av9 = av7.as_span(); #endif } TEST (span_section_test) { int a[30][4][5]; auto av = as_span(a); auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2}); auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1}); (void)subsub; } TEST(span_section) { std::vector data(5 * 10); std::iota(begin(data), end(data), 0); const span av = as_span(data).as_span(dim<5>(), dim<10>()); strided_span av_section_1 = av.section({ 1, 2 }, { 3, 4 }); CHECK((av_section_1[{0, 0}] == 12)); CHECK((av_section_1[{0, 1}] == 13)); CHECK((av_section_1[{1, 0}] == 22)); CHECK((av_section_1[{2, 3}] == 35)); strided_span av_section_2 = av_section_1.section({ 1, 2 }, { 2,2 }); CHECK((av_section_2[{0, 0}] == 24)); CHECK((av_section_2[{0, 1}] == 25)); CHECK((av_section_2[{1, 0}] == 34)); } TEST(strided_span_constructors) { // Check stride constructor { int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; const int carr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; strided_span sav1{ arr, {{9}, {1}} }; // T -> T CHECK(sav1.bounds().index_bounds() == index<1>{ 9 }); CHECK(sav1.bounds().stride() == 1); CHECK(sav1[0] == 1 && sav1[8] == 9); strided_span sav2{ carr, {{ 4 }, { 2 }} }; // const T -> const T CHECK(sav2.bounds().index_bounds() == index<1>{ 4 }); CHECK(sav2.bounds().strides() == index<1>{2}); CHECK(sav2[0] == 1 && sav2[3] == 7); strided_span sav3{ arr, {{ 2, 2 },{ 6, 2 }} }; // T -> const T CHECK((sav3.bounds().index_bounds() == index<2>{ 2, 2 })); CHECK((sav3.bounds().strides() == index<2>{ 6, 2 })); CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7)); } // Check span constructor { int arr[] = { 1, 2 }; // From non-cv-qualified source { const span src = arr; strided_span sav{ src, {2, 1} }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().strides() == index<1>{ 1 }); CHECK(sav[1] == 2); #if _MSC_VER > 1800 //strided_span sav_c{ {src}, {2, 1} }; strided_span sav_c{ span{src}, strided_bounds<1>{2, 1} }; #else strided_span sav_c{ span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_c.bounds().strides() == index<1>{ 1 }); CHECK(sav_c[1] == 2); #if _MSC_VER > 1800 strided_span sav_v{ {src}, {2, 1} }; #else strided_span sav_v{ span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_v.bounds().strides() == index<1>{ 1 }); CHECK(sav_v[1] == 2); #if _MSC_VER > 1800 strided_span sav_cv{ {src}, {2, 1} }; #else strided_span sav_cv{ span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } // From const-qualified source { const span src{ arr }; strided_span sav_c{ src, {2, 1} }; CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_c.bounds().strides() == index<1>{ 1 }); CHECK(sav_c[1] == 2); #if _MSC_VER > 1800 strided_span sav_cv{ {src}, {2, 1} }; #else strided_span sav_cv{ span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } // From volatile-qualified source { const span src{ arr }; strided_span sav_v{ src, {2, 1} }; CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_v.bounds().strides() == index<1>{ 1 }); CHECK(sav_v[1] == 2); #if _MSC_VER > 1800 strided_span sav_cv{ {src}, {2, 1} }; #else strided_span sav_cv{ span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } // From cv-qualified source { const span src{ arr }; strided_span sav_cv{ src, {2, 1} }; CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } } // Check const-casting constructor { int arr[2] = { 4, 5 }; const span av(arr, 2); span av2{ av }; CHECK(av2[1] == 5); static_assert(std::is_convertible, span>::value, "ctor is not implicit!"); const strided_span src{ arr, {2, 1} }; strided_span sav{ src }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().stride() == 1); CHECK(sav[1] == 5); static_assert(std::is_convertible, strided_span>::value, "ctor is not implicit!"); } // Check copy constructor { int arr1[2] = { 3, 4 }; const strided_span src1{ arr1, {2, 1} }; strided_span sav1{ src1 }; CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav1.bounds().stride() == 1); CHECK(sav1[0] == 3); int arr2[6] = { 1, 2, 3, 4, 5, 6 }; const strided_span src2{ arr2, {{ 3, 2 }, { 2, 1 }} }; strided_span sav2{ src2 }; CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); } // Check const-casting assignment operator { int arr1[2] = { 1, 2 }; int arr2[6] = { 3, 4, 5, 6, 7, 8 }; const strided_span src{ arr1, {{2}, {1}} }; strided_span sav{ arr2, {{3}, {2}} }; strided_span& sav_ref = (sav = src); CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().strides() == index<1>{ 1 }); CHECK(sav[0] == 1); CHECK(&sav_ref == &sav); } // Check copy assignment operator { int arr1[2] = { 3, 4 }; int arr1b[1] = { 0 }; const strided_span src1{ arr1, {2, 1} }; strided_span sav1{ arr1b, {1, 1} }; strided_span& sav1_ref = (sav1 = src1); CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav1.bounds().strides() == index<1>{ 1 }); CHECK(sav1[0] == 3); CHECK(&sav1_ref == &sav1); const int arr2[6] = { 1, 2, 3, 4, 5, 6 }; const int arr2b[1] = { 0 }; const strided_span src2{ arr2, {{ 3, 2 },{ 2, 1 }} }; strided_span sav2{ arr2b, {{ 1, 1 },{ 1, 1 }} }; strided_span& sav2_ref = (sav2 = src2); CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); CHECK(&sav2_ref == &sav2); } } TEST(strided_span_slice) { std::vector data(5 * 10); std::iota(begin(data), end(data), 0); const span src = as_span(data).as_span(dim<5>(), dim<10>()); const strided_span sav{ src, {{5, 10}, {10, 1}} }; #ifdef CONFIRM_COMPILATION_ERRORS const strided_span csav{ {src},{ { 5, 10 },{ 10, 1 } } }; #endif const strided_span csav{ span{ src }, { { 5, 10 },{ 10, 1 } } }; strided_span sav_sl = sav[2]; CHECK(sav_sl[0] == 20); CHECK(sav_sl[9] == 29); strided_span csav_sl = sav[3]; CHECK(csav_sl[0] == 30); CHECK(csav_sl[9] == 39); CHECK(sav[4][0] == 40); CHECK(sav[4][9] == 49); } TEST(strided_span_column_major) { // strided_span may be used to accomodate more peculiar // use cases, such as column-major multidimensional array // (aka. "FORTRAN" layout). int cm_array[3 * 5] = { 1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15 }; strided_span cm_sav{ cm_array, {{ 5, 3 },{ 1, 5 }} }; // Accessing elements CHECK((cm_sav[{0, 0}] == 1)); CHECK((cm_sav[{0, 1}] == 2)); CHECK((cm_sav[{1, 0}] == 4)); CHECK((cm_sav[{4, 2}] == 15)); // Slice strided_span cm_sl = cm_sav[3]; CHECK(cm_sl[0] == 10); CHECK(cm_sl[1] == 11); CHECK(cm_sl[2] == 12); // Section strided_span cm_sec = cm_sav.section( { 2, 1 }, { 3, 2 }); CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2})); CHECK((cm_sec[{0, 0}] == 8)); CHECK((cm_sec[{0, 1}] == 9)); CHECK((cm_sec[{1, 0}] == 11)); CHECK((cm_sec[{2, 1}] == 15)); } TEST(strided_span_bounds) { int arr[] = { 0, 1, 2, 3 }; span av(arr); { // incorrect sections CHECK_THROW(av.section(0, 0)[0], fail_fast); CHECK_THROW(av.section(1, 0)[0], fail_fast); CHECK_THROW(av.section(1, 1)[1], fail_fast); CHECK_THROW(av.section(2, 5), fail_fast); CHECK_THROW(av.section(5, 2), fail_fast); CHECK_THROW(av.section(5, 0), fail_fast); CHECK_THROW(av.section(0, 5), fail_fast); CHECK_THROW(av.section(5, 5), fail_fast); } { // zero stride strided_span sav{ av,{ { 4 },{} } }; CHECK(sav[0] == 0); CHECK(sav[3] == 0); CHECK_THROW(sav[4], fail_fast); } { // zero extent strided_span sav{ av,{ {},{ 1 } } }; CHECK_THROW(sav[0], fail_fast); } { // zero extent and stride strided_span sav{ av,{ {},{} } }; CHECK_THROW(sav[0], fail_fast); } { // strided array ctor with matching strided bounds strided_span sav{ arr,{ 4, 1 } }; CHECK(sav.bounds().index_bounds() == index<1>{ 4 }); CHECK(sav[3] == 3); CHECK_THROW(sav[4], fail_fast); } { // strided array ctor with smaller strided bounds strided_span sav{ arr,{ 2, 1 } }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav[1] == 1); CHECK_THROW(sav[2], fail_fast); } { // strided array ctor with fitting irregular bounds strided_span sav{ arr,{ 2, 3 } }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav[0] == 0); CHECK(sav[1] == 3); CHECK_THROW(sav[2], fail_fast); } { // bounds cross data boundaries - from static arrays CHECK_THROW((strided_span { arr, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span { arr, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span { arr, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span { arr, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span { arr, { 5, 5 } }), fail_fast); } { // bounds cross data boundaries - from array view CHECK_THROW((strided_span { av, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span { av, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span { av, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span { av, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span { av, { 5, 5 } }), fail_fast); } { // bounds cross data boundaries - from dynamic arrays CHECK_THROW((strided_span { av.data(), 4, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 5, 5 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 2, { 2, 2 } }), fail_fast); } #ifdef CONFIRM_COMPILATION_ERRORS { strided_span sav0{ av.data(), { 3, 2 } }; strided_span sav1{ arr, { 1 } }; strided_span sav2{ arr, { 1,1,1 } }; strided_span sav3{ av, { 1 } }; strided_span sav4{ av, { 1,1,1 } }; strided_span sav5{ av.as_span(dim<2>(), dim<2>()), { 1 } }; strided_span sav6{ av.as_span(dim<2>(), dim<2>()), { 1,1,1 } }; strided_span sav7{ av.as_span(dim<2>(), dim<2>()), { { 1,1 },{ 1,1 },{ 1,1 } } }; index<1> index{ 0, 1 }; strided_span sav8{ arr,{ 1,{ 1,1 } } }; strided_span sav9{ arr,{ { 1,1 },{ 1,1 } } }; strided_span sav10{ av,{ 1,{ 1,1 } } }; strided_span sav11{ av,{ { 1,1 },{ 1,1 } } }; strided_span sav12{ av.as_span(dim<2>(), dim<2>()),{ { 1 },{ 1 } } }; strided_span sav13{ av.as_span(dim<2>(), dim<2>()),{ { 1 },{ 1,1,1 } } }; strided_span sav14{ av.as_span(dim<2>(), dim<2>()),{ { 1,1,1 },{ 1 } } }; } #endif } TEST(strided_span_type_conversion) { int arr[] = { 0, 1, 2, 3 }; span av(arr); { strided_span sav{ av.data(), av.size(), { av.size() / 2, 2 } }; #ifdef CONFIRM_COMPILATION_ERRORS strided_span lsav1 = sav.as_strided_span(); #endif } { strided_span sav{ av, { av.size() / 2, 2 } }; #ifdef CONFIRM_COMPILATION_ERRORS strided_span lsav1 = sav.as_strided_span(); #endif } span bytes = av.as_bytes(); // retype strided array with regular strides - from raw data { strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; strided_span sav2{ bytes.data(), bytes.size(), bounds }; strided_span sav3 = sav2.as_strided_span(); CHECK(sav3[0][0] == 0); CHECK(sav3[1][0] == 2); CHECK_THROW(sav3[1][1], fail_fast); CHECK_THROW(sav3[0][1], fail_fast); } // retype strided array with regular strides - from span { strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; span bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; strided_span sav3 = sav2.as_strided_span(); CHECK(sav3[0][0] == 0); CHECK(sav3[1][0] == 2); CHECK_THROW(sav3[1][1], fail_fast); CHECK_THROW(sav3[0][1], fail_fast); } // retype strided array with not enough elements - last dimension of the array is too small { strided_bounds<2> bounds{ { 4,2 },{ 4, 1 } }; span bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with not enough elements - strides are too small { strided_bounds<2> bounds{ { 4,2 },{ 2, 1 } }; span bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with not enough elements - last dimension does not divide by the new typesize { strided_bounds<2> bounds{ { 2,6 },{ 4, 1 } }; span bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with not enough elements - strides does not divide by the new typesize { strided_bounds<2> bounds{ { 2, 1 },{ 6, 1 } }; span bytes2 = bytes.as_span(dim<2>(), dim<>(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with irregular strides - from raw data { strided_bounds<1> bounds{ bytes.size() / 2, 2 }; strided_span sav2{ bytes.data(), bytes.size(), bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with irregular strides - from span { strided_bounds<1> bounds{ bytes.size() / 2, 2 }; strided_span sav2{ bytes, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } } TEST(empty_arrays) { #ifdef CONFIRM_COMPILATION_ERRORS { span empty; strided_span empty2; strided_span empty3{ nullptr,{ 0, 1 } }; } #endif { span empty_av(nullptr); CHECK(empty_av.bounds().index_bounds() == index<1>{ 0 }); CHECK_THROW(empty_av[0], fail_fast); CHECK_THROW(empty_av.begin()[0], fail_fast); CHECK_THROW(empty_av.cbegin()[0], fail_fast); for (auto& v : empty_av) { (void)v; CHECK(false); } } { span empty_av = {}; CHECK(empty_av.bounds().index_bounds() == index<1>{ 0 }); CHECK_THROW(empty_av[0], fail_fast); CHECK_THROW(empty_av.begin()[0], fail_fast); CHECK_THROW(empty_av.cbegin()[0], fail_fast); for (auto& v : empty_av) { (void)v; CHECK(false); } } { span empty_av(nullptr); strided_span empty_sav{ empty_av, { 0, 1 } }; CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); CHECK_THROW(empty_sav[0], fail_fast); CHECK_THROW(empty_sav.begin()[0], fail_fast); CHECK_THROW(empty_sav.cbegin()[0], fail_fast); for (auto& v : empty_sav) { (void)v; CHECK(false); } } { strided_span empty_sav{ nullptr, 0, { 0, 1 } }; CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); CHECK_THROW(empty_sav[0], fail_fast); CHECK_THROW(empty_sav.begin()[0], fail_fast); CHECK_THROW(empty_sav.cbegin()[0], fail_fast); for (auto& v : empty_sav) { (void)v; CHECK(false); } } } TEST(index_constructor) { auto arr = new int[8]; for (int i = 0; i < 4; ++i) { arr[2 * i] = 4 + i; arr[2 * i + 1] = i; } span av(arr, 8); ptrdiff_t a[1] = { 0 }; index<1> i = a; CHECK(av[i] == 4); auto av2 = av.as_span(dim<4>(), dim<>(2)); ptrdiff_t a2[2] = { 0, 1 }; index<2> i2 = a2; CHECK(av2[i2] == 0); CHECK(av2[0][i] == 4); delete[] arr; } TEST(index_constructors) { { // components of the same type index<3> i1(0, 1, 2); CHECK(i1[0] == 0); // components of different types size_t c0 = 0; size_t c1 = 1; index<3> i2(c0, c1, 2); CHECK(i2[0] == 0); // from array index<3> i3 = { 0,1,2 }; CHECK(i3[0] == 0); // from other index of the same size type index<3> i4 = i3; CHECK(i4[0] == 0); // default index<3> i7; CHECK(i7[0] == 0); // default index<3> i9 = {}; CHECK(i9[0] == 0); } { // components of the same type index<1> i1(0); CHECK(i1[0] == 0); // components of different types size_t c0 = 0; index<1> i2(c0); CHECK(i2[0] == 0); // from array index<1> i3 = { 0 }; CHECK(i3[0] == 0); // from int index<1> i4 = 0; CHECK(i4[0] == 0); // from other index of the same size type index<1> i5 = i3; CHECK(i5[0] == 0); // default index<1> i8; CHECK(i8[0] == 0); // default index<1> i9 = {}; CHECK(i9[0] == 0); } #ifdef CONFIRM_COMPILATION_ERRORS { index<3> i1(0, 1); index<3> i2(0, 1, 2, 3); index<3> i3 = { 0 }; index<3> i4 = { 0, 1, 2, 3 }; index<1> i5 = { 0,1 }; } #endif } TEST(index_operations) { ptrdiff_t a[3] = { 0, 1, 2 }; ptrdiff_t b[3] = { 3, 4, 5 }; index<3> i = a; index<3> j = b; CHECK(i[0] == 0); CHECK(i[1] == 1); CHECK(i[2] == 2); { index<3> k = i + j; CHECK(i[0] == 0); CHECK(i[1] == 1); CHECK(i[2] == 2); CHECK(k[0] == 3); CHECK(k[1] == 5); CHECK(k[2] == 7); } { index<3> k = i * 3; CHECK(i[0] == 0); CHECK(i[1] == 1); CHECK(i[2] == 2); CHECK(k[0] == 0); CHECK(k[1] == 3); CHECK(k[2] == 6); } { index<3> k = 3 * i; CHECK(i[0] == 0); CHECK(i[1] == 1); CHECK(i[2] == 2); CHECK(k[0] == 0); CHECK(k[1] == 3); CHECK(k[2] == 6); } { index<2> k = details::shift_left(i); CHECK(i[0] == 0); CHECK(i[1] == 1); CHECK(i[2] == 2); CHECK(k[0] == 1); CHECK(k[1] == 2); } } void iterate_second_column(span av) { auto length = av.size() / 2; // view to the second column auto section = av.section({ 0,1 }, { length,1 }); CHECK(section.size() == length); for (auto i = 0; i < section.size(); ++i) { CHECK(section[i][0] == av[i][1]); } for (auto i = 0; i < section.size(); ++i) { auto idx = index<2>{ i,0 }; // avoid braces inside the CHECK macro CHECK(section[idx] == av[i][1]); } CHECK(section.bounds().index_bounds()[0] == length); CHECK(section.bounds().index_bounds()[1] == 1); for (auto i = 0; i < section.bounds().index_bounds()[0]; ++i) { for (auto j = 0; j < section.bounds().index_bounds()[1]; ++j) { auto idx = index<2>{ i,j }; // avoid braces inside the CHECK macro CHECK(section[idx] == av[i][1]); } } size_t check_sum = 0; for (auto i = 0; i < length; ++i) { check_sum += av[i][1]; } { auto idx = 0; size_t sum = 0; for (auto num : section) { CHECK(num == av[idx][1]); sum += num; idx++; } CHECK(sum == check_sum); } { size_t idx = length - 1; size_t sum = 0; for (auto iter = section.rbegin(); iter != section.rend(); ++iter) { CHECK(*iter == av[idx][1]); sum += *iter; idx--; } CHECK(sum == check_sum); } } TEST(span_section_iteration) { int arr[4][2] = { { 4,0 },{ 5,1 },{ 6,2 },{ 7,3 } }; // static bounds { span av = arr; iterate_second_column(av); } // first bound is dynamic { span av = arr; iterate_second_column(av); } // second bound is dynamic { span av = arr; iterate_second_column(av); } // both bounds are dynamic { span av = arr; iterate_second_column(av); } } TEST(dynamic_span_section_iteration) { auto height = 4, width = 2; auto size = height * width; auto arr = new int[size]; for (auto i = 0; i < size; ++i) { arr[i] = i; } auto av = as_span(arr, size); // first bound is dynamic { span av2 = av.as_span(dim<>(height), dim<>(width)); iterate_second_column(av2); } // second bound is dynamic { span av2 = av.as_span(dim<>(height), dim<>(width)); iterate_second_column(av2); } // both bounds are dynamic { span av2 = av.as_span(dim<>(height), dim<>(width)); iterate_second_column(av2); } delete[] arr; } void iterate_every_other_element(span av) { // pick every other element auto length = av.size() / 2; #if _MSC_VER > 1800 auto bounds = strided_bounds<1>({ length }, { 2 }); #else auto bounds = strided_bounds<1>(index<1>{ length }, index<1>{ 2 }); #endif strided_span strided(&av.data()[1], av.size() - 1, bounds); CHECK(strided.size() == length); CHECK(strided.bounds().index_bounds()[0] == length); for (auto i = 0; i < strided.size(); ++i) { CHECK(strided[i] == av[2 * i + 1]); } int idx = 0; for (auto num : strided) { CHECK(num == av[2 * idx + 1]); idx++; } } TEST(strided_span_section_iteration) { int arr[8] = {4,0,5,1,6,2,7,3}; // static bounds { span av(arr, 8); iterate_every_other_element(av); } // dynamic bounds { span av(arr, 8); iterate_every_other_element(av); } } TEST(dynamic_strided_span_section_iteration) { auto arr = new int[8]; for (int i = 0; i < 4; ++i) { arr[2 * i] = 4 + i; arr[2 * i + 1] = i; } auto av = as_span(arr, 8); iterate_every_other_element(av); delete[] arr; } void iterate_second_slice(span av) { int expected[6] = { 2,3,10,11,18,19 }; auto section = av.section({ 0,1,0 }, { 3,1,2 }); for (auto i = 0; i < section.extent<0>(); ++i) { for (auto j = 0; j < section.extent<1>(); ++j) for (auto k = 0; k < section.extent<2>(); ++k) { auto idx = index<3>{ i,j,k }; // avoid braces in the CHECK macro CHECK(section[idx] == expected[2 * i + 2 * j + k]); } } for (auto i = 0; i < section.extent<0>(); ++i) { for (auto j = 0; j < section.extent<1>(); ++j) for (auto k = 0; k < section.extent<2>(); ++k) CHECK(section[i][j][k] == expected[2 * i + 2 * j + k]); } int i = 0; for (auto num : section) { CHECK(num == expected[i]); i++; } } TEST(strided_span_section_iteration_3d) { int arr[3][4][2]; for (auto i = 0; i < 3; ++i) { for (auto j = 0; j < 4; ++j) for (auto k = 0; k < 2; ++k) arr[i][j][k] = 8 * i + 2 * j + k; } { span av = arr; iterate_second_slice(av); } } TEST(dynamic_strided_span_section_iteration_3d) { auto height = 12, width = 2; auto size = height * width; auto arr = new int[size]; for (auto i = 0; i < size; ++i) { arr[i] = i; } { auto av = as_span(arr, 24).as_span(dim<3>(),dim<4>(),dim<2>()); iterate_second_slice(av); } { auto av = as_span(arr, 24).as_span(dim<>(3), dim<4>(), dim<2>()); iterate_second_slice(av); } { auto av = as_span(arr, 24).as_span(dim<3>(), dim<>(4), dim<2>()); iterate_second_slice(av); } { auto av = as_span(arr, 24).as_span(dim<3>(), dim<4>(), dim<>(2)); iterate_second_slice(av); } delete[] arr; } TEST(strided_span_conversion) { // get an span of 'c' values from the list of X's struct X { int a; int b; int c; }; X arr[4] = { { 0,1,2 },{ 3,4,5 },{ 6,7,8 },{ 9,10,11 } }; int s = sizeof(int) / sizeof(byte); auto d2 = 3 * s; auto d1 = sizeof(int) * 12 / d2; // convert to 4x12 array of bytes auto av = as_span(arr, 4).as_bytes().as_span(dim<>(d1), dim<>(d2)); CHECK(av.bounds().index_bounds()[0] == 4); CHECK(av.bounds().index_bounds()[1] == 12); // get the last 4 columns auto section = av.section({ 0, 2 * s }, { 4, s }); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2], arr[0].c[3] } , { arr[1].c[0], ... } , ... } // convert to array 4x1 array of integers auto cs = section.as_strided_span(); // { { arr[0].c }, {arr[1].c } , ... } CHECK(cs.bounds().index_bounds()[0] == 4); CHECK(cs.bounds().index_bounds()[1] == 1); // transpose to 1x4 array strided_bounds<2> reverse_bounds{ { cs.bounds().index_bounds()[1] , cs.bounds().index_bounds()[0] }, { cs.bounds().strides()[1], cs.bounds().strides()[0] } }; strided_span transposed{ cs.data(), cs.bounds().total_size(), reverse_bounds }; // slice to get a one-dimensional array of c's strided_span result = transposed[0]; CHECK(result.bounds().index_bounds()[0] == 4); CHECK_THROW(result.bounds().index_bounds()[1], fail_fast); int i = 0; for (auto& num : result) { CHECK(num == arr[i].c); i++; } } TEST(constructors) { span av(nullptr); CHECK(av.length() == 0); span av2; CHECK(av2.length() == 0); span av3(nullptr, 0); CHECK(av3.length() == 0); // Constructing from a nullptr + length is specifically disallowed auto f = [&]() {span av4(nullptr, 2);}; CHECK_THROW(f(), fail_fast); int arr1[2][3]; span av5(arr1); array arr2; span av6(arr2); vector vec1(19); span av7(vec1); CHECK(av7.length() == 19); span av8; CHECK(av8.length() == 0); span av9(arr2); CHECK(av9.length() == 15); #ifdef CONFIRM_COMPILATION_ERRORS span av10; DerivedClass *p = nullptr; span av11(p, 0); #endif } TEST(copyandassignment) { span av1; int arr[] = {3, 4, 5}; av1 = arr; span av2; av2 = av1; } TEST(span_first) { int arr[5] = { 1, 2, 3, 4, 5 }; { span av = arr; CHECK((av.first<2>().bounds() == static_bounds<2>())); CHECK(av.first<2>().length() == 2); CHECK(av.first(2).length() == 2); } { span av = arr; CHECK((av.first<0>().bounds() == static_bounds<0>())); CHECK(av.first<0>().length() == 0); CHECK(av.first(0).length() == 0); } { span av = arr; CHECK((av.first<5>().bounds() == static_bounds<5>())); CHECK(av.first<5>().length() == 5); CHECK(av.first(5).length() == 5); } { span av = arr; #ifdef CONFIRM_COMPILATION_ERRORS CHECK(av.first<6>().bounds() == static_bounds<6>()); CHECK(av.first<6>().length() == 6); #endif CHECK_THROW(av.first(6).length(), fail_fast); } { span av; CHECK((av.first<0>().bounds() == static_bounds<0>())); CHECK(av.first<0>().length() == 0); CHECK(av.first(0).length() == 0); } } TEST(span_last) { int arr[5] = { 1, 2, 3, 4, 5 }; { span av = arr; CHECK((av.last<2>().bounds() == static_bounds<2>())); CHECK(av.last<2>().length() == 2); CHECK(av.last(2).length() == 2); } { span av = arr; CHECK((av.last<0>().bounds() == static_bounds<0>())); CHECK(av.last<0>().length() == 0); CHECK(av.last(0).length() == 0); } { span av = arr; CHECK((av.last<5>().bounds() == static_bounds<5>())); CHECK(av.last<5>().length() == 5); CHECK(av.last(5).length() == 5); } { span av = arr; #ifdef CONFIRM_COMPILATION_ERRORS CHECK((av.last<6>().bounds() == static_bounds<6>())); CHECK(av.last<6>().length() == 6); #endif CHECK_THROW(av.last(6).length(), fail_fast); } { span av; CHECK((av.last<0>().bounds() == static_bounds<0>())); CHECK(av.last<0>().length() == 0); CHECK(av.last(0).length() == 0); } } TEST(customized_span_size) { double (*arr)[3][4] = new double[100][3][4]; span av1(arr, 10); struct EffectiveStructure { double* v1; ptrdiff_t v2; }; CHECK(sizeof(av1) == sizeof(EffectiveStructure)); CHECK_THROW(av1[10][3][4], fail_fast); span av2 = av1.as_span(dim<>(5), dim<6>(), dim<4>()); (void)av2; } TEST(span_sub) { int arr[5] = { 1, 2, 3, 4, 5 }; { span av = arr; CHECK((av.sub<2,2>().bounds() == static_bounds<2>())); CHECK((av.sub<2,2>().length() == 2)); CHECK(av.sub(2,2).length() == 2); CHECK(av.sub(2,3).length() == 3); } { span av = arr; CHECK((av.sub<0,0>().bounds() == static_bounds<0>())); CHECK((av.sub<0,0>().length() == 0)); CHECK(av.sub(0,0).length() == 0); } { span av = arr; CHECK((av.sub<0,5>().bounds() == static_bounds<5>())); CHECK((av.sub<0,5>().length() == 5)); CHECK(av.sub(0,5).length() == 5); CHECK_THROW(av.sub(0,6).length(), fail_fast); CHECK_THROW(av.sub(1,5).length(), fail_fast); } { span av = arr; CHECK((av.sub<5,0>().bounds() == static_bounds<0>())); CHECK((av.sub<5, 0>().length() == 0)); CHECK(av.sub(5,0).length() == 0); CHECK_THROW(av.sub(6,0).length(), fail_fast); } { span av; CHECK((av.sub<0,0>().bounds() == static_bounds<0>())); CHECK((av.sub<0,0>().length() == 0)); CHECK(av.sub(0,0).length() == 0); CHECK_THROW((av.sub<1,0>().length()), fail_fast); } { span av; CHECK(av.sub(0).length() == 0); CHECK_THROW(av.sub(1).length(), fail_fast); } { span av = arr; CHECK(av.sub(0).length() == 5); CHECK(av.sub(1).length() == 4); CHECK(av.sub(4).length() == 1); CHECK(av.sub(5).length() == 0); CHECK_THROW(av.sub(6).length(), fail_fast); auto av2 = av.sub(1); for (int i = 0; i < 4; ++i) CHECK(av2[i] == i+2); } { span av = arr; CHECK(av.sub(0).length() == 5); CHECK(av.sub(1).length() == 4); CHECK(av.sub(4).length() == 1); CHECK(av.sub(5).length() == 0); CHECK_THROW(av.sub(6).length(), fail_fast); auto av2 = av.sub(1); for (int i = 0; i < 4; ++i) CHECK(av2[i] == i+2); } } void AssertNullEmptyProperties(span& av) { CHECK(av.length() == 0); CHECK(av.data() == nullptr); CHECK(!av); } template void AssertContentsMatch(T a1, U a2) { CHECK(a1.length() == a2.length()); for (auto i = 0; i < a1.length(); ++i) CHECK(a1[i] == a2[i]); } TEST(TestNullConstruction) { span av; AssertNullEmptyProperties(av); span av2(nullptr); AssertNullEmptyProperties(av2); } TEST(ArrayConstruction) { int a[] = { 1, 2, 3, 4 }; span av = { &a[1], 3 }; CHECK(av.length() == 3); span av3 = { a, 2 }; CHECK(av3.length() == 2); span av2 = a; CHECK(av2.length() == 4); } TEST(NonConstConstConversions) { int a[] = { 1, 2, 3, 4 }; #ifdef CONFIRM_COMPILATION_ERRORS span cav = a; span av = cav; #else span av = a; span cav = av; #endif AssertContentsMatch(av, cav); } TEST(FixedSizeConversions) { int arr[] = { 1, 2, 3, 4 }; // converting to an span from an equal size array is ok span av4 = arr; CHECK(av4.length() == 4); // converting to dynamic_range a_v is always ok { span av = av4; (void)av; } { span av = arr; (void)av; } // initialization or assignment to static span that REDUCES size is NOT ok #ifdef CONFIRM_COMPILATION_ERRORS { span av2 = arr; } { span av2 = av4; } #endif { span av = arr; span av2 = av; (void)av2; } #ifdef CONFIRM_COMPILATION_ERRORS { span av = arr; span av2 = av.as_span(dim<2>(), dim<2>()); } #endif { span av = arr; auto f = [&]() {span av2 = av.as_span(dim<>(2), dim<>(2)); (void)av2; }; CHECK_THROW(f(), fail_fast); } // but doing so explicitly is ok // you can convert statically { span av2 = {arr, 2}; (void)av2; } { span av2 = av4.first<1>(); (void)av2; } // ...or dynamically { // NB: implicit conversion to span from span span av2 = av4.first(1); (void)av2; } // initialization or assignment to static span that requires size INCREASE is not ok. int arr2[2] = { 1, 2 }; #ifdef CONFIRM_COMPILATION_ERRORS { span av4 = arr2; } { span av2 = arr2; span av4 = av2; } #endif { auto f = [&]() {span av4 = {arr2, 2}; (void)av4; }; CHECK_THROW(f(), fail_fast); } // this should fail - we are trying to assign a small dynamic a_v to a fixed_size larger one span av = arr2; auto f = [&](){ span av2 = av; (void)av2; }; CHECK_THROW(f(), fail_fast); } TEST(AsWriteableBytes) { int a[] = { 1, 2, 3, 4 }; { #ifdef CONFIRM_COMPILATION_ERRORS // you should not be able to get writeable bytes for const objects span av = a; auto wav = av.as_writeable_bytes(); #endif } { span av; auto wav = av.as_writeable_bytes(); CHECK(wav.length() == av.length()); CHECK(wav.length() == 0); CHECK(wav.bytes() == 0); } { span av = a; auto wav = av.as_writeable_bytes(); CHECK(wav.data() == (byte*)&a[0]); CHECK(wav.length() == sizeof(a)); } } TEST(NonConstIterator) { int a[] = { 1, 2, 3, 4 }; { span av = a; auto wav = av.as_writeable_bytes(); for (auto& b : wav) { b = byte(0); } for (size_t i = 0; i < 4; ++i) { CHECK(a[i] == 0); } } { span av = a; for (auto& n : av) { n = 1; } for (size_t i = 0; i < 4; ++i) { CHECK(a[i] == 1); } } } TEST(ArrayViewComparison) { { int arr[10][2]; auto av1 = as_span(arr); span av2 = av1; CHECK(av1 == av2); span av3 = av1.as_span(dim<>(20)); CHECK(av3 == av2 && av3 == av1); } { auto av1 = nullptr; auto av2 = nullptr; CHECK(av1 == av2); CHECK(!(av1 != av2)); CHECK(!(av1 < av2)); CHECK(av1 <= av2); CHECK(!(av1 > av2)); CHECK(av1 >= av2); CHECK(av2 == av1); CHECK(!(av2 != av1)); CHECK(!(av2 < av1)); CHECK(av2 <= av1); CHECK(!(av2 > av1)); CHECK(av2 >= av1); } { int arr[] = { 2, 1 }; // bigger span av1 = nullptr; span av2 = arr; CHECK(av1 != av2); CHECK(av2 != av1); CHECK(!(av1 == av2)); CHECK(!(av2 == av1)); CHECK(av1 < av2); CHECK(!(av2 < av1)); CHECK(av1 <= av2); CHECK(!(av2 <= av1)); CHECK(av2 > av1); CHECK(!(av1 > av2)); CHECK(av2 >= av1); CHECK(!(av1 >= av2)); } { int arr1[] = { 1, 2 }; int arr2[] = { 1, 2 }; span av1 = arr1; span av2 = arr2; CHECK(av1 == av2); CHECK(!(av1 != av2)); CHECK(!(av1 < av2)); CHECK(av1 <= av2); CHECK(!(av1 > av2)); CHECK(av1 >= av2); CHECK(av2 == av1); CHECK(!(av2 != av1)); CHECK(!(av2 < av1)); CHECK(av2 <= av1); CHECK(!(av2 > av1)); CHECK(av2 >= av1); } { int arr[] = { 1, 2, 3 }; span av1 = { &arr[0], 2 }; // shorter span av2 = arr; // longer CHECK(av1 != av2); CHECK(av2 != av1); CHECK(!(av1 == av2)); CHECK(!(av2 == av1)); CHECK(av1 < av2); CHECK(!(av2 < av1)); CHECK(av1 <= av2); CHECK(!(av2 <= av1)); CHECK(av2 > av1); CHECK(!(av1 > av2)); CHECK(av2 >= av1); CHECK(!(av1 >= av2)); } { int arr1[] = { 1, 2 }; // smaller int arr2[] = { 2, 1 }; // bigger span av1 = arr1; span av2 = arr2; CHECK(av1 != av2); CHECK(av2 != av1); CHECK(!(av1 == av2)); CHECK(!(av2 == av1)); CHECK(av1 < av2); CHECK(!(av2 < av1)); CHECK(av1 <= av2); CHECK(!(av2 <= av1)); CHECK(av2 > av1); CHECK(!(av1 > av2)); CHECK(av2 >= av1); CHECK(!(av1 >= av2)); } } } int main(int, const char *[]) { return UnitTest::RunAllTests(); }