/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include using namespace std; using namespace gsl; namespace { struct BaseClass {}; struct DerivedClass : BaseClass {}; } SUITE(strided_span_tests) { TEST (span_section_test) { int a[30][4][5]; auto av = as_multi_span(a); auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2}); auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1}); (void)subsub; } TEST(span_section) { std::vector data(5 * 10); std::iota(begin(data), end(data), 0); const multi_span av = as_multi_span(multi_span{data}, dim<5>(), dim<10>()); strided_span av_section_1 = av.section({ 1, 2 }, { 3, 4 }); CHECK((av_section_1[{0, 0}] == 12)); CHECK((av_section_1[{0, 1}] == 13)); CHECK((av_section_1[{1, 0}] == 22)); CHECK((av_section_1[{2, 3}] == 35)); strided_span av_section_2 = av_section_1.section({ 1, 2 }, { 2,2 }); CHECK((av_section_2[{0, 0}] == 24)); CHECK((av_section_2[{0, 1}] == 25)); CHECK((av_section_2[{1, 0}] == 34)); } TEST(strided_span_constructors) { // Check stride constructor { int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; const int carr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; strided_span sav1{ arr, {{9}, {1}} }; // T -> T CHECK(sav1.bounds().index_bounds() == index<1>{ 9 }); CHECK(sav1.bounds().stride() == 1); CHECK(sav1[0] == 1 && sav1[8] == 9); strided_span sav2{ carr, {{ 4 }, { 2 }} }; // const T -> const T CHECK(sav2.bounds().index_bounds() == index<1>{ 4 }); CHECK(sav2.bounds().strides() == index<1>{2}); CHECK(sav2[0] == 1 && sav2[3] == 7); strided_span sav3{ arr, {{ 2, 2 },{ 6, 2 }} }; // T -> const T CHECK((sav3.bounds().index_bounds() == index<2>{ 2, 2 })); CHECK((sav3.bounds().strides() == index<2>{ 6, 2 })); CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7)); } // Check multi_span constructor { int arr[] = { 1, 2 }; // From non-cv-qualified source { const multi_span src = arr; strided_span sav{ src, {2, 1} }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().strides() == index<1>{ 1 }); CHECK(sav[1] == 2); #if _MSC_VER > 1800 //strided_span sav_c{ {src}, {2, 1} }; strided_span sav_c{ multi_span{src}, strided_bounds<1>{2, 1} }; #else strided_span sav_c{ multi_span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_c.bounds().strides() == index<1>{ 1 }); CHECK(sav_c[1] == 2); #if _MSC_VER > 1800 strided_span sav_v{ src, {2, 1} }; #else strided_span sav_v{ multi_span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_v.bounds().strides() == index<1>{ 1 }); CHECK(sav_v[1] == 2); #if _MSC_VER > 1800 strided_span sav_cv{ src, {2, 1} }; #else strided_span sav_cv{ multi_span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } // From const-qualified source { const multi_span src{ arr }; strided_span sav_c{ src, {2, 1} }; CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_c.bounds().strides() == index<1>{ 1 }); CHECK(sav_c[1] == 2); #if _MSC_VER > 1800 strided_span sav_cv{ src, {2, 1} }; #else strided_span sav_cv{ multi_span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } // From volatile-qualified source { const multi_span src{ arr }; strided_span sav_v{ src, {2, 1} }; CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_v.bounds().strides() == index<1>{ 1 }); CHECK(sav_v[1] == 2); #if _MSC_VER > 1800 strided_span sav_cv{ src, {2, 1} }; #else strided_span sav_cv{ multi_span{src}, strided_bounds<1>{2, 1} }; #endif CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } // From cv-qualified source { const multi_span src{ arr }; strided_span sav_cv{ src, {2, 1} }; CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv[1] == 2); } } // Check const-casting constructor { int arr[2] = { 4, 5 }; const multi_span av(arr, 2); multi_span av2{ av }; CHECK(av2[1] == 5); static_assert(std::is_convertible, multi_span>::value, "ctor is not implicit!"); const strided_span src{ arr, {2, 1} }; strided_span sav{ src }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().stride() == 1); CHECK(sav[1] == 5); static_assert(std::is_convertible, strided_span>::value, "ctor is not implicit!"); } // Check copy constructor { int arr1[2] = { 3, 4 }; const strided_span src1{ arr1, {2, 1} }; strided_span sav1{ src1 }; CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav1.bounds().stride() == 1); CHECK(sav1[0] == 3); int arr2[6] = { 1, 2, 3, 4, 5, 6 }; const strided_span src2{ arr2, {{ 3, 2 }, { 2, 1 }} }; strided_span sav2{ src2 }; CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); } // Check const-casting assignment operator { int arr1[2] = { 1, 2 }; int arr2[6] = { 3, 4, 5, 6, 7, 8 }; const strided_span src{ arr1, {{2}, {1}} }; strided_span sav{ arr2, {{3}, {2}} }; strided_span& sav_ref = (sav = src); CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().strides() == index<1>{ 1 }); CHECK(sav[0] == 1); CHECK(&sav_ref == &sav); } // Check copy assignment operator { int arr1[2] = { 3, 4 }; int arr1b[1] = { 0 }; const strided_span src1{ arr1, {2, 1} }; strided_span sav1{ arr1b, {1, 1} }; strided_span& sav1_ref = (sav1 = src1); CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav1.bounds().strides() == index<1>{ 1 }); CHECK(sav1[0] == 3); CHECK(&sav1_ref == &sav1); const int arr2[6] = { 1, 2, 3, 4, 5, 6 }; const int arr2b[1] = { 0 }; const strided_span src2{ arr2, {{ 3, 2 },{ 2, 1 }} }; strided_span sav2{ arr2b, {{ 1, 1 },{ 1, 1 }} }; strided_span& sav2_ref = (sav2 = src2); CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); CHECK(&sav2_ref == &sav2); } } TEST(strided_span_slice) { std::vector data(5 * 10); std::iota(begin(data), end(data), 0); const multi_span src = as_multi_span(multi_span{data}, dim<5>(), dim<10>()); const strided_span sav{ src, {{5, 10}, {10, 1}} }; #ifdef CONFIRM_COMPILATION_ERRORS const strided_span csav{ {src},{ { 5, 10 },{ 10, 1 } } }; #endif const strided_span csav{ multi_span{ src }, { { 5, 10 },{ 10, 1 } } }; strided_span sav_sl = sav[2]; CHECK(sav_sl[0] == 20); CHECK(sav_sl[9] == 29); strided_span csav_sl = sav[3]; CHECK(csav_sl[0] == 30); CHECK(csav_sl[9] == 39); CHECK(sav[4][0] == 40); CHECK(sav[4][9] == 49); } TEST(strided_span_column_major) { // strided_span may be used to accomodate more peculiar // use cases, such as column-major multidimensional array // (aka. "FORTRAN" layout). int cm_array[3 * 5] = { 1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15 }; strided_span cm_sav{ cm_array, {{ 5, 3 },{ 1, 5 }} }; // Accessing elements CHECK((cm_sav[{0, 0}] == 1)); CHECK((cm_sav[{0, 1}] == 2)); CHECK((cm_sav[{1, 0}] == 4)); CHECK((cm_sav[{4, 2}] == 15)); // Slice strided_span cm_sl = cm_sav[3]; CHECK(cm_sl[0] == 10); CHECK(cm_sl[1] == 11); CHECK(cm_sl[2] == 12); // Section strided_span cm_sec = cm_sav.section( { 2, 1 }, { 3, 2 }); CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2})); CHECK((cm_sec[{0, 0}] == 8)); CHECK((cm_sec[{0, 1}] == 9)); CHECK((cm_sec[{1, 0}] == 11)); CHECK((cm_sec[{2, 1}] == 15)); } TEST(strided_span_bounds) { int arr[] = { 0, 1, 2, 3 }; multi_span av(arr); { // incorrect sections CHECK_THROW(av.section(0, 0)[0], fail_fast); CHECK_THROW(av.section(1, 0)[0], fail_fast); CHECK_THROW(av.section(1, 1)[1], fail_fast); CHECK_THROW(av.section(2, 5), fail_fast); CHECK_THROW(av.section(5, 2), fail_fast); CHECK_THROW(av.section(5, 0), fail_fast); CHECK_THROW(av.section(0, 5), fail_fast); CHECK_THROW(av.section(5, 5), fail_fast); } { // zero stride strided_span sav{ av,{ { 4 },{} } }; CHECK(sav[0] == 0); CHECK(sav[3] == 0); CHECK_THROW(sav[4], fail_fast); } { // zero extent strided_span sav{ av,{ {},{ 1 } } }; CHECK_THROW(sav[0], fail_fast); } { // zero extent and stride strided_span sav{ av,{ {},{} } }; CHECK_THROW(sav[0], fail_fast); } { // strided array ctor with matching strided bounds strided_span sav{ arr,{ 4, 1 } }; CHECK(sav.bounds().index_bounds() == index<1>{ 4 }); CHECK(sav[3] == 3); CHECK_THROW(sav[4], fail_fast); } { // strided array ctor with smaller strided bounds strided_span sav{ arr,{ 2, 1 } }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav[1] == 1); CHECK_THROW(sav[2], fail_fast); } { // strided array ctor with fitting irregular bounds strided_span sav{ arr,{ 2, 3 } }; CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav[0] == 0); CHECK(sav[1] == 3); CHECK_THROW(sav[2], fail_fast); } { // bounds cross data boundaries - from static arrays CHECK_THROW((strided_span { arr, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span { arr, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span { arr, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span { arr, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span { arr, { 5, 5 } }), fail_fast); } { // bounds cross data boundaries - from array view CHECK_THROW((strided_span { av, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span { av, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span { av, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span { av, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span { av, { 5, 5 } }), fail_fast); } { // bounds cross data boundaries - from dynamic arrays CHECK_THROW((strided_span { av.data(), 4, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 4, { 5, 5 } }), fail_fast); CHECK_THROW((strided_span { av.data(), 2, { 2, 2 } }), fail_fast); } #ifdef CONFIRM_COMPILATION_ERRORS { strided_span sav0{ av.data(), { 3, 2 } }; strided_span sav1{ arr, { 1 } }; strided_span sav2{ arr, { 1,1,1 } }; strided_span sav3{ av, { 1 } }; strided_span sav4{ av, { 1,1,1 } }; strided_span sav5{ av.as_multi_span(dim<2>(), dim<2>()), { 1 } }; strided_span sav6{ av.as_multi_span(dim<2>(), dim<2>()), { 1,1,1 } }; strided_span sav7{ av.as_multi_span(dim<2>(), dim<2>()), { { 1,1 },{ 1,1 },{ 1,1 } } }; index<1> index{ 0, 1 }; strided_span sav8{ arr,{ 1,{ 1,1 } } }; strided_span sav9{ arr,{ { 1,1 },{ 1,1 } } }; strided_span sav10{ av,{ 1,{ 1,1 } } }; strided_span sav11{ av,{ { 1,1 },{ 1,1 } } }; strided_span sav12{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1 } } }; strided_span sav13{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1,1,1 } } }; strided_span sav14{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1,1,1 },{ 1 } } }; } #endif } TEST(strided_span_type_conversion) { int arr[] = { 0, 1, 2, 3 }; multi_span av(arr); { strided_span sav{ av.data(), av.size(), { av.size() / 2, 2 } }; #ifdef CONFIRM_COMPILATION_ERRORS strided_span lsav1 = sav.as_strided_span(); #endif } { strided_span sav{ av, { av.size() / 2, 2 } }; #ifdef CONFIRM_COMPILATION_ERRORS strided_span lsav1 = sav.as_strided_span(); #endif } multi_span bytes = as_bytes(av); // retype strided array with regular strides - from raw data { strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; strided_span sav2{ bytes.data(), bytes.size(), bounds }; strided_span sav3 = sav2.as_strided_span(); CHECK(sav3[0][0] == 0); CHECK(sav3[1][0] == 2); CHECK_THROW(sav3[1][1], fail_fast); CHECK_THROW(sav3[0][1], fail_fast); } // retype strided array with regular strides - from multi_span { strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; strided_span sav3 = sav2.as_strided_span(); CHECK(sav3[0][0] == 0); CHECK(sav3[1][0] == 2); CHECK_THROW(sav3[1][1], fail_fast); CHECK_THROW(sav3[0][1], fail_fast); } // retype strided array with not enough elements - last dimension of the array is too small { strided_bounds<2> bounds{ { 4,2 },{ 4, 1 } }; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with not enough elements - strides are too small { strided_bounds<2> bounds{ { 4,2 },{ 2, 1 } }; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with not enough elements - last dimension does not divide by the new typesize { strided_bounds<2> bounds{ { 2,6 },{ 4, 1 } }; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with not enough elements - strides does not divide by the new typesize { strided_bounds<2> bounds{ { 2, 1 },{ 6, 1 } }; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{ bytes2, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with irregular strides - from raw data { strided_bounds<1> bounds{ bytes.size() / 2, 2 }; strided_span sav2{ bytes.data(), bytes.size(), bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } // retype strided array with irregular strides - from multi_span { strided_bounds<1> bounds{ bytes.size() / 2, 2 }; strided_span sav2{ bytes, bounds }; CHECK_THROW(sav2.as_strided_span(), fail_fast); } } TEST(empty_strided_spans) { { multi_span empty_av(nullptr); strided_span empty_sav{ empty_av, { 0, 1 } }; CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); CHECK_THROW(empty_sav[0], fail_fast); CHECK_THROW(empty_sav.begin()[0], fail_fast); CHECK_THROW(empty_sav.cbegin()[0], fail_fast); for (auto& v : empty_sav) { (void)v; CHECK(false); } } { strided_span empty_sav{ nullptr, 0, { 0, 1 } }; CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); CHECK_THROW(empty_sav[0], fail_fast); CHECK_THROW(empty_sav.begin()[0], fail_fast); CHECK_THROW(empty_sav.cbegin()[0], fail_fast); for (auto& v : empty_sav) { (void)v; CHECK(false); } } } void iterate_every_other_element(multi_span av) { // pick every other element auto length = av.size() / 2; #if _MSC_VER > 1800 auto bounds = strided_bounds<1>({length}, {2}); #else auto bounds = strided_bounds<1>(index<1>{ length }, index<1>{ 2 }); #endif strided_span strided(&av.data()[1], av.size() - 1, bounds); CHECK(strided.size() == length); CHECK(strided.bounds().index_bounds()[0] == length); for (auto i = 0; i < strided.size(); ++i) { CHECK(strided[i] == av[2 * i + 1]); } int idx = 0; for (auto num : strided) { CHECK(num == av[2 * idx + 1]); idx++; } } TEST(strided_span_section_iteration) { int arr[8] = {4,0,5,1,6,2,7,3}; // static bounds { multi_span av(arr, 8); iterate_every_other_element(av); } // dynamic bounds { multi_span av(arr, 8); iterate_every_other_element(av); } } TEST(dynamic_strided_span_section_iteration) { auto arr = new int[8]; for (int i = 0; i < 4; ++i) { arr[2 * i] = 4 + i; arr[2 * i + 1] = i; } auto av = as_multi_span(arr, 8); iterate_every_other_element(av); delete[] arr; } void iterate_second_slice(multi_span av) { int expected[6] = {2,3,10,11,18,19}; auto section = av.section({0,1,0}, {3,1,2}); for (auto i = 0; i < section.extent<0>(); ++i) { for (auto j = 0; j < section.extent<1>(); ++j) for (auto k = 0; k < section.extent<2>(); ++k) { auto idx = index<3>{i,j,k}; // avoid braces in the CHECK macro CHECK(section[idx] == expected[2 * i + 2 * j + k]); } } for (auto i = 0; i < section.extent<0>(); ++i) { for (auto j = 0; j < section.extent<1>(); ++j) for (auto k = 0; k < section.extent<2>(); ++k) CHECK(section[i][j][k] == expected[2 * i + 2 * j + k]); } int i = 0; for (auto num : section) { CHECK(num == expected[i]); i++; } } TEST(strided_span_section_iteration_3d) { int arr[3][4][2]; for (auto i = 0; i < 3; ++i) { for (auto j = 0; j < 4; ++j) for (auto k = 0; k < 2; ++k) arr[i][j][k] = 8 * i + 2 * j + k; } { multi_span av = arr; iterate_second_slice(av); } } TEST(dynamic_strided_span_section_iteration_3d) { auto height = 12, width = 2; auto size = height * width; auto arr = new int[size]; for (auto i = 0; i < size; ++i) { arr[i] = i; } { auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim<2>()); iterate_second_slice(av); } { auto av = as_multi_span(as_multi_span(arr, 24), dim(3), dim<4>(), dim<2>()); iterate_second_slice(av); } { auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim(4), dim<2>()); iterate_second_slice(av); } { auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim(2)); iterate_second_slice(av); } delete[] arr; } TEST(strided_span_conversion) { // get an multi_span of 'c' values from the list of X's struct X { int a; int b; int c; }; X arr[4] = {{0,1,2},{3,4,5},{6,7,8},{9,10,11}}; int s = sizeof(int) / sizeof(byte); auto d2 = 3 * s; auto d1 = narrow_cast(sizeof(int)) * 12 / d2; // convert to 4x12 array of bytes auto av = as_multi_span(as_bytes(as_multi_span(arr, 4)), dim(d1), dim(d2)); CHECK(av.bounds().index_bounds()[0] == 4); CHECK(av.bounds().index_bounds()[1] == 12); // get the last 4 columns auto section = av.section({0, 2 * s}, {4, s}); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2], arr[0].c[3] } , { arr[1].c[0], ... } , ... } // convert to array 4x1 array of integers auto cs = section.as_strided_span(); // { { arr[0].c }, {arr[1].c } , ... } CHECK(cs.bounds().index_bounds()[0] == 4); CHECK(cs.bounds().index_bounds()[1] == 1); // transpose to 1x4 array strided_bounds<2> reverse_bounds{ {cs.bounds().index_bounds()[1] , cs.bounds().index_bounds()[0]}, {cs.bounds().strides()[1], cs.bounds().strides()[0]} }; strided_span transposed{cs.data(), cs.bounds().total_size(), reverse_bounds}; // slice to get a one-dimensional array of c's strided_span result = transposed[0]; CHECK(result.bounds().index_bounds()[0] == 4); CHECK_THROW(result.bounds().index_bounds()[1], fail_fast); int i = 0; for (auto& num : result) { CHECK(num == arr[i].c); i++; } } } int main(int, const char *[]) { return UnitTest::RunAllTests(); }