/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #ifdef _MSC_VER // blanket turn off warnings from CppCoreCheck from catch // so people aren't annoyed by them when running the tool. #pragma warning(disable : 26440 26426) // from catch deprecated #pragma warning(disable : 4996) // strided_span is in the process of being deprecated. // Suppressing warnings until it is completely removed #endif #if __clang__ || __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wdeprecated-declarations" //disable warnings from gtest #pragma GCC diagnostic ignored "-Wundef" #pragma GCC diagnostic ignored "-Wglobal-constructors" #pragma GCC diagnostic ignored "-Wused-but-marked-unused" #pragma GCC diagnostic ignored "-Wcovered-switch-default" #endif #include #include // for byte #include // for narrow_cast #include // for strided_span, index, multi_span, strided_... #include // for size_t #include // for begin, end #include // for iota #include // for integral_constant<>::value, is_convertible #include // for vector namespace gsl { struct fail_fast; } // namespace gsl using namespace std; using namespace gsl; namespace { struct BaseClass { }; struct DerivedClass : BaseClass { }; GSL_SUPPRESS(con.4) // NO-FORMAT: attribute GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute void iterate_every_other_element(multi_span av) { // pick every other element auto length = av.size() / 2; #if defined(_MSC_VER) && _MSC_VER > 1800 auto bounds = strided_bounds<1>({length}, {2}); #else auto bounds = strided_bounds<1>(multi_span_index<1>{length}, multi_span_index<1>{2}); #endif strided_span strided(&av.data()[1], av.size() - 1, bounds); EXPECT_TRUE(strided.size() == length); EXPECT_TRUE(strided.bounds().index_bounds()[0] == length); for (auto i = 0; i < strided.size(); ++i) { EXPECT_TRUE(strided[i] == av[2 * i + 1]); } int idx = 0; for (auto num : strided) { EXPECT_TRUE(num == av[2 * idx + 1]); idx++; } } GSL_SUPPRESS(con.4) // NO-FORMAT: attribute GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute // TODO: does not work void iterate_second_slice(multi_span av) { const int expected[6] = {2, 3, 10, 11, 18, 19}; auto section = av.section({0, 1, 0}, {3, 1, 2}); for (auto i = 0; i < section.extent<0>(); ++i) { for (auto j = 0; j < section.extent<1>(); ++j) for (auto k = 0; k < section.extent<2>(); ++k) { auto idx = multi_span_index<3>{i, j, k}; // avoid braces in the EXPECT_TRUE macro EXPECT_TRUE(section[idx] == expected[2 * i + 2 * j + k]); } } for (auto i = 0; i < section.extent<0>(); ++i) { for (auto j = 0; j < section.extent<1>(); ++j) for (auto k = 0; k < section.extent<2>(); ++k) EXPECT_TRUE(section[i][j][k] == expected[2 * i + 2 * j + k]); } int i = 0; for (const auto num : section) { EXPECT_TRUE(num == expected[i]); i++; } } } TEST(strided_span_tests, span_section_test) { int a[30][4][5]; const auto av = as_multi_span(a); const auto sub = av.section({15, 0, 0}, gsl::multi_span_index<3>{2, 2, 2}); const auto subsub = sub.section({1, 0, 0}, gsl::multi_span_index<3>{1, 1, 1}); (void) subsub; } TEST(strided_span_tests, span_section) { std::vector data(5 * 10); std::iota(begin(data), end(data), 0); const multi_span av = as_multi_span(multi_span{data}, dim<5>(), dim<10>()); const strided_span av_section_1 = av.section({1, 2}, {3, 4}); EXPECT_TRUE(!av_section_1.empty()); EXPECT_TRUE((av_section_1[{0, 0}] == 12)); EXPECT_TRUE((av_section_1[{0, 1}] == 13)); EXPECT_TRUE((av_section_1[{1, 0}] == 22)); EXPECT_TRUE((av_section_1[{2, 3}] == 35)); const strided_span av_section_2 = av_section_1.section({1, 2}, {2, 2}); EXPECT_TRUE(!av_section_2.empty()); EXPECT_TRUE((av_section_2[{0, 0}] == 24)); EXPECT_TRUE((av_section_2[{0, 1}] == 25)); EXPECT_TRUE((av_section_2[{1, 0}] == 34)); } TEST(strided_span_tests, strided_span_constructors) { // EXPECT_TRUE stride constructor { int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; const int carr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; strided_span sav1{arr, {{9}, {1}}}; // T -> T EXPECT_TRUE(sav1.bounds().index_bounds() == multi_span_index<1>{9}); EXPECT_TRUE(sav1.bounds().stride() == 1); EXPECT_TRUE(sav1[0] == 1); EXPECT_TRUE(sav1[8] == 9); strided_span sav2{carr, {{4}, {2}}}; // const T -> const T EXPECT_TRUE(sav2.bounds().index_bounds() == multi_span_index<1>{4}); EXPECT_TRUE(sav2.bounds().strides() == multi_span_index<1>{2}); EXPECT_TRUE(sav2[0] == 1); EXPECT_TRUE(sav2[3] == 7); strided_span sav3{arr, {{2, 2}, {6, 2}}}; // T -> const T EXPECT_TRUE((sav3.bounds().index_bounds() == multi_span_index<2>{2, 2})); EXPECT_TRUE((sav3.bounds().strides() == multi_span_index<2>{6, 2})); EXPECT_TRUE((sav3[{0, 0}]) == 1); EXPECT_TRUE((sav3[{0, 1}]) == 3); EXPECT_TRUE((sav3[{1, 0}]) == 7); } // EXPECT_TRUE multi_span constructor { int arr[] = {1, 2}; // From non-cv-qualified source { const multi_span src = arr; strided_span sav{src, {2, 1}}; EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav[1] == 2); #if defined(_MSC_VER) && _MSC_VER > 1800 // strided_span sav_c{ {src}, {2, 1} }; strided_span sav_c{multi_span{src}, strided_bounds<1>{2, 1}}; #else strided_span sav_c{multi_span{src}, strided_bounds<1>{2, 1}}; #endif EXPECT_TRUE(sav_c.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_c.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_c[1] == 2); #if defined(_MSC_VER) && _MSC_VER > 1800 strided_span sav_v{src, {2, 1}}; #else strided_span sav_v{multi_span{src}, strided_bounds<1>{2, 1}}; #endif EXPECT_TRUE(sav_v.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_v.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_v[1] == 2); #if defined(_MSC_VER) && _MSC_VER > 1800 strided_span sav_cv{src, {2, 1}}; #else strided_span sav_cv{multi_span{src}, strided_bounds<1>{2, 1}}; #endif EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_cv[1] == 2); } // From const-qualified source { const multi_span src{arr}; strided_span sav_c{src, {2, 1}}; EXPECT_TRUE(sav_c.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_c.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_c[1] == 2); #if defined(_MSC_VER) && _MSC_VER > 1800 strided_span sav_cv{src, {2, 1}}; #else strided_span sav_cv{multi_span{src}, strided_bounds<1>{2, 1}}; #endif EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_cv[1] == 2); } // From volatile-qualified source { const multi_span src{arr}; strided_span sav_v{src, {2, 1}}; EXPECT_TRUE(sav_v.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_v.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_v[1] == 2); #if defined(_MSC_VER) && _MSC_VER > 1800 strided_span sav_cv{src, {2, 1}}; #else strided_span sav_cv{multi_span{src}, strided_bounds<1>{2, 1}}; #endif EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_cv[1] == 2); } // From cv-qualified source { const multi_span src{arr}; strided_span sav_cv{src, {2, 1}}; EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav_cv[1] == 2); } } // EXPECT_TRUE const-casting constructor { int arr[2] = {4, 5}; const multi_span av(arr, 2); multi_span av2{av}; EXPECT_TRUE(av2[1] == 5); static_assert( std::is_convertible, multi_span>::value, "ctor is not implicit!"); const strided_span src{arr, {2, 1}}; strided_span sav{src}; EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav.bounds().stride() == 1); EXPECT_TRUE(sav[1] == 5); static_assert( std::is_convertible, strided_span>::value, "ctor is not implicit!"); } // EXPECT_TRUE copy constructor { int arr1[2] = {3, 4}; const strided_span src1{arr1, {2, 1}}; strided_span sav1{src1}; EXPECT_TRUE(sav1.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav1.bounds().stride() == 1); EXPECT_TRUE(sav1[0] == 3); int arr2[6] = {1, 2, 3, 4, 5, 6}; const strided_span src2{arr2, {{3, 2}, {2, 1}}}; strided_span sav2{src2}; EXPECT_TRUE((sav2.bounds().index_bounds() == multi_span_index<2>{3, 2})); EXPECT_TRUE((sav2.bounds().strides() == multi_span_index<2>{2, 1})); EXPECT_TRUE((sav2[{0, 0}]) == 1); EXPECT_TRUE((sav2[{2, 0}]) == 5); } // EXPECT_TRUE const-casting assignment operator { int arr1[2] = {1, 2}; int arr2[6] = {3, 4, 5, 6, 7, 8}; const strided_span src{arr1, {{2}, {1}}}; strided_span sav{arr2, {{3}, {2}}}; strided_span& sav_ref = (sav = src); EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav[0] == 1); EXPECT_TRUE(&sav_ref == &sav); } // EXPECT_TRUE copy assignment operator { int arr1[2] = {3, 4}; int arr1b[1] = {0}; const strided_span src1{arr1, {2, 1}}; strided_span sav1{arr1b, {1, 1}}; strided_span& sav1_ref = (sav1 = src1); EXPECT_TRUE(sav1.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav1.bounds().strides() == multi_span_index<1>{1}); EXPECT_TRUE(sav1[0] == 3); EXPECT_TRUE(&sav1_ref == &sav1); const int arr2[6] = {1, 2, 3, 4, 5, 6}; const int arr2b[1] = {0}; const strided_span src2{arr2, {{3, 2}, {2, 1}}}; strided_span sav2{arr2b, {{1, 1}, {1, 1}}}; strided_span& sav2_ref = (sav2 = src2); EXPECT_TRUE((sav2.bounds().index_bounds() == multi_span_index<2>{3, 2})); EXPECT_TRUE((sav2.bounds().strides() == multi_span_index<2>{2, 1})); EXPECT_TRUE((sav2[{0, 0}] == 1)); EXPECT_TRUE((sav2[{2, 0}] == 5)); EXPECT_TRUE(&sav2_ref == &sav2); } } TEST(strided_span_tests, strided_span_slice) { std::vector data(5 * 10); std::iota(begin(data), end(data), 0); const multi_span src = as_multi_span(multi_span{data}, dim<5>(), dim<10>()); const strided_span sav{src, {{5, 10}, {10, 1}}}; #ifdef CONFIRM_COMPILATION_ERRORS const strided_span csav{{src}, {{5, 10}, {10, 1}}}; #endif const strided_span csav{multi_span{src}, {{5, 10}, {10, 1}}}; strided_span sav_sl = sav[2]; EXPECT_TRUE(sav_sl[0] == 20); EXPECT_TRUE(sav_sl[9] == 29); strided_span csav_sl = sav[3]; EXPECT_TRUE(csav_sl[0] == 30); EXPECT_TRUE(csav_sl[9] == 39); EXPECT_TRUE(sav[4][0] == 40); EXPECT_TRUE(sav[4][9] == 49); } TEST(strided_span_tests, strided_span_column_major) { // strided_span may be used to accommodate more peculiar // use cases, such as column-major multidimensional array // (aka. "FORTRAN" layout). int cm_array[3 * 5] = {1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15}; strided_span cm_sav{cm_array, {{5, 3}, {1, 5}}}; // Accessing elements EXPECT_TRUE((cm_sav[{0, 0}] == 1)); EXPECT_TRUE((cm_sav[{0, 1}] == 2)); EXPECT_TRUE((cm_sav[{1, 0}] == 4)); EXPECT_TRUE((cm_sav[{4, 2}] == 15)); // Slice strided_span cm_sl = cm_sav[3]; EXPECT_TRUE(cm_sl[0] == 10); EXPECT_TRUE(cm_sl[1] == 11); EXPECT_TRUE(cm_sl[2] == 12); // Section strided_span cm_sec = cm_sav.section({2, 1}, {3, 2}); EXPECT_TRUE((cm_sec.bounds().index_bounds() == multi_span_index<2>{3, 2})); EXPECT_TRUE((cm_sec[{0, 0}] == 8)); EXPECT_TRUE((cm_sec[{0, 1}] == 9)); EXPECT_TRUE((cm_sec[{1, 0}] == 11)); EXPECT_TRUE((cm_sec[{2, 1}] == 15)); } TEST(strided_span_tests, strided_span_bounds) { int arr[] = {0, 1, 2, 3}; multi_span av(arr); { // incorrect sections EXPECT_DEATH(av.section(0, 0)[0], ".*"); EXPECT_DEATH(av.section(1, 0)[0], ".*"); EXPECT_DEATH(av.section(1, 1)[1], ".*"); EXPECT_DEATH(av.section(2, 5), ".*"); EXPECT_DEATH(av.section(5, 2), ".*"); EXPECT_DEATH(av.section(5, 0), ".*"); EXPECT_DEATH(av.section(0, 5), ".*"); EXPECT_DEATH(av.section(5, 5), ".*"); } { // zero stride strided_span sav{av, {{4}, {}}}; EXPECT_TRUE(sav[0] == 0); EXPECT_TRUE(sav[3] == 0); EXPECT_DEATH(sav[4], ".*"); } { // zero extent strided_span sav{av, {{}, {1}}}; EXPECT_DEATH(sav[0], ".*"); } { // zero extent and stride strided_span sav{av, {{}, {}}}; EXPECT_DEATH(sav[0], ".*"); } { // strided array ctor with matching strided bounds strided_span sav{arr, {4, 1}}; EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{4}); EXPECT_TRUE(sav[3] == 3); EXPECT_DEATH(sav[4], ".*"); } { // strided array ctor with smaller strided bounds strided_span sav{arr, {2, 1}}; EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav[1] == 1); EXPECT_DEATH(sav[2], ".*"); } { // strided array ctor with fitting irregular bounds strided_span sav{arr, {2, 3}}; EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2}); EXPECT_TRUE(sav[0] == 0); EXPECT_TRUE(sav[1] == 3); EXPECT_DEATH(sav[2], ".*"); } { // bounds cross data boundaries - from static arrays EXPECT_DEATH((strided_span{arr, {3, 2}}), ".*"); EXPECT_DEATH((strided_span{arr, {3, 3}}), ".*"); EXPECT_DEATH((strided_span{arr, {4, 5}}), ".*"); EXPECT_DEATH((strided_span{arr, {5, 1}}), ".*"); EXPECT_DEATH((strided_span{arr, {5, 5}}), ".*"); } { // bounds cross data boundaries - from array view EXPECT_DEATH((strided_span{av, {3, 2}}), ".*"); EXPECT_DEATH((strided_span{av, {3, 3}}), ".*"); EXPECT_DEATH((strided_span{av, {4, 5}}), ".*"); EXPECT_DEATH((strided_span{av, {5, 1}}), ".*"); EXPECT_DEATH((strided_span{av, {5, 5}}), ".*"); } { // bounds cross data boundaries - from dynamic arrays EXPECT_DEATH((strided_span{av.data(), 4, {3, 2}}), ".*"); EXPECT_DEATH((strided_span{av.data(), 4, {3, 3}}), ".*"); EXPECT_DEATH((strided_span{av.data(), 4, {4, 5}}), ".*"); EXPECT_DEATH((strided_span{av.data(), 4, {5, 1}}), ".*"); EXPECT_DEATH((strided_span{av.data(), 4, {5, 5}}), ".*"); EXPECT_DEATH((strided_span{av.data(), 2, {2, 2}}), ".*"); } #ifdef CONFIRM_COMPILATION_ERRORS { strided_span sav0{av.data(), {3, 2}}; strided_span sav1{arr, {1}}; strided_span sav2{arr, {1, 1, 1}}; strided_span sav3{av, {1}}; strided_span sav4{av, {1, 1, 1}}; strided_span sav5{av.as_multi_span(dim<2>(), dim<2>()), {1}}; strided_span sav6{av.as_multi_span(dim<2>(), dim<2>()), {1, 1, 1}}; strided_span sav7{av.as_multi_span(dim<2>(), dim<2>()), {{1, 1}, {1, 1}, {1, 1}}}; multi_span_index<1> index{0, 1}; strided_span sav8{arr, {1, {1, 1}}}; strided_span sav9{arr, {{1, 1}, {1, 1}}}; strided_span sav10{av, {1, {1, 1}}}; strided_span sav11{av, {{1, 1}, {1, 1}}}; strided_span sav12{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1}}}; strided_span sav13{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1, 1, 1}}}; strided_span sav14{av.as_multi_span(dim<2>(), dim<2>()), {{1, 1, 1}, {1}}}; } #endif } TEST(strided_span_tests, strided_span_type_conversion) { int arr[] = {0, 1, 2, 3}; multi_span av(arr); { strided_span sav{av.data(), av.size(), {av.size() / 2, 2}}; #ifdef CONFIRM_COMPILATION_ERRORS strided_span lsav1 = sav.as_strided_span(); #endif } { strided_span sav{av, {av.size() / 2, 2}}; #ifdef CONFIRM_COMPILATION_ERRORS strided_span lsav1 = sav.as_strided_span(); #endif } multi_span bytes = as_bytes(av); // retype strided array with regular strides - from raw data { strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}}; strided_span sav2{bytes.data(), bytes.size(), bounds}; strided_span sav3 = sav2.as_strided_span(); EXPECT_TRUE(sav3[0][0] == 0); EXPECT_TRUE(sav3[1][0] == 2); EXPECT_DEATH(sav3[1][1], ".*"); EXPECT_DEATH(sav3[0][1], ".*"); } // retype strided array with regular strides - from multi_span { strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}}; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{bytes2, bounds}; strided_span sav3 = sav2.as_strided_span(); EXPECT_TRUE(sav3[0][0] == 0); EXPECT_TRUE(sav3[1][0] == 2); EXPECT_DEATH(sav3[1][1], ".*"); EXPECT_DEATH(sav3[0][1], ".*"); } // retype strided array with not enough elements - last dimension of the array is too small { strided_bounds<2> bounds{{4, 2}, {4, 1}}; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{bytes2, bounds}; EXPECT_DEATH(sav2.as_strided_span(), ".*"); } // retype strided array with not enough elements - strides are too small { strided_bounds<2> bounds{{4, 2}, {2, 1}}; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{bytes2, bounds}; EXPECT_DEATH(sav2.as_strided_span(), ".*"); } // retype strided array with not enough elements - last dimension does not divide by the new // typesize { strided_bounds<2> bounds{{2, 6}, {4, 1}}; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{bytes2, bounds}; EXPECT_DEATH(sav2.as_strided_span(), ".*"); } // retype strided array with not enough elements - strides does not divide by the new // typesize { strided_bounds<2> bounds{{2, 1}, {6, 1}}; multi_span bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); strided_span sav2{bytes2, bounds}; EXPECT_DEATH(sav2.as_strided_span(), ".*"); } // retype strided array with irregular strides - from raw data { strided_bounds<1> bounds{bytes.size() / 2, 2}; strided_span sav2{bytes.data(), bytes.size(), bounds}; EXPECT_DEATH(sav2.as_strided_span(), ".*"); } // retype strided array with irregular strides - from multi_span { strided_bounds<1> bounds{bytes.size() / 2, 2}; strided_span sav2{bytes, bounds}; EXPECT_DEATH(sav2.as_strided_span(), ".*"); } } TEST(strided_span_tests, empty_strided_spans) { { multi_span empty_av(nullptr); strided_span empty_sav{empty_av, {0, 1}}; EXPECT_TRUE(empty_sav.bounds().index_bounds() == multi_span_index<1>{0}); EXPECT_TRUE(empty_sav.empty()); EXPECT_DEATH(empty_sav[0], ".*"); EXPECT_DEATH(empty_sav.begin()[0], ".*"); EXPECT_DEATH(empty_sav.cbegin()[0], ".*"); for (const auto& v : empty_sav) { (void) v; EXPECT_TRUE(false); } } { strided_span empty_sav{nullptr, 0, {0, 1}}; EXPECT_TRUE(empty_sav.bounds().index_bounds() == multi_span_index<1>{0}); EXPECT_DEATH(empty_sav[0], ".*"); EXPECT_DEATH(empty_sav.begin()[0], ".*"); EXPECT_DEATH(empty_sav.cbegin()[0], ".*"); for (const auto& v : empty_sav) { (void) v; EXPECT_TRUE(false); } } } TEST(strided_span_tests, strided_span_section_iteration) { int arr[8] = {4, 0, 5, 1, 6, 2, 7, 3}; // static bounds { multi_span av(arr, 8); iterate_every_other_element(av); } // dynamic bounds { multi_span av(arr, 8); iterate_every_other_element(av); } } TEST(strided_span_tests, dynamic_strided_span_section_iteration) { auto arr = new int[8]; for (int i = 0; i < 4; ++i) { arr[2 * i] = 4 + i; arr[2 * i + 1] = i; } auto av = as_multi_span(arr, 8); iterate_every_other_element(av); delete[] arr; } TEST(strided_span_tests, strided_span_section_iteration_3d) { int arr[3][4][2]{}; for (auto i = 0; i < 3; ++i) { for (auto j = 0; j < 4; ++j) for (auto k = 0; k < 2; ++k) arr[i][j][k] = 8 * i + 2 * j + k; } { multi_span av = arr; iterate_second_slice(av); } } TEST(strided_span_tests, dynamic_strided_span_section_iteration_3d) { const auto height = 12, width = 2; const auto size = height * width; auto arr = new int[static_cast(size)]; for (auto i = 0; i < size; ++i) { arr[i] = i; } { auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim<2>()); iterate_second_slice(av); } { auto av = as_multi_span(as_multi_span(arr, 24), dim(3), dim<4>(), dim<2>()); iterate_second_slice(av); } { auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim(4), dim<2>()); iterate_second_slice(av); } { auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim(2)); iterate_second_slice(av); } delete[] arr; } TEST(strided_span_tests, strided_span_conversion) { // get an multi_span of 'c' values from the list of X's struct X { int a; int b; int c; }; X arr[4] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}}; int s = sizeof(int) / sizeof(byte); auto d2 = 3 * s; auto d1 = narrow_cast(sizeof(int)) * 12 / d2; // convert to 4x12 array of bytes auto av = as_multi_span(as_bytes(as_multi_span(&arr[0], 4)), dim(d1), dim(d2)); EXPECT_TRUE(av.bounds().index_bounds()[0] == 4); EXPECT_TRUE(av.bounds().index_bounds()[1] == 12); // get the last 4 columns auto section = av.section({0, 2 * s}, {4, s}); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2], // arr[0].c[3] } , { arr[1].c[0], ... } , ... // } // convert to array 4x1 array of integers auto cs = section.as_strided_span(); // { { arr[0].c }, {arr[1].c } , ... } EXPECT_TRUE(cs.bounds().index_bounds()[0] == 4); EXPECT_TRUE(cs.bounds().index_bounds()[1] == 1); // transpose to 1x4 array strided_bounds<2> reverse_bounds{ {cs.bounds().index_bounds()[1], cs.bounds().index_bounds()[0]}, {cs.bounds().strides()[1], cs.bounds().strides()[0]}}; strided_span transposed{cs.data(), cs.bounds().total_size(), reverse_bounds}; // slice to get a one-dimensional array of c's strided_span result = transposed[0]; EXPECT_TRUE(result.bounds().index_bounds()[0] == 4); EXPECT_DEATH(result.bounds().index_bounds()[1], ".*"); int i = 0; for (auto& num : result) { EXPECT_TRUE(num == arr[i].c); i++; } } #if __clang__ || __GNUC__ #pragma GCC diagnostic pop #endif