/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include using namespace std; using namespace gsl; namespace { struct BaseClass { }; struct DerivedClass : BaseClass { }; } SUITE(span_tests) { TEST(default_constructor) { { span s; CHECK(s.length() == 0 && s.data() == nullptr); span cs; CHECK(cs.length() == 0 && cs.data() == nullptr); } { span s; CHECK(s.length() == 0 && s.data() == nullptr); span cs; CHECK(cs.length() == 0 && cs.data() == nullptr); } { #ifdef CONFIRM_COMPILATION_ERRORS span s; CHECK(s.length() == 1 && s.data() == nullptr); // explains why it can't compile #endif } { span s{}; CHECK(s.length() == 0 && s.data() == nullptr); span cs{}; CHECK(cs.length() == 0 && cs.data() == nullptr); } } TEST(size_optimization) { { span s; CHECK(sizeof(s) == sizeof(int*) + sizeof(ptrdiff_t)); } { span s; CHECK(sizeof(s) == sizeof(int*)); } } TEST(from_nullptr_constructor) { { span s = nullptr; CHECK(s.length() == 0 && s.data() == nullptr); span cs = nullptr; CHECK(cs.length() == 0 && cs.data() == nullptr); } { span s = nullptr; CHECK(s.length() == 0 && s.data() == nullptr); span cs = nullptr; CHECK(cs.length() == 0 && cs.data() == nullptr); } { #ifdef CONFIRM_COMPILATION_ERRORS span s = nullptr; CHECK(s.length() == 1 && s.data() == nullptr); // explains why it can't compile #endif } { span s{nullptr}; CHECK(s.length() == 0 && s.data() == nullptr); span cs{nullptr}; CHECK(cs.length() == 0 && cs.data() == nullptr); } { span s{nullptr}; CHECK(s.length() == 0 && s.data() == nullptr); span cs{nullptr}; CHECK(cs.length() == 0 && cs.data() == nullptr); } } TEST(from_nullptr_length_constructor) { { span s{nullptr, 0}; CHECK(s.length() == 0 && s.data() == nullptr); span cs{nullptr, 0}; CHECK(cs.length() == 0 && cs.data() == nullptr); } { span s{nullptr, 0}; CHECK(s.length() == 0 && s.data() == nullptr); span cs{nullptr, 0}; CHECK(cs.length() == 0 && cs.data() == nullptr); } { auto workaround_macro = []() { span s{ nullptr, 0 }; }; CHECK_THROW(workaround_macro(), fail_fast); } { auto workaround_macro = []() { span s{nullptr, 1}; }; CHECK_THROW(workaround_macro(), fail_fast); auto const_workaround_macro = []() { span cs{nullptr, 1}; }; CHECK_THROW(const_workaround_macro(), fail_fast); } { auto workaround_macro = []() { span s{nullptr, 1}; }; CHECK_THROW(workaround_macro(), fail_fast); auto const_workaround_macro = []() { span s{nullptr, 1}; }; CHECK_THROW(const_workaround_macro(), fail_fast); } { span s{nullptr, 0}; CHECK(s.length() == 0 && s.data() == nullptr); span cs{nullptr, 0}; CHECK(cs.length() == 0 && cs.data() == nullptr); } } TEST(from_pointer_length_constructor) { int arr[4] = {1, 2, 3, 4}; { span s{&arr[0], 2}; CHECK(s.length() == 2 && s.data() == &arr[0]); CHECK(s[0] == 1 && s[1] == 2); } { span s{&arr[0], 2}; CHECK(s.length() == 2 && s.data() == &arr[0]); CHECK(s[0] == 1 && s[1] == 2); } { int* p = nullptr; span s{p, 0}; CHECK(s.length() == 0 && s.data() == nullptr); } { int* p = nullptr; auto workaround_macro = [=]() { span s{p, 2}; }; CHECK_THROW(workaround_macro(), fail_fast); } } TEST(from_pointer_pointer_constructor) { int arr[4] = {1, 2, 3, 4}; { span s{&arr[0], &arr[2]}; CHECK(s.length() == 2 && s.data() == &arr[0]); CHECK(s[0] == 1 && s[1] == 2); } { span s{&arr[0], &arr[2]}; CHECK(s.length() == 2 && s.data() == &arr[0]); CHECK(s[0] == 1 && s[1] == 2); } { span s{&arr[0], &arr[0]}; CHECK(s.length() == 0 && s.data() == &arr[0]); } { span s{&arr[0], &arr[0]}; CHECK(s.length() == 0 && s.data() == &arr[0]); } // this will fail the std::distance() precondition, which asserts on MSVC debug builds //{ // auto workaround_macro = [&]() { span s{&arr[1], &arr[0]}; }; // CHECK_THROW(workaround_macro(), fail_fast); //} // this will fail the std::distance() precondition, which asserts on MSVC debug builds //{ // int* p = nullptr; // auto workaround_macro = [&]() { span s{&arr[0], p}; }; // CHECK_THROW(workaround_macro(), fail_fast); //} { int* p = nullptr; span s{ p, p }; CHECK(s.length() == 0 && s.data() == nullptr); } { int* p = nullptr; span s{ p, p }; CHECK(s.length() == 0 && s.data() == nullptr); } // this will fail the std::distance() precondition, which asserts on MSVC debug builds //{ // int* p = nullptr; // auto workaround_macro = [&]() { span s{&arr[0], p}; }; // CHECK_THROW(workaround_macro(), fail_fast); //} } TEST(from_array_constructor) { int arr[5] = {1, 2, 3, 4, 5}; { span s{arr}; CHECK(s.length() == 5 && s.data() == &arr[0]); } { span s{arr}; CHECK(s.length() == 5 && s.data() == &arr[0]); } int arr2d[2][3] = { 1, 2, 3, 4, 5, 6 }; #ifdef CONFIRM_COMPILATION_ERRORS { span s{arr}; } { span s{arr}; CHECK(s.length() == 0 && s.data() == &arr[0]); } { span s{arr2d}; CHECK(s.length() == 6 && s.data() == &arr2d[0][0]); CHECK(s[0] == 1 && s[5] == 6); } { span s{arr2d}; CHECK(s.length() == 0 && s.data() == &arr2d[0][0]); } { span s{ arr2d }; } #endif { span s{ &(arr2d[0]), 1 }; CHECK(s.length() == 1 && s.data() == &arr2d[0]); } int arr3d[2][3][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; #ifdef CONFIRM_COMPILATION_ERRORS { span s{arr3d}; CHECK(s.length() == 12 && s.data() == &arr3d[0][0][0]); CHECK(s[0] == 1 && s[11] == 12); } { span s{arr3d}; CHECK(s.length() == 0 && s.data() == &arr3d[0][0][0]); } { span s{arr3d}; } { span s{arr3d}; CHECK(s.length() == 12 && s.data() == &arr3d[0][0][0]); CHECK(s[0] == 1 && s[5] == 6); } #endif { span s{&arr3d[0], 1}; CHECK(s.length() == 1 && s.data() == &arr3d[0]); } } TEST(from_dynamic_array_constructor) { double(*arr)[3][4] = new double[100][3][4]; { span s(&arr[0][0][0], 10); CHECK(s.length() == 10 && s.data() == &arr[0][0][0]); } delete[] arr; } TEST(from_std_array_constructor) { std::array arr = {1, 2, 3, 4}; { span s{arr}; CHECK(s.size() == narrow_cast(arr.size()) && s.data() == arr.data()); span cs{arr}; CHECK(cs.size() == narrow_cast(arr.size()) && cs.data() == arr.data()); } { span s{arr}; CHECK(s.size() == narrow_cast(arr.size()) && s.data() == arr.data()); span cs{arr}; CHECK(cs.size() == narrow_cast(arr.size()) && cs.data() == arr.data()); } #ifdef CONFIRM_COMPILATION_ERRORS { span s{arr}; CHECK(s.size() == 2 && s.data() == arr.data()); span cs{arr}; CHECK(cs.size() == 2 && cs.data() == arr.data()); } { span s{arr}; CHECK(s.size() == 0 && s.data() == arr.data()); span cs{arr}; CHECK(cs.size() == 0 && cs.data() == arr.data()); } { span s{arr}; } { auto get_an_array = []()->std::array { return{1, 2, 3, 4}; }; auto take_a_span = [](span s) { (void)s; }; // try to take a temporary std::array take_a_span(get_an_array()); } #endif { auto get_an_array = []() -> std::array { return { 1, 2, 3, 4 }; }; auto take_a_span = [](span s) { (void)s; }; // try to take a temporary std::array take_a_span(get_an_array()); } } TEST(from_const_std_array_constructor) { const std::array arr = {1, 2, 3, 4}; { span s{arr}; CHECK(s.size() == narrow_cast(arr.size()) && s.data() == arr.data()); } { span s{arr}; CHECK(s.size() == narrow_cast(arr.size()) && s.data() == arr.data()); } #ifdef CONFIRM_COMPILATION_ERRORS { span s{arr}; CHECK(s.size() == 2 && s.data() == arr.data()); } { span s{arr}; CHECK(s.size() == 0 && s.data() == arr.data()); } { span s{arr}; } { auto get_an_array = []() -> const std::array { return {1, 2, 3, 4}; }; auto take_a_span = [](span s) { (void) s; }; // try to take a temporary std::array take_a_span(get_an_array()); } #endif } TEST(from_container_constructor) { std::vector v = {1, 2, 3}; const std::vector cv = v; { span s{v}; CHECK(s.size() == narrow_cast(v.size()) && s.data() == v.data()); span cs{v}; CHECK(cs.size() == narrow_cast(v.size()) && cs.data() == v.data()); } std::string str = "hello"; const std::string cstr = "hello"; { #ifdef CONFIRM_COMPILATION_ERRORS span s{str}; CHECK(s.size() == narrow_cast(str.size()) && s.data() == str.data()); #endif span cs{str}; CHECK(cs.size() == narrow_cast(str.size()) && cs.data() == str.data()); } { #ifdef CONFIRM_COMPILATION_ERRORS span s{cstr}; #endif span cs{cstr}; CHECK(cs.size() == narrow_cast(cstr.size()) && cs.data() == cstr.data()); } { #ifdef CONFIRM_COMPILATION_ERRORS auto get_temp_vector = []() -> std::vector { return {}; }; auto use_span = [](span s) { (void) s; }; use_span(get_temp_vector()); #endif } { auto get_temp_vector = []() -> std::vector { return{}; }; auto use_span = [](span s) { (void)s; }; use_span(get_temp_vector()); } { #ifdef CONFIRM_COMPILATION_ERRORS auto get_temp_string = []() -> std::string { return{}; }; auto use_span = [](span s) { (void)s; }; use_span(get_temp_string()); #endif } { auto get_temp_string = []() -> std::string { return {}; }; auto use_span = [](span s) { (void) s; }; use_span(get_temp_string()); } { #ifdef CONFIRM_COMPILATION_ERRORS auto get_temp_vector = []() -> const std::vector { return {}; }; auto use_span = [](span s) { (void) s; }; use_span(get_temp_vector()); #endif } { #ifdef CONFIRM_COMPILATION_ERRORS auto get_temp_string = []() -> const std::string { return {}; }; auto use_span = [](span s) { (void) s; }; use_span(get_temp_string()); #endif } { #ifdef CONFIRM_COMPILATION_ERRORS std::map m; span s{m}; #endif } } TEST(from_convertible_span_constructor) { { span avd; span avcd = avd; (void)avcd; } { #ifdef CONFIRM_COMPILATION_ERRORS span avd; span avb = avd; (void) avb; #endif } { span s; span s2 = s; (void)s2; } { span s; span s2 = s; (void)s2; } { #ifdef CONFIRM_COMPILATION_ERRORS span s; span s2 = s; (void)s2; #endif } } TEST(copy_move_and_assignment) { span s1; CHECK(s1.empty()); int arr[] = {3, 4, 5}; span s2 = arr; CHECK(s2.length() == 3 && s2.data() == &arr[0]); s2 = s1; CHECK(s2.empty()); auto get_temp_span = [&]() -> span { return {&arr[1], 2}; }; auto use_span = [&](span s) { CHECK(s.length() == 2 && s.data() == &arr[1]); }; use_span(get_temp_span()); s1 = get_temp_span(); CHECK(s1.length() == 2 && s1.data() == &arr[1]); } TEST(first) { int arr[5] = {1, 2, 3, 4, 5}; { span av = arr; CHECK(av.first<2>().length() == 2); CHECK(av.first(2).length() == 2); } { span av = arr; CHECK(av.first<0>().length() == 0); CHECK(av.first(0).length() == 0); } { span av = arr; CHECK(av.first<5>().length() == 5); CHECK(av.first(5).length() == 5); } { span av = arr; #ifdef CONFIRM_COMPILATION_ERRORS CHECK(av.first<6>().length() == 6); CHECK(av.first<-1>().length() == -1); #endif CHECK_THROW(av.first(6).length(), fail_fast); } { span av; CHECK(av.first<0>().length() == 0); CHECK(av.first(0).length() == 0); } } TEST(last) { int arr[5] = {1, 2, 3, 4, 5}; { span av = arr; CHECK(av.last<2>().length() == 2); CHECK(av.last(2).length() == 2); } { span av = arr; CHECK(av.last<0>().length() == 0); CHECK(av.last(0).length() == 0); } { span av = arr; CHECK(av.last<5>().length() == 5); CHECK(av.last(5).length() == 5); } { span av = arr; #ifdef CONFIRM_COMPILATION_ERRORS CHECK(av.last<6>().length() == 6); #endif CHECK_THROW(av.last(6).length(), fail_fast); } { span av; CHECK(av.last<0>().length() == 0); CHECK(av.last(0).length() == 0); } } TEST(subspan) { int arr[5] = {1, 2, 3, 4, 5}; { span av = arr; CHECK((av.subspan<2, 2>().length() == 2)); CHECK(av.subspan(2, 2).length() == 2); CHECK(av.subspan(2, 3).length() == 3); } { span av = arr; CHECK((av.subspan<0, 0>().length() == 0)); CHECK(av.subspan(0, 0).length() == 0); } { span av = arr; CHECK((av.subspan<0, 5>().length() == 5)); CHECK(av.subspan(0, 5).length() == 5); CHECK_THROW(av.subspan(0, 6).length(), fail_fast); CHECK_THROW(av.subspan(1, 5).length(), fail_fast); } { span av = arr; CHECK((av.subspan<4, 0>().length() == 0)); CHECK(av.subspan(4, 0).length() == 0); CHECK(av.subspan(5, 0).length() == 0); CHECK_THROW(av.subspan(6, 0).length(), fail_fast); } { span av; CHECK((av.subspan<0, 0>().length() == 0)); CHECK(av.subspan(0, 0).length() == 0); CHECK_THROW((av.subspan<1, 0>().length()), fail_fast); } { span av; CHECK(av.subspan(0).length() == 0); CHECK_THROW(av.subspan(1).length(), fail_fast); } { span av = arr; CHECK(av.subspan(0).length() == 5); CHECK(av.subspan(1).length() == 4); CHECK(av.subspan(4).length() == 1); CHECK(av.subspan(5).length() == 0); CHECK_THROW(av.subspan(6).length(), fail_fast); auto av2 = av.subspan(1); for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2); } { span av = arr; CHECK(av.subspan(0).length() == 5); CHECK(av.subspan(1).length() == 4); CHECK(av.subspan(4).length() == 1); CHECK(av.subspan(5).length() == 0); CHECK_THROW(av.subspan(6).length(), fail_fast); auto av2 = av.subspan(1); for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2); } } TEST(operator_function_call) { int arr[4] = {1, 2, 3, 4}; { span s = arr; CHECK(s(0) == 1); CHECK_THROW(s(5), fail_fast); } { int arr2d[2] = {1, 6}; span s = arr2d; CHECK(s(0) == 1); CHECK(s(1) == 6); CHECK_THROW(s(2) ,fail_fast); } } TEST(iterator) { span::iterator it1; span::iterator it2; CHECK(it1 == it2); } TEST(begin_end) { { int a[] = { 1, 2, 3, 4 }; span s = a; span::iterator it = s.begin(); auto first = it; CHECK(it == first); CHECK(*it == 1); span::iterator beyond = s.end(); CHECK(it != beyond); CHECK_THROW(*beyond, fail_fast); CHECK(beyond - first == 4); CHECK(first - first == 0); CHECK(beyond - beyond == 0); ++it; CHECK(it - first == 1); CHECK(*it == 2); *it = 22; CHECK(*it == 22); CHECK(beyond - it == 3); it = first; CHECK(it == first); while (it != s.end()) { *it = 5; ++it; } CHECK(it == beyond); CHECK(it - beyond == 0); for (auto& n : s) CHECK(n == 5); } } #if 0 TEST(comparison_operators) { { int arr[10][2]; auto s1 = as_span(arr); span s2 = s1; CHECK(s1 == s2); span s3 = as_span(s1, dim<>(20)); CHECK(s3 == s2 && s3 == s1); } { auto s1 = nullptr; auto s2 = nullptr; CHECK(s1 == s2); CHECK(!(s1 != s2)); CHECK(!(s1 < s2)); CHECK(s1 <= s2); CHECK(!(s1 > s2)); CHECK(s1 >= s2); CHECK(s2 == s1); CHECK(!(s2 != s1)); CHECK(!(s2 < s1)); CHECK(s2 <= s1); CHECK(!(s2 > s1)); CHECK(s2 >= s1); } { int arr[] = {2, 1}; // bigger span s1 = nullptr; span s2 = arr; CHECK(s1 != s2); CHECK(s2 != s1); CHECK(!(s1 == s2)); CHECK(!(s2 == s1)); CHECK(s1 < s2); CHECK(!(s2 < s1)); CHECK(s1 <= s2); CHECK(!(s2 <= s1)); CHECK(s2 > s1); CHECK(!(s1 > s2)); CHECK(s2 >= s1); CHECK(!(s1 >= s2)); } { int arr1[] = {1, 2}; int arr2[] = {1, 2}; span s1 = arr1; span s2 = arr2; CHECK(s1 == s2); CHECK(!(s1 != s2)); CHECK(!(s1 < s2)); CHECK(s1 <= s2); CHECK(!(s1 > s2)); CHECK(s1 >= s2); CHECK(s2 == s1); CHECK(!(s2 != s1)); CHECK(!(s2 < s1)); CHECK(s2 <= s1); CHECK(!(s2 > s1)); CHECK(s2 >= s1); } { int arr[] = {1, 2, 3}; span s1 = {&arr[0], 2}; // shorter span s2 = arr; // longer CHECK(s1 != s2); CHECK(s2 != s1); CHECK(!(s1 == s2)); CHECK(!(s2 == s1)); CHECK(s1 < s2); CHECK(!(s2 < s1)); CHECK(s1 <= s2); CHECK(!(s2 <= s1)); CHECK(s2 > s1); CHECK(!(s1 > s2)); CHECK(s2 >= s1); CHECK(!(s1 >= s2)); } { int arr1[] = {1, 2}; // smaller int arr2[] = {2, 1}; // bigger span s1 = arr1; span s2 = arr2; CHECK(s1 != s2); CHECK(s2 != s1); CHECK(!(s1 == s2)); CHECK(!(s2 == s1)); CHECK(s1 < s2); CHECK(!(s2 < s1)); CHECK(s1 <= s2); CHECK(!(s2 <= s1)); CHECK(s2 > s1); CHECK(!(s1 > s2)); CHECK(s2 >= s1); CHECK(!(s1 >= s2)); } } TEST(fixed_size_conversions) { int arr[] = {1, 2, 3, 4}; // converting to an span from an equal size array is ok span av4 = arr; CHECK(av4.length() == 4); // converting to dynamic_range a_v is always ok { span av = av4; (void) av; } { span av = arr; (void) av; } // initialization or assignment to static span that REDUCES size is NOT ok #ifdef CONFIRM_COMPILATION_ERRORS { span av2 = arr; } { span av2 = av4; } #endif { span av = arr; span av2 = av; (void) av2; } #ifdef CONFIRM_COMPILATION_ERRORS { span av = arr; span av2 = av.as_span(dim<2>(), dim<2>()); } #endif { span av = arr; span av2 = as_span(av, dim<>(2), dim<>(2)); auto workaround_macro = [&]() { return av2[{1, 0}] == 2; }; CHECK(workaround_macro()); } // but doing so explicitly is ok // you can convert statically { span av2 = {arr, 2}; (void) av2; } { span av2 = av4.first<1>(); (void) av2; } // ...or dynamically { // NB: implicit conversion to span from span span av2 = av4.first(1); (void) av2; } // initialization or assignment to static span that requires size INCREASE is not ok. int arr2[2] = {1, 2}; #ifdef CONFIRM_COMPILATION_ERRORS { span av4 = arr2; } { span av2 = arr2; span av4 = av2; } #endif { auto f = [&]() { span av9 = {arr2, 2}; (void) av9; }; CHECK_THROW(f(), fail_fast); } // this should fail - we are trying to assign a small dynamic a_v to a fixed_size larger one span av = arr2; auto f = [&]() { span av2 = av; (void) av2; }; CHECK_THROW(f(), fail_fast); } TEST(as_writeable_bytes) { int a[] = {1, 2, 3, 4}; { #ifdef CONFIRM_COMPILATION_ERRORS // you should not be able to get writeable bytes for const objects span av = a; auto wav = av.as_writeable_bytes(); #endif } { span av; auto wav = as_writeable_bytes(av); CHECK(wav.length() == av.length()); CHECK(wav.length() == 0); CHECK(wav.size_bytes() == 0); } { span av = a; auto wav = as_writeable_bytes(av); CHECK(wav.data() == (byte*) &a[0]); CHECK(wav.length() == sizeof(a)); } } #endif } int main(int, const char* []) { return UnitTest::RunAllTests(); }