/////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2015 Microsoft Corporation. All rights reserved. // // This code is licensed under the MIT License (MIT). // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. // /////////////////////////////////////////////////////////////////////////////// #pragma once #include #include #include #include #include #include #include #include #include #include "fail_fast.h" #ifndef _MSC_VER #define _CONSTEXPR constexpr #else #define _CONSTEXPR #endif #pragma push_macro("_NOEXCEPT") #ifndef _NOEXCEPT #ifdef SAFER_CPP_TESTING #define _NOEXCEPT #else #define _NOEXCEPT noexcept #endif #else // _NOEXCEPT #ifdef SAFER_CPP_TESTING #undef _NOEXCEPT #define _NOEXCEPT #endif #endif // _NOEXCEPT namespace Guide { /* ** begin definitions of index and bounds */ namespace details { template struct SizeTypeTraits { static const size_t max_value = std::is_signed::value ? static_cast::type>(-1) / 2 : static_cast(-1); }; template class coordinate_facade { static_assert(std::is_integral::value && sizeof(ValueType) <= sizeof(size_t), "ValueType must be unsigned integral type!"); static_assert(Rank > 0, "Rank must be greater than 0!"); template friend class coordinate_facade; public: using reference = ValueType&; using const_reference = const ValueType&; using value_type = ValueType; static const unsigned int rank = Rank; _CONSTEXPR coordinate_facade() _NOEXCEPT { static_assert(std::is_base_of::value, "ConcreteType must be derived from coordinate_facade."); } _CONSTEXPR coordinate_facade(const value_type(&values)[rank]) _NOEXCEPT { static_assert(std::is_base_of::value, "ConcreteType must be derived from coordinate_facade."); for (unsigned int i = 0; i < rank; ++i) elems[i] = values[i]; } _CONSTEXPR coordinate_facade(value_type e0) _NOEXCEPT { static_assert(std::is_base_of::value, "ConcreteType must be derived from coordinate_facade."); static_assert(rank == 1, "This constructor can only be used with rank == 1."); elems[0] = e0; } // Preconditions: il.size() == rank _CONSTEXPR coordinate_facade(std::initializer_list il) { static_assert(std::is_base_of::value, "ConcreteType must be derived from coordinate_facade."); fail_fast_assert(il.size() == rank, "The size of the initializer list must match the rank of the array"); for (unsigned int i = 0; i < rank; ++i) { elems[i] = begin(il)[i]; } } _CONSTEXPR coordinate_facade(const coordinate_facade & other) = default; template _CONSTEXPR coordinate_facade(const coordinate_facade & other) { for (unsigned int i = 0; i < rank; ++i) { fail_fast_assert(static_cast(other.elems[i]) <= SizeTypeTraits::max_value); elems[i] = static_cast(other.elems[i]); } } protected: coordinate_facade& operator=(const coordinate_facade& rhs) = default; // Preconditions: component_idx < rank _CONSTEXPR reference operator[](unsigned int component_idx) { fail_fast_assert(component_idx < rank, "Component index must be less than rank"); return elems[component_idx]; } // Preconditions: component_idx < rank _CONSTEXPR const_reference operator[](unsigned int component_idx) const { fail_fast_assert(component_idx < rank, "Component index must be less than rank"); return elems[component_idx]; } _CONSTEXPR bool operator==(const ConcreteType& rhs) const _NOEXCEPT { for (unsigned int i = 0; i < rank; ++i) { if (elems[i] != rhs.elems[i]) return false; } return true; } _CONSTEXPR bool operator!=(const ConcreteType& rhs) const _NOEXCEPT { return !(to_concrete() == rhs); } _CONSTEXPR ConcreteType operator+() const _NOEXCEPT { return to_concrete(); } _CONSTEXPR ConcreteType operator-() const { ConcreteType ret = to_concrete(); for (unsigned int i = 0; i < rank; ++i) ret.elems[i] = -ret.elems[i]; return ret; } _CONSTEXPR ConcreteType operator+(const ConcreteType& rhs) const { ConcreteType ret = to_concrete(); ret += rhs; return ret; } _CONSTEXPR ConcreteType operator-(const ConcreteType& rhs) const { ConcreteType ret = to_concrete(); ret -= rhs; return ret; } _CONSTEXPR ConcreteType& operator+=(const ConcreteType& rhs) { for (unsigned int i = 0; i < rank; ++i) elems[i] += rhs.elems[i]; return to_concrete(); } _CONSTEXPR ConcreteType& operator-=(const ConcreteType& rhs) { for (unsigned int i = 0; i < rank; ++i) elems[i] -= rhs.elems[i]; return to_concrete(); } _CONSTEXPR ConcreteType& operator++() { static_assert(rank == 1, "This operator can only be used with rank == 1."); ++elems[0]; return to_concrete(); } _CONSTEXPR ConcreteType operator++(int) { static_assert(rank == 1, "This operator can only be used with rank == 1."); ConcreteType ret = to_concrete(); ++(*this); return ret; } _CONSTEXPR ConcreteType& operator--() { static_assert(rank == 1, "This operator can only be used with rank == 1."); --elems[0]; return to_concrete(); } _CONSTEXPR ConcreteType operator--(int) { static_assert(rank == 1, "This operator can only be used with rank == 1."); ConcreteType ret = to_concrete(); --(*this); return ret; } _CONSTEXPR ConcreteType operator*(value_type v) const { ConcreteType ret = to_concrete(); ret *= v; return ret; } _CONSTEXPR ConcreteType operator/(value_type v) const { ConcreteType ret = to_concrete(); ret /= v; return ret; } friend _CONSTEXPR ConcreteType operator*(value_type v, const ConcreteType& rhs) { return rhs * v; } _CONSTEXPR ConcreteType& operator*=(value_type v) { for (unsigned int i = 0; i < rank; ++i) elems[i] *= v; return to_concrete(); } _CONSTEXPR ConcreteType& operator/=(value_type v) { for (unsigned int i = 0; i < rank; ++i) elems[i] /= v; return to_concrete(); } value_type elems[rank] = {}; private: _CONSTEXPR const ConcreteType& to_concrete() const _NOEXCEPT { return static_cast(*this); } _CONSTEXPR ConcreteType& to_concrete() _NOEXCEPT { return static_cast(*this); } }; template class arrow_proxy { public: explicit arrow_proxy(T t) : val(t) {} const T operator*() const _NOEXCEPT { return val; } const T* operator->() const _NOEXCEPT { return &val; } private: T val; }; } template class index : private details::coordinate_facade, ValueType, Rank> { using Base = details::coordinate_facade, ValueType, Rank>; friend Base; template friend class index; public: using Base::rank; using reference = typename Base::reference; using const_reference = typename Base::const_reference; using size_type = typename Base::value_type; using value_type = typename Base::value_type; _CONSTEXPR index() _NOEXCEPT : Base(){} _CONSTEXPR index(const value_type (&values)[rank]) _NOEXCEPT : Base(values) {} _CONSTEXPR index(std::initializer_list il) : Base(il) {} _CONSTEXPR index(const index &) = default; template _CONSTEXPR index(const index &other) : Base(other) { } _CONSTEXPR static index shift_left(const index& other) _NOEXCEPT { return (value_type(&)[rank])other.elems[1]; } using Base::operator[]; using Base::operator==; using Base::operator!=; using Base::operator+; using Base::operator-; using Base::operator+=; using Base::operator-=; using Base::operator++; using Base::operator--; using Base::operator*; using Base::operator/; using Base::operator*=; using Base::operator/=; }; template class index<1, ValueType> { template friend class index; public: static const unsigned int rank = 1; using reference = ValueType&; using const_reference = const ValueType&; using size_type = ValueType; using value_type = ValueType; _CONSTEXPR index() _NOEXCEPT : value(0) { } _CONSTEXPR index(value_type e0) _NOEXCEPT : value(e0) { } _CONSTEXPR index(const value_type(&values)[1]) _NOEXCEPT : index(values[0]) { } // Preconditions: il.size() == rank _CONSTEXPR index(std::initializer_list il) { fail_fast_assert(il.size() == rank, "Size of the initializer list must match the rank of the array"); value = begin(il)[0]; } _CONSTEXPR index(const index &) = default; template _CONSTEXPR index(const index<1, OtherValueType> & other) { fail_fast_assert(other.value <= details::SizeTypeTraits::max_value); value = static_cast(other.value); } _CONSTEXPR static index shift_left(const index& other) _NOEXCEPT { return other.elems[1]; } // Preconditions: component_idx < rank _CONSTEXPR reference operator[](size_type component_idx) _NOEXCEPT { fail_fast_assert(component_idx == 0, "Component index must be less than rank"); (void)(component_idx); return value; } // Preconditions: component_idx < rank _CONSTEXPR const_reference operator[](size_type component_idx) const _NOEXCEPT { fail_fast_assert(component_idx == 0, "Component index must be less than rank"); (void)(component_idx); return value; } _CONSTEXPR bool operator==(const index& rhs) const _NOEXCEPT { return value == rhs.value; } _CONSTEXPR bool operator!=(const index& rhs) const _NOEXCEPT { return !(*this == rhs); } _CONSTEXPR index operator+() const _NOEXCEPT { return *this; } _CONSTEXPR index operator-() const _NOEXCEPT { return index(-value); } _CONSTEXPR index operator+(const index& rhs) const _NOEXCEPT { return index(value + rhs.value); } _CONSTEXPR index operator-(const index& rhs) const _NOEXCEPT { return index(value - rhs.value); } _CONSTEXPR index& operator+=(const index& rhs) _NOEXCEPT { value += rhs.value; return *this; } _CONSTEXPR index& operator-=(const index& rhs) _NOEXCEPT { value -= rhs.value; return *this; } _CONSTEXPR index& operator++() _NOEXCEPT { ++value; return *this; } _CONSTEXPR index operator++(int) _NOEXCEPT { index ret = *this; ++(*this); return ret; } _CONSTEXPR index& operator--() _NOEXCEPT { --value; return *this; } _CONSTEXPR index operator--(int) _NOEXCEPT { index ret = *this; --(*this); return ret; } _CONSTEXPR index operator*(value_type v) const _NOEXCEPT { return index(value * v); } _CONSTEXPR index operator/(value_type v) const _NOEXCEPT { return index(value / v); } _CONSTEXPR index& operator*=(value_type v) _NOEXCEPT { value *= v; return *this; } _CONSTEXPR index& operator/=(value_type v) _NOEXCEPT { value /= v; return *this; } friend _CONSTEXPR index operator*(value_type v, const index& rhs) _NOEXCEPT { return index(rhs * v); } private: value_type value; }; #ifndef _MSC_VER struct static_bounds_dynamic_range_t { template ::value>> constexpr operator T() const noexcept { return static_cast(-1); } template ::value>> constexpr bool operator ==(T other) const noexcept { return static_cast(-1) == other; } template ::value>> constexpr bool operator !=(T other) const noexcept { return static_cast(-1) != other; } }; template ::value>> constexpr bool operator ==(T left, static_bounds_dynamic_range_t right) noexcept { return right == left; } template ::value>> constexpr bool operator !=(T left, static_bounds_dynamic_range_t right) noexcept { return right != left; } constexpr static_bounds_dynamic_range_t dynamic_range{}; #else const char dynamic_range = -1; #endif struct generalized_mapping_tag {}; struct contiguous_mapping_tag : generalized_mapping_tag {}; namespace details { template struct StaticSizeHelperImpl { static_assert(static_cast(Fact1) * static_cast(Fact2) <= SizeTypeTraits::max_value, "Value out of the range of SizeType"); static const SizeType value = Fact1 * Fact2; }; template struct StaticSizeHelperImpl { static const SizeType value = ConstBound; }; template struct StaticSizeHelperImpl { static const SizeType value = ConstBound; }; template struct StaticSizeHelperImpl { static const SizeType value = static_cast(ConstBound); }; template struct StaticSizeHelper { static const SizeType value = StaticSizeHelperImpl(Fact1), static_cast(Fact2), static_cast(dynamic_range)>::value; }; template struct LessThan { static const bool value = Left < Right; }; template struct BoundsRanges { static const unsigned int Depth = 0; static const unsigned int DynamicNum = 0; static const SizeType CurrentRange = 1; static const SizeType TotalSize = 1; BoundsRanges (const BoundsRanges &) = default; // TODO : following signature is for work around VS bug template BoundsRanges (const OtherType &, bool firstLevel) {} BoundsRanges(const SizeType * const arr) { } BoundsRanges() = default; template void serialize(T &) const { } template SizeType linearize(const T &) const { return 0; } template ptrdiff_t contains(const T &) const { return 0; } size_t totalSize() const _NOEXCEPT { return TotalSize; } bool operator == (const BoundsRanges &) const _NOEXCEPT { return true; } }; template struct BoundsRanges : BoundsRanges{ using Base = BoundsRanges ; static const unsigned int Depth = Base::Depth + 1; static const unsigned int DynamicNum = Base::DynamicNum + 1; static const SizeType CurrentRange = dynamic_range; static const SizeType TotalSize = dynamic_range; const SizeType m_bound; BoundsRanges (const BoundsRanges &) = default; BoundsRanges(const SizeType * const arr) : Base(arr + 1), m_bound(static_cast(*arr * this->Base::totalSize())) { fail_fast_assert(0 <= *arr); fail_fast_assert(*arr * this->Base::totalSize() <= details::SizeTypeTraits::max_value); } BoundsRanges() : m_bound(0) {} template BoundsRanges(const BoundsRanges &other, bool firstLevel = true) : Base(static_cast&>(other), false), m_bound (static_cast(other.totalSize())) { } template void serialize(T & arr) const { arr[Dim] = elementNum(); this->Base::template serialize(arr); } template SizeType linearize(const T & arr) const { const size_t index = this->Base::totalSize() * arr[Dim]; fail_fast_assert(index < static_cast(m_bound)); return static_cast(index) + this->Base::template linearize(arr); } template ptrdiff_t contains(const T & arr) const { const ptrdiff_t last = this->Base::template contains(arr); if (last == -1) return -1; const ptrdiff_t cur = this->Base::totalSize() * arr[Dim]; return static_cast(cur) < static_cast(m_bound) ? cur + last : -1; } size_t totalSize() const _NOEXCEPT { return m_bound; } SizeType elementNum() const _NOEXCEPT { return static_cast(totalSize() / this->Base::totalSize()); } SizeType elementNum(unsigned int dim) const _NOEXCEPT{ if (dim > 0) return this->Base::elementNum(dim - 1); else return elementNum(); } bool operator == (const BoundsRanges & rhs) const _NOEXCEPT { return m_bound == rhs.m_bound && static_cast(*this) == static_cast(rhs); } }; template struct BoundsRanges : BoundsRanges{ using Base = BoundsRanges ; static const unsigned int Depth = Base::Depth + 1; static const unsigned int DynamicNum = Base::DynamicNum; static const SizeType CurrentRange = static_cast(CurRange); static const SizeType TotalSize = StaticSizeHelper::value; static_assert (CurRange <= SizeTypeTraits::max_value, "CurRange must be smaller than SizeType limits"); BoundsRanges (const BoundsRanges &) = default; BoundsRanges(const SizeType * const arr) : Base(arr) { } BoundsRanges() = default; template BoundsRanges(const BoundsRanges &other, bool firstLevel = true) : Base(static_cast&>(other), false) { fail_fast_assert((firstLevel && totalSize() <= other.totalSize()) || totalSize() == other.totalSize()); } template void serialize(T & arr) const { arr[Dim] = elementNum(); this->Base::template serialize(arr); } template SizeType linearize(const T & arr) const { fail_fast_assert(arr[Dim] < CurrentRange, "Index is out of range"); return static_cast(this->Base::totalSize()) * arr[Dim] + this->Base::template linearize(arr); } template ptrdiff_t contains(const T & arr) const { if (static_cast(arr[Dim]) >= CurrentRange) return -1; const ptrdiff_t last = this->Base::template contains(arr); if (last == -1) return -1; return static_cast(this->Base::totalSize() * arr[Dim]) + last; } size_t totalSize() const _NOEXCEPT{ return CurrentRange * this->Base::totalSize(); } SizeType elementNum() const _NOEXCEPT{ return CurrentRange; } SizeType elementNum(unsigned int dim) const _NOEXCEPT{ if (dim > 0) return this->Base::elementNum(dim - 1); else return elementNum(); } bool operator == (const BoundsRanges & rhs) const _NOEXCEPT { return static_cast(*this) == static_cast(rhs); } }; template struct BoundsRangeConvertible2; // TODO: I have to rewrite BoundsRangeConvertible into following way to workaround VS 2013 bugs template > auto helpBoundsRangeConvertible(SourceType, TargetType, std::true_type) -> Ret; template auto helpBoundsRangeConvertible(SourceType, TargetType, ...) -> std::false_type; template struct BoundsRangeConvertible2 : decltype(helpBoundsRangeConvertible(SourceType(), TargetType(), std::integral_constant())) {}; template struct BoundsRangeConvertible2 : std::true_type {}; template struct BoundsRangeConvertible : decltype(helpBoundsRangeConvertible(SourceType(), TargetType(), std::integral_constant::value || TargetType::CurrentRange == dynamic_range || SourceType::CurrentRange == dynamic_range)>())) {}; template struct BoundsRangeConvertible : std::true_type {}; template struct TypeListIndexer { const TypeChain & obj; TypeListIndexer(const TypeChain & obj) :obj(obj){} template const TypeChain & getObj(std::true_type) { return obj; } template auto getObj(std::false_type) -> decltype(TypeListIndexer(static_cast(obj)).template get()) { return TypeListIndexer(static_cast(obj)).template get(); } template auto get() -> decltype(getObj(std::integral_constant())) { return getObj(std::integral_constant()); } }; template TypeListIndexer createTypeListIndexer(const TypeChain &obj) { return TypeListIndexer(obj); } } template class bounds_iterator; template class static_bounds { public: static_bounds(const details::BoundsRanges &empty) { } }; template class static_bounds { using MyRanges = details::BoundsRanges ; static_assert(std::is_integral::value && details::SizeTypeTraits::max_value <= SIZE_MAX, "SizeType must be an integral type and its numeric limits must be smaller than SIZE_MAX"); MyRanges m_ranges; _CONSTEXPR static_bounds(const MyRanges & range) : m_ranges(range) { } template friend class static_bounds; public: static const unsigned int rank = MyRanges::Depth; static const unsigned int dynamic_rank = MyRanges::DynamicNum; static const SizeType static_size = static_cast(MyRanges::TotalSize); using size_type = SizeType; using index_type = index; using iterator = bounds_iterator; using const_iterator = bounds_iterator; using difference_type = ptrdiff_t; using sliced_type = static_bounds; using mapping_type = contiguous_mapping_tag; public: _CONSTEXPR static_bounds(const static_bounds &) = default; template , details::BoundsRanges >::value>> _CONSTEXPR static_bounds(const static_bounds &other): m_ranges(other.m_ranges) { } _CONSTEXPR static_bounds(std::initializer_list il) : m_ranges(il.begin()) { fail_fast_assert(MyRanges::DynamicNum == il.size(), "Size of the initializer list must match the rank of the array"); fail_fast_assert(m_ranges.totalSize() <= details::SizeTypeTraits::max_value, "Size of the range is larger than the max element of the size type"); } _CONSTEXPR static_bounds() = default; _CONSTEXPR static_bounds & operator = (const static_bounds & otherBounds) { new(&m_ranges) MyRanges (otherBounds.m_ranges); return *this; } _CONSTEXPR sliced_type slice() const _NOEXCEPT { return sliced_type{static_cast &>(m_ranges)}; } _CONSTEXPR size_type stride() const _NOEXCEPT { return rank > 1 ? slice().size() : 1; } _CONSTEXPR size_type size() const _NOEXCEPT { return static_cast(m_ranges.totalSize()); } _CONSTEXPR size_type total_size() const _NOEXCEPT { return static_cast(m_ranges.totalSize()); } _CONSTEXPR size_type linearize(const index_type & idx) const { return m_ranges.linearize(idx); } _CONSTEXPR bool contains(const index_type& idx) const _NOEXCEPT { return m_ranges.contains(idx) != -1; } _CONSTEXPR size_type operator[](unsigned int index) const _NOEXCEPT { return m_ranges.elementNum(index); } template _CONSTEXPR size_type extent() const _NOEXCEPT { static_assert(Dim < rank, "dimension should be less than rank (dimension count starts from 0)"); return details::createTypeListIndexer(m_ranges).template get().elementNum(); } _CONSTEXPR index_type index_bounds() const _NOEXCEPT { index_type extents; m_ranges.serialize(extents); return extents; } template _CONSTEXPR bool operator == (const static_bounds & rhs) const _NOEXCEPT { return this->size() == rhs.size(); } template _CONSTEXPR bool operator != (const static_bounds & rhs) const _NOEXCEPT { return !(*this == rhs); } _CONSTEXPR const_iterator begin() const _NOEXCEPT { return const_iterator(*this); } _CONSTEXPR const_iterator end() const _NOEXCEPT { index_type boundary; m_ranges.serialize(boundary); return const_iterator(*this, this->index_bounds()); } }; template class strided_bounds : private details::coordinate_facade, SizeType, Rank> { using Base = details::coordinate_facade, SizeType, Rank>; friend Base; template friend class strided_bounds; public: using Base::rank; using reference = typename Base::reference; using const_reference = typename Base::const_reference; using size_type = typename Base::value_type; using difference_type = typename Base::value_type; using value_type = typename Base::value_type; using index_type = index; using iterator = bounds_iterator; using const_iterator = bounds_iterator; static const int dynamic_rank = rank; static const size_t static_size = dynamic_range; using sliced_type = std::conditional_t, void>; using mapping_type = generalized_mapping_tag; _CONSTEXPR strided_bounds(const strided_bounds &) = default; template _CONSTEXPR strided_bounds(const strided_bounds &other) : Base(other), m_strides(other.strides) { } _CONSTEXPR strided_bounds(const index_type &extents, const index_type &strides) : m_strides(strides) { for (unsigned int i = 0; i < rank; i++) Base::elems[i] = extents[i]; } _CONSTEXPR strided_bounds(const value_type(&values)[rank], index_type strides) : Base(values), m_strides(std::move(strides)) { } _CONSTEXPR index_type strides() const _NOEXCEPT { return m_strides; } _CONSTEXPR size_type total_size() const _NOEXCEPT { size_type ret = 0; for (unsigned int i = 0; i < rank; ++i) ret += (Base::elems[i] - 1) * m_strides[i]; return ret + 1; } _CONSTEXPR size_type size() const _NOEXCEPT { size_type ret = 1; for (unsigned int i = 0; i < rank; ++i) ret *= Base::elems[i]; return ret; } _CONSTEXPR bool contains(const index_type& idx) const _NOEXCEPT { for (unsigned int i = 0; i < rank; ++i) { if (idx[i] < 0 || idx[i] >= Base::elems[i]) return false; } return true; } _CONSTEXPR size_type linearize(const index_type & idx) const { size_type ret = 0; for (unsigned int i = 0; i < rank; i++) { fail_fast_assert(idx[i] < Base::elems[i], "index is out of bounds of the array"); ret += idx[i] * m_strides[i]; } return ret; } _CONSTEXPR size_type stride() const _NOEXCEPT { return m_strides[0]; } template 1), typename Ret = std::enable_if_t> _CONSTEXPR sliced_type slice() const { return{ (value_type(&)[rank - 1])Base::elems[1], sliced_type::index_type::shift_left(m_strides) }; } template _CONSTEXPR size_type extent() const _NOEXCEPT { static_assert(Dim < Rank, "dimension should be less than rank (dimension count starts from 0)"); return Base::elems[Dim]; } _CONSTEXPR index_type index_bounds() const _NOEXCEPT { return index_type(Base::elems); } const_iterator begin() const _NOEXCEPT { return const_iterator{ *this }; } const_iterator end() const _NOEXCEPT { return const_iterator{ *this, index_bounds() }; } private: index_type m_strides; }; template struct is_bounds : std::integral_constant {}; template struct is_bounds> : std::integral_constant {}; template struct is_bounds> : std::integral_constant {}; template class bounds_iterator : public std::iterator, const IndexType> { private: using Base = std::iterator , const IndexType>; public: static const unsigned int rank = IndexType::rank; using typename Base::reference; using typename Base::pointer; using typename Base::difference_type; using typename Base::value_type; using index_type = value_type; using index_size_type = typename IndexType::size_type; template explicit bounds_iterator(const Bounds & bnd, value_type curr = value_type{}) _NOEXCEPT : boundary(bnd.index_bounds()) , curr( std::move(curr) ) { static_assert(is_bounds::value, "Bounds type must be provided"); } reference operator*() const _NOEXCEPT { return curr; } pointer operator->() const _NOEXCEPT { return details::arrow_proxy{ curr }; } bounds_iterator& operator++() _NOEXCEPT { for (unsigned int i = rank; i-- > 0;) { if (++curr[i] < boundary[i]) { return *this; } else { curr[i] = 0; } } // If we're here we've wrapped over - set to past-the-end. for (unsigned int i = 0; i < rank; ++i) { curr[i] = boundary[i]; } return *this; } bounds_iterator operator++(int) _NOEXCEPT { auto ret = *this; ++(*this); return ret; } bounds_iterator& operator--() _NOEXCEPT { for (int i = rank; i-- > 0;) { if (curr[i]-- > 0) { return *this; } else { curr[i] = boundary[i] - 1; } } // If we're here the preconditions were violated // "pre: there exists s such that r == ++s" fail_fast_assert(false); return *this; } bounds_iterator operator--(int) _NOEXCEPT { auto ret = *this; --(*this); return ret; } bounds_iterator operator+(difference_type n) const _NOEXCEPT { bounds_iterator ret{ *this }; return ret += n; } bounds_iterator& operator+=(difference_type n) _NOEXCEPT { auto linear_idx = linearize(curr) + n; value_type stride; stride[rank - 1] = 1; for (unsigned int i = rank - 1; i-- > 0;) { stride[i] = stride[i + 1] * boundary[i + 1]; } for (unsigned int i = 0; i < rank; ++i) { curr[i] = linear_idx / stride[i]; linear_idx = linear_idx % stride[i]; } return *this; } bounds_iterator operator-(difference_type n) const _NOEXCEPT { bounds_iterator ret{ *this }; return ret -= n; } bounds_iterator& operator-=(difference_type n) _NOEXCEPT { return *this += -n; } difference_type operator-(const bounds_iterator& rhs) const _NOEXCEPT { return linearize(curr) - linearize(rhs.curr); } reference operator[](difference_type n) const _NOEXCEPT { return *(*this + n); } bool operator==(const bounds_iterator& rhs) const _NOEXCEPT { return curr == rhs.curr; } bool operator!=(const bounds_iterator& rhs) const _NOEXCEPT { return !(*this == rhs); } bool operator<(const bounds_iterator& rhs) const _NOEXCEPT { for (unsigned int i = 0; i < rank; ++i) { if (curr[i] < rhs.curr[i]) return true; } return false; } bool operator<=(const bounds_iterator& rhs) const _NOEXCEPT { return !(rhs < *this); } bool operator>(const bounds_iterator& rhs) const _NOEXCEPT { return rhs < *this; } bool operator>=(const bounds_iterator& rhs) const _NOEXCEPT { return !(rhs > *this); } void swap(bounds_iterator& rhs) _NOEXCEPT { std::swap(boundary, rhs.boundary); std::swap(curr, rhs.curr); } private: index_size_type linearize(const value_type& idx) const _NOEXCEPT { // TODO: Smarter impl. // Check if past-the-end bool pte = true; for (unsigned int i = 0; i < rank; ++i) { if (idx[i] != boundary[i]) { pte = false; break; } } index_size_type multiplier = 1; index_size_type res = 0; if (pte) { res = 1; for (unsigned int i = rank; i-- > 0;) { res += (idx[i] - 1) * multiplier; multiplier *= boundary[i]; } } else { for (unsigned int i = rank; i-- > 0;) { res += idx[i] * multiplier; multiplier *= boundary[i]; } } return res; } value_type boundary; value_type curr; }; template class bounds_iterator> : public std::iterator, ptrdiff_t, const details::arrow_proxy>, const index<1, SizeType>> { using Base = std::iterator, ptrdiff_t, const details::arrow_proxy>, const index<1, SizeType>>; public: using typename Base::reference; using typename Base::pointer; using typename Base::difference_type; using typename Base::value_type; using index_type = value_type; using index_size_type = typename index_type::size_type; template explicit bounds_iterator(const Bounds &, value_type curr = value_type{}) _NOEXCEPT : curr( std::move(curr) ) {} reference operator*() const _NOEXCEPT { return curr; } pointer operator->() const _NOEXCEPT { return details::arrow_proxy{ curr }; } bounds_iterator& operator++() _NOEXCEPT { ++curr; return *this; } bounds_iterator operator++(int) _NOEXCEPT { auto ret = *this; ++(*this); return ret; } bounds_iterator& operator--() _NOEXCEPT { curr--; return *this; } bounds_iterator operator--(int) _NOEXCEPT { auto ret = *this; --(*this); return ret; } bounds_iterator operator+(difference_type n) const _NOEXCEPT { bounds_iterator ret{ *this }; return ret += n; } bounds_iterator& operator+=(difference_type n) _NOEXCEPT { curr += n; return *this; } bounds_iterator operator-(difference_type n) const _NOEXCEPT { bounds_iterator ret{ *this }; return ret -= n; } bounds_iterator& operator-=(difference_type n) _NOEXCEPT { return *this += -n; } difference_type operator-(const bounds_iterator& rhs) const _NOEXCEPT { return curr[0] - rhs.curr[0]; } reference operator[](difference_type n) const _NOEXCEPT { return curr + n; } bool operator==(const bounds_iterator& rhs) const _NOEXCEPT { return curr == rhs.curr; } bool operator!=(const bounds_iterator& rhs) const _NOEXCEPT { return !(*this == rhs); } bool operator<(const bounds_iterator& rhs) const _NOEXCEPT { return curr[0] < rhs.curr[0]; } bool operator<=(const bounds_iterator& rhs) const _NOEXCEPT { return !(rhs < *this); } bool operator>(const bounds_iterator& rhs) const _NOEXCEPT { return rhs < *this; } bool operator>=(const bounds_iterator& rhs) const _NOEXCEPT { return !(rhs > *this); } void swap(bounds_iterator& rhs) _NOEXCEPT { std::swap(curr, rhs.curr); } private: value_type curr; }; template bounds_iterator operator+(typename bounds_iterator::difference_type n, const bounds_iterator& rhs) _NOEXCEPT { return rhs + n; } /* ** begin definitions of basic_array_view */ namespace details { template _CONSTEXPR std::enable_if_t::value, typename Bounds::index_type> make_stride(const Bounds& bnd) _NOEXCEPT { return bnd.strides(); } // Make a stride vector from bounds, assuming continugous memory. template _CONSTEXPR std::enable_if_t::value, typename Bounds::index_type> make_stride(const Bounds& bnd) _NOEXCEPT { auto extents = bnd.index_bounds(); typename Bounds::index_type stride; stride[Bounds::rank - 1] = 1; for (int i = Bounds::rank - 2; i >= 0; --i) stride[i] = stride[i + 1] * extents[i + 1]; return stride; } template void verifyBoundsReshape(const BoundsSrc &src, const BoundsDest &dest) { static_assert(is_bounds::value && is_bounds::value, "The src type and dest type must be bounds"); static_assert(std::is_same::value, "The source type must be a contiguous bounds"); static_assert(BoundsDest::static_size == dynamic_range || BoundsSrc::static_size == dynamic_range || BoundsDest::static_size == BoundsSrc::static_size, "The source bounds must have same size as dest bounds"); fail_fast_assert(src.size() == dest.size()); } } // namespace details template class contiguous_array_view_iterator; template class general_array_view_iterator; enum class byte : std::uint8_t {}; template class basic_array_view { public: static const unsigned int rank = BoundsType::rank; using bounds_type = BoundsType; using size_type = typename bounds_type::size_type; using index_type = typename bounds_type::index_type; using value_type = ValueType; using pointer = ValueType*; using reference = ValueType&; using iterator = std::conditional_t::value, contiguous_array_view_iterator, general_array_view_iterator>; using const_iterator = std::conditional_t::value, contiguous_array_view_iterator>, general_array_view_iterator>>; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; using sliced_type = std::conditional_t>; private: pointer m_pdata; bounds_type m_bounds; public: _CONSTEXPR bounds_type bounds() const _NOEXCEPT { return m_bounds; } template _CONSTEXPR size_type extent() const _NOEXCEPT { static_assert(Dim < rank, "dimension should be less than rank (dimension count starts from 0)"); return m_bounds.template extent(); } _CONSTEXPR size_type size() const _NOEXCEPT { return m_bounds.size(); } _CONSTEXPR reference operator[](const index_type& idx) const { return m_pdata[m_bounds.linearize(idx)]; } _CONSTEXPR pointer data() const _NOEXCEPT { return m_pdata; } template 1), typename Ret = std::enable_if_t> _CONSTEXPR Ret operator[](size_type idx) const { fail_fast_assert(idx < m_bounds.size(), "index is out of bounds of the array"); const size_type ridx = idx * m_bounds.stride(); fail_fast_assert(ridx < m_bounds.total_size(), "index is out of bounds of the underlying data"); return Ret {m_pdata + ridx, m_bounds.slice()}; } _CONSTEXPR operator bool () const _NOEXCEPT { return m_pdata != nullptr; } _CONSTEXPR iterator begin() const { return iterator {this, true}; } _CONSTEXPR iterator end() const { return iterator {this}; } _CONSTEXPR const_iterator cbegin() const { return const_iterator {reinterpret_cast *>(this), true}; } _CONSTEXPR const_iterator cend() const { return const_iterator {reinterpret_cast *>(this)}; } _CONSTEXPR reverse_iterator rbegin() const { return reverse_iterator {end()}; } _CONSTEXPR reverse_iterator rend() const { return reverse_iterator {begin()}; } _CONSTEXPR const_reverse_iterator crbegin() const { return const_reverse_iterator {cend()}; } _CONSTEXPR const_reverse_iterator crend() const { return const_reverse_iterator {cbegin()}; } template , std::remove_cv_t>::value>> _CONSTEXPR bool operator== (const basic_array_view & other) const _NOEXCEPT { return m_bounds.size() == other.m_bounds.size() && (m_pdata == other.m_pdata || std::equal(this->begin(), this->end(), other.begin())); } template , std::remove_cv_t>::value>> _CONSTEXPR bool operator!= (const basic_array_view & other) const _NOEXCEPT { return !(*this == other); } template , std::remove_cv_t>::value>> _CONSTEXPR bool operator< (const basic_array_view & other) const _NOEXCEPT { return std::lexicographical_compare(this->begin(), this->end(), other.begin(), other.end()); } template , std::remove_cv_t>::value>> _CONSTEXPR bool operator<= (const basic_array_view & other) const _NOEXCEPT { return !(other < *this); } template , std::remove_cv_t>::value>> _CONSTEXPR bool operator> (const basic_array_view & other) const _NOEXCEPT { return (other < *this); } template , std::remove_cv_t>::value>> _CONSTEXPR bool operator>= (const basic_array_view & other) const _NOEXCEPT { return !(*this < other); } public: template ::value && std::is_convertible::value>> _CONSTEXPR basic_array_view(const basic_array_view & other ) _NOEXCEPT : m_pdata(other.m_pdata), m_bounds(other.m_bounds) { } protected: _CONSTEXPR basic_array_view(pointer data, bounds_type bound) _NOEXCEPT : m_pdata(data) , m_bounds(std::move(bound)) { fail_fast_assert((m_bounds.size() > 0 && data != nullptr) || m_bounds.size() == 0); } template _CONSTEXPR basic_array_view(T *data, std::enable_if_t>::value, bounds_type> bound) _NOEXCEPT : m_pdata(reinterpret_cast(data)) , m_bounds(std::move(bound)) { fail_fast_assert((m_bounds.size() > 0 && data != nullptr) || m_bounds.size() == 0); } template _CONSTEXPR basic_array_view as_array_view(const DestBounds &bounds) { details::verifyBoundsReshape(m_bounds, bounds); return {m_pdata, bounds}; } private: friend iterator; friend const_iterator; template friend class basic_array_view; }; template struct dim { static const size_t value = DimSize; }; template <> struct dim { static const size_t value = dynamic_range; const size_t dvalue; dim(size_t size) : dvalue(size) {} }; template class array_view; template class strided_array_view; namespace details { template struct ArrayViewTypeTraits { using value_type = T; using size_type = size_t; }; template struct ArrayViewTypeTraits::type> { using value_type = typename Traits::array_view_traits::value_type; using size_type = typename Traits::array_view_traits::size_type; }; template struct ArrayViewArrayTraits { using type = array_view; using value_type = T; using bounds_type = static_bounds; using pointer = T*; using reference = T&; }; template struct ArrayViewArrayTraits : ArrayViewArrayTraits {}; template BoundsType newBoundsHelperImpl(size_t totalSize, std::true_type) // dynamic size { fail_fast_assert(totalSize <= details::SizeTypeTraits::max_value); return BoundsType{static_cast(totalSize)}; } template BoundsType newBoundsHelperImpl(size_t totalSize, std::false_type) // static size { fail_fast_assert(BoundsType::static_size == totalSize); return {}; } template BoundsType newBoundsHelper(size_t totalSize) { static_assert(BoundsType::dynamic_rank <= 1, "dynamic rank must less or equal to 1"); return newBoundsHelperImpl(totalSize, std::integral_constant()); } struct Sep{}; template T static_as_array_view_helper(Sep, Args... args) { return T{static_cast(args)...}; } template std::enable_if_t>::value && !std::is_same::value, T> static_as_array_view_helper(Arg, Args... args) { return static_as_array_view_helper(args...); } template T static_as_array_view_helper(dim val, Args ... args) { return static_as_array_view_helper(args..., val.dvalue); } template struct static_as_array_view_static_bounds_helper { using type = static_bounds; }; template struct is_array_view_oracle : std::false_type {}; template struct is_array_view_oracle> : std::true_type {}; template struct is_array_view_oracle> : std::true_type {}; template struct is_array_view : is_array_view_oracle> {}; } template struct array_view_options { struct array_view_traits { using value_type = ValueType; using size_type = SizeType; }; }; template class array_view : public basic_array_view::value_type, static_bounds::size_type, FirstDimension, RestDimensions...>> { template friend class array_view; using Base = basic_array_view::value_type, static_bounds::size_type, FirstDimension, RestDimensions...>>; public: using typename Base::bounds_type; using typename Base::size_type; using typename Base::pointer; using typename Base::value_type; using typename Base::index_type; using typename Base::iterator; using typename Base::const_iterator; using Base::rank; public: // basic _CONSTEXPR array_view(pointer ptr, bounds_type bounds) : Base(ptr, std::move(bounds)) { } _CONSTEXPR array_view(std::nullptr_t) : Base(nullptr, bounds_type{}) { } _CONSTEXPR array_view(std::nullptr_t, size_type size) : Base(nullptr, bounds_type{}) { fail_fast_assert(size == 0); } // default template > _CONSTEXPR array_view() : Base(nullptr, bounds_type()) { } // from n-dimensions dynamic array (e.g. new int[m][4]) (precedence will be lower than the 1-dimension pointer) template , typename Dummy = std::enable_if_t::value && std::is_convertible::value>> _CONSTEXPR array_view(T * const & data, size_type size) : Base(data, typename Helper::bounds_type{size}) { } // from n-dimensions static array template , typename Dummy = std::enable_if_t::value && std::is_convertible::value>> _CONSTEXPR array_view(T (&arr)[N]) : Base(arr, typename Helper::bounds_type()) { } // from n-dimensions static array with size template , typename Dummy = std::enable_if_t::value && std::is_convertible::value >> _CONSTEXPR array_view(T(&arr)[N], size_type size) : Base(arr, typename Helper::bounds_type{ size }) { fail_fast_assert(size <= N); } // from std array template , typename Base::bounds_type>::value>> _CONSTEXPR array_view (std::array, N> & arr) : Base(arr.data(), static_bounds()) { } template , typename Base::bounds_type>::value && std::is_const::value>> _CONSTEXPR array_view (const std::array, N> & arr) : Base(arr.data(), static_bounds()) { } // from begin, end pointers. We don't provide iterator pair since no way to guarantee the contiguity template ::value && details::LessThan::value>> // remove literal 0 case _CONSTEXPR array_view (pointer begin, Ptr end) : Base(begin, details::newBoundsHelper(static_cast(end) - begin)) { } // from containers. It must has .size() and .data() two function signatures template ::value && std::is_convertible::value && std::is_convertible, typename Base::bounds_type>::value && std::is_same().size(), *std::declval().data())>, DataType>::value> > _CONSTEXPR array_view (Cont& cont) : Base(static_cast(cont.data()), details::newBoundsHelper(cont.size())) { } _CONSTEXPR array_view(const array_view &) = default; // convertible template ::value_type, static_bounds::size_type, FirstDimension, RestDimensions...>>, typename OtherBaseType = basic_array_view::value_type, static_bounds::size_type, OtherDimensions...>>, typename Dummy = std::enable_if_t::value> > _CONSTEXPR array_view(const array_view &av) : Base(static_cast::Base &>(av)) {} // static_cast is required // reshape template _CONSTEXPR array_view as_array_view(Dimensions2... dims) { static_assert(sizeof...(Dimensions2) > 0, "the target array_view must have at least one dimension."); using BoundsType = typename array_view::bounds_type; auto tobounds = details::static_as_array_view_helper(dims..., details::Sep{}); details::verifyBoundsReshape(this->bounds(), tobounds); return {this->data(), tobounds}; } // to bytes array template ::value_type>>::value> _CONSTEXPR auto as_bytes() const _NOEXCEPT -> array_view, static_cast(details::StaticSizeHelper::value)> { static_assert(Enabled, "The value_type of array_view must be standarded layout"); return { reinterpret_cast(this->data()), this->bytes() }; } template ::value_type>>::value> _CONSTEXPR auto as_writeable_bytes() const _NOEXCEPT -> array_view, static_cast(details::StaticSizeHelper::value)> { static_assert(Enabled, "The value_type of array_view must be standarded layout"); return { reinterpret_cast(this->data()), this->bytes() }; } // from bytes array template::value, typename Dummy = std::enable_if_t> _CONSTEXPR auto as_array_view() const _NOEXCEPT -> array_view(dynamic_range))> { static_assert(std::is_standard_layout::value && (Base::bounds_type::static_size == dynamic_range || Base::bounds_type::static_size % sizeof(U) == 0), "Target type must be standard layout and its size must match the byte array size"); fail_fast_assert((this->bytes() % sizeof(U)) == 0); return { reinterpret_cast(this->data()), this->bytes() / sizeof(U) }; } template::value, typename Dummy = std::enable_if_t> _CONSTEXPR auto as_array_view() const _NOEXCEPT -> array_view(dynamic_range))> { static_assert(std::is_standard_layout::value && (Base::bounds_type::static_size == dynamic_range || Base::bounds_type::static_size % sizeof(U) == 0), "Target type must be standard layout and its size must match the byte array size"); fail_fast_assert((this->bytes() % sizeof(U)) == 0); return { reinterpret_cast(this->data()), this->bytes() / sizeof(U) }; } // section on linear space template _CONSTEXPR array_view first() const _NOEXCEPT { static_assert(bounds_type::static_size == dynamic_range || Count <= bounds_type::static_size, "Index is out of bound"); fail_fast_assert(bounds_type::static_size != dynamic_range || Count <= this->size()); // ensures we only check condition when needed return { this->data(), Count }; } _CONSTEXPR array_view first(size_type count) const _NOEXCEPT { fail_fast_assert(count <= this->size()); return { this->data(), count }; } template _CONSTEXPR array_view last() const _NOEXCEPT { static_assert(bounds_type::static_size == dynamic_range || Count <= bounds_type::static_size, "Index is out of bound"); fail_fast_assert(bounds_type::static_size != dynamic_range || Count <= this->size()); return { this->data() + this->size() - Count, Count }; } _CONSTEXPR array_view last(size_type count) const _NOEXCEPT { fail_fast_assert(count <= this->size()); return { this->data() + this->size() - count, count }; } template _CONSTEXPR array_view sub() const _NOEXCEPT { static_assert(bounds_type::static_size == dynamic_range || ((Offset == 0 || Offset < bounds_type::static_size) && Offset + Count <= bounds_type::static_size), "Index is out of bound"); fail_fast_assert(bounds_type::static_size != dynamic_range || ((Offset == 0 || Offset < this->size()) && Offset + Count <= this->size())); return { this->data() + Offset, Count }; } _CONSTEXPR array_view sub(size_type offset, size_type count) const _NOEXCEPT { fail_fast_assert((offset == 0 || offset < this->size()) && offset + count <= this->size()); return { this->data() + offset, count }; } // size _CONSTEXPR size_type length() const _NOEXCEPT { return this->size(); } _CONSTEXPR size_type used_length() const _NOEXCEPT { return length(); } _CONSTEXPR size_type bytes() const _NOEXCEPT { return sizeof(value_type) * this->size(); } _CONSTEXPR size_type used_bytes() const _NOEXCEPT { return bytes(); } // section _CONSTEXPR strided_array_view section(index_type origin, index_type extents) const { size_type size = bounds().total_size() - bounds().linearize(origin); return { &this->operator[](origin), size, strided_bounds {extents, details::make_stride(Base::bounds())} }; } _CONSTEXPR reference operator[](const index_type& idx) const { return Base::operator[](idx); } template 1), typename Dummy = std::enable_if_t> _CONSTEXPR array_view operator[](size_type idx) const { auto ret = Base::operator[](idx); return{ ret.data(), ret.bounds() }; } using Base::operator==; using Base::operator!=; using Base::operator<; using Base::operator<=; using Base::operator>; using Base::operator>=; }; template _CONSTEXPR auto as_array_view(T * const & ptr, dim... args) -> array_view, Dimensions...> { return {reinterpret_cast*>(ptr), details::static_as_array_view_helper>(args..., details::Sep{})}; } template _CONSTEXPR auto as_array_view (T * arr, size_t len) -> typename details::ArrayViewArrayTraits::type { return {arr, len}; } template _CONSTEXPR auto as_array_view (T (&arr)[N]) -> typename details::ArrayViewArrayTraits::type { return {arr}; } template _CONSTEXPR array_view as_array_view(const std::array &arr) { return {arr}; } template _CONSTEXPR array_view as_array_view(const std::array &&) = delete; template _CONSTEXPR array_view as_array_view(std::array &arr) { return {arr}; } template _CONSTEXPR array_view as_array_view(T *begin, T *end) { return {begin, end}; } template _CONSTEXPR auto as_array_view(Cont &arr) -> std::enable_if_t>::value, array_view, dynamic_range>> { return {arr.data(), arr.size()}; } template _CONSTEXPR auto as_array_view(Cont &&arr) -> std::enable_if_t>::value, array_view, dynamic_range>> = delete; template class strided_array_view : public basic_array_view::value_type, strided_bounds::size_type>> { using Base = basic_array_view::value_type, strided_bounds::size_type>>; template friend class strided_array_view; public: using Base::rank; using typename Base::bounds_type; using typename Base::size_type; using typename Base::pointer; using typename Base::value_type; using typename Base::index_type; using typename Base::iterator; using typename Base::const_iterator; // from static array of size N template strided_array_view(value_type(&values)[N], bounds_type bounds) : Base(values, std::move(bounds)) { fail_fast_assert(this->bounds().total_size() <= N, "Bounds cross data boundaries"); } // from raw data strided_array_view(pointer ptr, size_type size, bounds_type bounds): Base(ptr, std::move(bounds)) { fail_fast_assert(this->bounds().total_size() <= size, "Bounds cross data boundaries"); } // from array view template > strided_array_view(array_view av, bounds_type bounds) : Base(av.data(), std::move(bounds)) { fail_fast_assert(this->bounds().total_size() <= av.bounds().total_size(), "Bounds cross data boundaries"); } // convertible template ::value_type, strided_bounds::size_type>>, typename OtherBaseType = basic_array_view::value_type, strided_bounds::size_type>>, typename Dummy = std::enable_if_t::value> > _CONSTEXPR strided_array_view(const strided_array_view &av): Base(static_cast::Base &>(av)) // static_cast is required { } // convert from bytes template ::value>> strided_array_view as_strided_array_view() const { static_assert((sizeof(OtherValueType) >= sizeof(value_type)) && (sizeof(OtherValueType) % sizeof(value_type) == 0), "OtherValueType should have a size to contain a multiple of ValueTypes"); auto d = sizeof(OtherValueType) / sizeof(value_type); size_type size = bounds().total_size() / d; return{ (OtherValueType*)data(), size, bounds_type{ resize_extent(bounds().index_bounds(), d), resize_stride(bounds().strides(), d)} }; } strided_array_view section(index_type origin, index_type extents) const { size_type size = bounds().total_size() - bounds().linearize(origin); return { &this->operator[](origin), size, bounds_type {extents, details::make_stride(Base::bounds())}}; } _CONSTEXPR reference operator[](const index_type& idx) const { return Base::operator[](idx); } template 1), typename Dummy = std::enable_if_t> _CONSTEXPR strided_array_view operator[](size_type idx) const { auto ret = Base::operator[](idx); return{ ret.data(), ret.bounds().total_size(), ret.bounds() }; } private: static index_type resize_extent(const index_type& extent, size_t d) { fail_fast_assert(extent[rank - 1] >= d && (extent[rank-1] % d == 0), "The last dimension of the array needs to contain a multiple of new type elements"); index_type ret = extent; ret[rank - 1] /= d; return ret; } template > static index_type resize_stride(const index_type& strides, size_t d, void *p = 0) { fail_fast_assert(strides[rank - 1] == 1, "Only strided arrays with regular strides can be resized"); return strides; } template 1), typename Dummy = std::enable_if_t> static index_type resize_stride(const index_type& strides, size_t d) { fail_fast_assert(strides[rank - 1] == 1, "Only strided arrays with regular strides can be resized"); fail_fast_assert(strides[rank - 2] >= d && (strides[rank - 2] % d == 0), "The strides must have contiguous chunks of memory that can contain a multiple of new type elements"); for (int i = rank - 2; i >= 0; --i) { fail_fast_assert((strides[i] >= strides[i + 1]) && (strides[i] % strides[i + 1] == 0), "Only strided arrays with regular strides can be resized"); } index_type ret = strides / d; ret[rank - 1] = 1; return ret; } }; template class contiguous_array_view_iterator : public std::iterator { using Base = std::iterator; public: using typename Base::reference; using typename Base::pointer; using typename Base::difference_type; private: template friend class basic_array_view; pointer m_pdata; const ArrayView * m_validator; void validateThis() const { fail_fast_assert(m_pdata >= m_validator->m_pdata && m_pdata < m_validator->m_pdata + m_validator->size(), "iterator is out of range of the array"); } contiguous_array_view_iterator (const ArrayView *container, bool isbegin = false) : m_pdata(isbegin ? container->m_pdata : container->m_pdata + container->size()), m_validator(container) { } public: reference operator*() const _NOEXCEPT { validateThis(); return *m_pdata; } pointer operator->() const _NOEXCEPT { validateThis(); return m_pdata; } contiguous_array_view_iterator& operator++() _NOEXCEPT { ++m_pdata; return *this; } contiguous_array_view_iterator operator++(int)_NOEXCEPT { auto ret = *this; ++(*this); return ret; } contiguous_array_view_iterator& operator--() _NOEXCEPT { --m_pdata; return *this; } contiguous_array_view_iterator operator--(int)_NOEXCEPT { auto ret = *this; --(*this); return ret; } contiguous_array_view_iterator operator+(difference_type n) const _NOEXCEPT { contiguous_array_view_iterator ret{ *this }; return ret += n; } contiguous_array_view_iterator& operator+=(difference_type n) _NOEXCEPT { m_pdata += n; return *this; } contiguous_array_view_iterator operator-(difference_type n) const _NOEXCEPT { contiguous_array_view_iterator ret{ *this }; return ret -= n; } contiguous_array_view_iterator& operator-=(difference_type n) _NOEXCEPT { return *this += -n; } difference_type operator-(const contiguous_array_view_iterator& rhs) const _NOEXCEPT { fail_fast_assert(m_validator == rhs.m_validator); return m_pdata - rhs.m_pdata; } reference operator[](difference_type n) const _NOEXCEPT { return *(*this + n); } bool operator==(const contiguous_array_view_iterator& rhs) const _NOEXCEPT { fail_fast_assert(m_validator == rhs.m_validator); return m_pdata == rhs.m_pdata; } bool operator!=(const contiguous_array_view_iterator& rhs) const _NOEXCEPT { return !(*this == rhs); } bool operator<(const contiguous_array_view_iterator& rhs) const _NOEXCEPT { fail_fast_assert(m_validator == rhs.m_validator); return m_pdata < rhs.m_pdata; } bool operator<=(const contiguous_array_view_iterator& rhs) const _NOEXCEPT { return !(rhs < *this); } bool operator>(const contiguous_array_view_iterator& rhs) const _NOEXCEPT { return rhs < *this; } bool operator>=(const contiguous_array_view_iterator& rhs) const _NOEXCEPT { return !(rhs > *this); } void swap(contiguous_array_view_iterator& rhs) _NOEXCEPT { std::swap(m_pdata, rhs.m_pdata); std::swap(m_validator, rhs.m_validator); } }; template contiguous_array_view_iterator operator+(typename contiguous_array_view_iterator::difference_type n, const contiguous_array_view_iterator& rhs) _NOEXCEPT { return rhs + n; } template class general_array_view_iterator : public std::iterator { using Base = std::iterator; public: using typename Base::reference; using typename Base::pointer; using typename Base::difference_type; using typename Base::value_type; private: template friend class basic_array_view; const ArrayView * m_container; typename ArrayView::bounds_type::iterator m_itr; general_array_view_iterator(const ArrayView *container, bool isbegin = false) : m_container(container), m_itr(isbegin ? m_container->bounds().begin() : m_container->bounds().end()) { } public: reference operator*() const _NOEXCEPT { return (*m_container)[*m_itr]; } pointer operator->() const _NOEXCEPT { return &(*m_container)[*m_itr]; } general_array_view_iterator& operator++() _NOEXCEPT { ++m_itr; return *this; } general_array_view_iterator operator++(int)_NOEXCEPT { auto ret = *this; ++(*this); return ret; } general_array_view_iterator& operator--() _NOEXCEPT { --m_itr; return *this; } general_array_view_iterator operator--(int)_NOEXCEPT { auto ret = *this; --(*this); return ret; } general_array_view_iterator operator+(difference_type n) const _NOEXCEPT { general_array_view_iterator ret{ *this }; return ret += n; } general_array_view_iterator& operator+=(difference_type n) _NOEXCEPT { m_itr += n; return *this; } general_array_view_iterator operator-(difference_type n) const _NOEXCEPT { general_array_view_iterator ret{ *this }; return ret -= n; } general_array_view_iterator& operator-=(difference_type n) _NOEXCEPT { return *this += -n; } difference_type operator-(const general_array_view_iterator& rhs) const _NOEXCEPT { fail_fast_assert(m_container == rhs.m_container); return m_itr - rhs.m_itr; } value_type operator[](difference_type n) const _NOEXCEPT { return (*m_container)[m_itr[n]];; } bool operator==(const general_array_view_iterator& rhs) const _NOEXCEPT { fail_fast_assert(m_container == rhs.m_container); return m_itr == rhs.m_itr; } bool operator !=(const general_array_view_iterator& rhs) const _NOEXCEPT { return !(*this == rhs); } bool operator<(const general_array_view_iterator& rhs) const _NOEXCEPT { fail_fast_assert(m_container == rhs.m_container); return m_itr < rhs.m_itr; } bool operator<=(const general_array_view_iterator& rhs) const _NOEXCEPT { return !(rhs < *this); } bool operator>(const general_array_view_iterator& rhs) const _NOEXCEPT { return rhs < *this; } bool operator>=(const general_array_view_iterator& rhs) const _NOEXCEPT { return !(rhs > *this); } void swap(general_array_view_iterator& rhs) _NOEXCEPT { std::swap(m_itr, rhs.m_itr); std::swap(m_container, rhs.m_container); } }; template general_array_view_iterator operator+(typename general_array_view_iterator::difference_type n, const general_array_view_iterator& rhs) _NOEXCEPT { return rhs + n; } } // namespace Guide #pragma pop_macro("_NOEXCEPT")