Compare commits

..

No commits in common. "main" and "v3.1.0" have entirely different histories.
main ... v3.1.0

50 changed files with 9439 additions and 4470 deletions

1
.gitattributes vendored
View File

@ -1 +0,0 @@
include/gsl/* linguist-language=C++

View File

@ -1,29 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: 'Status: Open, Type: Bug'
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
```c++
#include <gsl>
// your repro here: ...
```
**Expected behavior**
A clear and concise description of what you expected to happen.
**Spec (please complete the following information):**
- OS: [e.g. Windows]
- Compiler: [e.g. MSVC]
- C++ Version: [e.g. C++20]
**Additional context**
Add any other context about the problem here.

View File

@ -1,59 +0,0 @@
name: CI_Android
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
Android:
runs-on: macos-latest-large
defaults:
run:
working-directory: build
steps:
- uses: actions/checkout@v4
- name: Create build directory
run: mkdir -p build
working-directory: .
- uses: actions/setup-java@v4
with:
java-version: 8
distribution: zulu
- name: Start Emulator
run: |
echo "y" | $ANDROID_HOME/tools/bin/sdkmanager --install 'system-images;android-24;default;x86_64'
echo "no" | $ANDROID_HOME/tools/bin/avdmanager create avd -n xamarin_android_emulator -k 'system-images;android-24;default;x86_64' --force
$ANDROID_HOME/emulator/emulator -list-avds
echo "Starting emulator..."
nohup $ANDROID_HOME/emulator/emulator -no-audio -no-snapshot -avd xamarin_android_emulator &> /dev/null &
echo "Emulator starting in background"
- name: Configure
run: cmake -DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK_LATEST_HOME/build/cmake/android.toolchain.cmake -DANDROID_PLATFORM=16 -DANDROID_ABI=x86_64 -DCMAKE_BUILD_TYPE=Debug ..
- name: Build
run: cmake --build . --parallel
- name: Wait for emulator ready
timeout-minutes: 2
run: |
$ANDROID_HOME/platform-tools/adb wait-for-device shell 'while [[ -z $(getprop sys.boot_completed | tr -d '\r') ]]; do sleep 10; done; input keyevent 82'
$ANDROID_HOME/platform-tools/adb devices
$ANDROID_HOME/platform-tools/adb shell getprop ro.product.cpu.abi
- name: Deploy tests
run: |
adb push tests /data/local/tmp
adb shell find /data/local/tmp/tests -maxdepth 1 -exec chmod +x {} \\\;
- name: Test
run: adb shell find /data/local/tmp/tests -name "*_tests" -maxdepth 1 -exec {} \\\;

View File

@ -1,56 +0,0 @@
name: Composite CMake
inputs:
cmake_generator:
required: false
type: string
default: 'Unix Makefiles'
cmake_build_type:
required: true
type: string
default: ''
cmake_cxx_compiler:
required: false
type: string
gsl_cxx_standard:
required: true
type: number
extra_cmake_args:
required: false
type: string
default: ''
build_cmd:
required: true
type: string
default: 'make'
test_cmd:
required: false
type: string
default: 'make test'
shell:
required: false
type: string
default: 'bash'
runs:
using: composite
steps:
- name: Create build directory
run: mkdir build
shell: ${{ inputs.shell }}
- name: Configure CMake
working-directory: build
run: cmake -G "${{ inputs.cmake_generator }}" -DCMAKE_BUILD_TYPE=${{ inputs.cmake_build_type }} -DCMAKE_CXX_COMPILER=${{ inputs.cmake_cxx_compiler }} -DGSL_CXX_STANDARD=${{ inputs.gsl_cxx_standard }} -DCI_TESTING:BOOL=ON -DCMAKE_VERBOSE_MAKEFILE:BOOL=ON -Werror=dev ${{ inputs.extra_cmake_args }} ..
shell: ${{ inputs.shell }}
- name: Build
working-directory: build
run: ${{ inputs.build_cmd }}
shell: ${{ inputs.shell }}
- name: Test
working-directory: build
run: ${{ inputs.test_cmd }}
shell: ${{ inputs.shell }}

View File

@ -1,25 +0,0 @@
name: cmake_find_package
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
cmake-find-package:
name: Build ${{ matrix.os }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-latest, macos-latest ]
steps:
- uses: actions/checkout@v4
- uses: lukka/get-cmake@latest
with:
cmakeVersion: 3.14.0
- name: Configure GSL
run: cmake -S . -B build -G "Ninja" -D GSL_TEST=OFF -D CMAKE_INSTALL_PREFIX=${GITHUB_WORKSPACE}/build/install
- name: Install GSL
run: cmake --build build --target install
- name: Test GSL find_package support
run: cmake -S tests/ -B build/tests_find_package -G "Ninja" -D CMAKE_PREFIX_PATH=${GITHUB_WORKSPACE}/build/install -D CMAKE_BUILD_TYPE=Release

View File

@ -1,115 +0,0 @@
name: Compiler Integration Tests
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
# These jobs are correlated with the officially supported compilers
# and toolsets. If you change any versions, please update README.md.
jobs:
gcc:
strategy:
matrix:
gcc_version: [ 12, 13, 14 ]
build_type: [ Debug, Release ]
cxx_version: [ 14, 17, 20, 23 ]
exclude:
# https://github.com/google/googletest/issues/4232
# Looks like GoogleTest is not interested in making version 1.14
# work with gcc-12.
- gcc_version: 12
cxx_version: 20
- gcc_version: 12
cxx_version: 23
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Run CMake (configure, build, test)
uses: ./.github/workflows/cmake
with:
cmake_build_type: ${{ matrix.build_type }}
cmake_cxx_compiler: g++-${{ matrix.gcc_version }}
gsl_cxx_standard: ${{ matrix.cxx_version }}
clang:
strategy:
matrix:
clang_version: [ 16, 17, 18 ]
build_type: [ Debug, Release ]
cxx_version: [ 14, 17, 20, 23 ]
exclude:
# https://github.com/llvm/llvm-project/issues/93734
# Looks like clang fixed this issue in clang-18, but won't backport
# the fix.
- clang_version: 17
cxx_version: 23
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Run CMake (configure, build, test)
uses: ./.github/workflows/cmake
with:
cmake_build_type: ${{ matrix.build_type }}
cmake_cxx_compiler: clang++-${{ matrix.clang_version }}
gsl_cxx_standard: ${{ matrix.cxx_version }}
xcode:
strategy:
matrix:
xcode_version: [ '15.4' ]
build_type: [ Debug, Release ]
cxx_version: [ 14, 17, 20, 23 ]
runs-on: macos-latest
steps:
- uses: actions/checkout@v4
- name: select xcode version
run: sudo xcode-select -s /Applications/Xcode_${{ matrix.xcode_version }}.app
- name: Run CMake (configure, build, test)
uses: ./.github/workflows/cmake
with:
cmake_build_type: ${{ matrix.build_type }}
cmake_cxx_compiler: clang++
gsl_cxx_standard: ${{ matrix.cxx_version }}
VisualStudio:
strategy:
matrix:
generator: [ 'Visual Studio 16 2019', 'Visual Studio 17 2022' ]
image: [ windows-2019, windows-2022 ]
build_type: [ Debug, Release ]
extra_args: [ '', '-T ClangCL' ]
cxx_version: [ 14, 17, 20, 23 ]
exclude:
- generator: 'Visual Studio 17 2022'
image: windows-2019
- generator: 'Visual Studio 16 2019'
image: windows-2022
- generator: 'Visual Studio 16 2019'
cxx_version: 23
runs-on: ${{ matrix.image }}
steps:
- uses: actions/checkout@v4
- uses: microsoft/setup-msbuild@v2
- name: Run CMake (configure, build, test)
uses: ./.github/workflows/cmake
with:
cmake_generator: ${{ matrix.generator }}
cmake_build_type: ${{ matrix.build_type }}
gsl_cxx_standard: ${{ matrix.cxx_version }}
extra_cmake_args: ${{ matrix.extra_args }}
build_cmd: msbuild GSL.sln
test_cmd: ctest . --output-on-failure --no-compress-output
shell: pwsh

View File

@ -1,52 +0,0 @@
name: CI_iOS
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
jobs:
iOS:
runs-on: macos-latest
defaults:
run:
working-directory: build
steps:
- uses: actions/checkout@v4
- name: Create build directory
run: mkdir -p build
working-directory: .
- name: Configure
run: |
cmake \
-Werror=dev \
-GXcode \
-DCMAKE_SYSTEM_NAME=iOS \
"-DCMAKE_OSX_ARCHITECTURES=arm64;x86_64" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=9 \
-DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY \
"-DMACOSX_BUNDLE_GUI_IDENTIFIER=GSL.\$(EXECUTABLE_NAME)" \
-DMACOSX_BUNDLE_BUNDLE_VERSION=3.1.0 \
-DMACOSX_BUNDLE_SHORT_VERSION_STRING=3.1.0 \
..
- name: Build
run: cmake --build . --parallel `sysctl -n hw.ncpu` --config Release -- -sdk iphonesimulator
- name: Start simulator
run: |
RUNTIME=`xcrun simctl list runtimes iOS -j|jq '.runtimes|last.identifier'`
UDID=`xcrun simctl list devices iPhone available -j|jq -r ".devices[$RUNTIME]|last.udid"`
xcrun simctl bootstatus $UDID -b
- name: Test
run: |
for TEST in `find tests/Release-iphonesimulator -depth 1 -name "*.app"`
do
xcrun simctl install booted $TEST
TEST_ID=`plutil -convert json -o - $TEST/Info.plist|jq -r ".CFBundleIdentifier"`
xcrun simctl launch --console booted $TEST_ID
xcrun simctl uninstall booted $TEST_ID
done

94
.github/workflows/main.yml vendored Normal file
View File

@ -0,0 +1,94 @@
name: CI
on:
push:
branches: [ master ]
pull_request:
branches: [ master ]
jobs:
iOS:
runs-on: macos-latest
defaults:
run:
working-directory: build
steps:
- uses: actions/checkout@v2
- name: Create build directory
run: mkdir -p build
working-directory: .
- name: Configure
run: |
cmake \
-GXcode \
-DCMAKE_SYSTEM_NAME=iOS \
"-DCMAKE_OSX_ARCHITECTURES=arm64;x86_64" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=8 \
-DCMAKE_TRY_COMPILE_TARGET_TYPE=STATIC_LIBRARY \
"-DMACOSX_BUNDLE_GUI_IDENTIFIER=GSL.\$(EXECUTABLE_NAME)" \
-DMACOSX_BUNDLE_BUNDLE_VERSION=3.0.1 \
-DMACOSX_BUNDLE_SHORT_VERSION_STRING=3.0.1 \
..
- name: Build
run: cmake --build . --parallel `sysctl -n hw.ncpu` --config Release -- -sdk iphonesimulator
- name: Start simulator
run: |
RUNTIME=`xcrun simctl list runtimes iOS -j|jq '.runtimes|last.identifier'`
UDID=`xcrun simctl list devices iPhone available -j|jq -r ".devices[$RUNTIME]|last.udid"`
xcrun simctl bootstatus $UDID -b
- name: Test
run: |
for TEST in `find tests/Release-iphonesimulator -depth 1 -name "*.app"`
do
xcrun simctl install booted $TEST
TEST_ID=`plutil -convert json -o - $TEST/Info.plist|jq -r ".CFBundleIdentifier"`
xcrun simctl launch --console booted $TEST_ID
xcrun simctl uninstall booted $TEST_ID
done
Android:
runs-on: macos-latest
defaults:
run:
working-directory: build
steps:
- uses: actions/checkout@v2
- name: Create build directory
run: mkdir -p build
working-directory: .
- name: Start emulator
run: |
echo "y" | $ANDROID_HOME/tools/bin/sdkmanager --install 'system-images;android-24;default;x86_64'
echo "no" | $ANDROID_HOME/tools/bin/avdmanager create avd -n xamarin_android_emulator -k 'system-images;android-24;default;x86_64' --force
$ANDROID_HOME/emulator/emulator -list-avds
echo "Starting emulator"
# Start emulator in background
nohup $ANDROID_HOME/emulator/emulator -avd xamarin_android_emulator -no-snapshot > /dev/null 2>&1 &
echo "Emulator starting"
- name: Configure
run: cmake -DCMAKE_TOOLCHAIN_FILE=$ANDROID_HOME/ndk-bundle/build/cmake/android.toolchain.cmake -DANDROID_PLATFORM=16 -DANDROID_ABI=x86_64 -DCMAKE_BUILD_TYPE=Debug ..
- name: Build
run: cmake --build . --parallel
- name: Wait for emulator ready
run: |
$ANDROID_HOME/platform-tools/adb wait-for-device shell 'while [[ -z $(getprop sys.boot_completed | tr -d '\r') ]]; do sleep 10; done; input keyevent 82'
$ANDROID_HOME/platform-tools/adb devices
$ANDROID_HOME/platform-tools/adb shell getprop ro.product.cpu.abi
echo "Emulator started"
- name: Deploy tests
run: |
adb push tests /data/local/tmp
adb shell find /data/local/tmp/tests -maxdepth 1 -exec chmod +x {} \\\;
- name: Test
run: adb shell find /data/local/tmp/tests -name "*_tests" -maxdepth 1 -exec {} \\\;

337
.travis.yml Normal file
View File

@ -0,0 +1,337 @@
language: cpp
notifications:
email: false
# Use Linux unless specified otherwise
os: linux
dist: bionic
cache:
directories:
- ${TRAVIS_BUILD_DIR}/deps
stages:
- name: Latest # Compiler with the latest major version
- name: Previous # Compilers with the major version Latest - 1
- name: Validation # run other jobs
jobs:
include:
##########################################################################
# Validate CMake configuration
##########################################################################
- name: CMake 3.1.3 - latest
stage: Validation
env: &CMAKE_VERSION_LIST
- CMAKE_VERSION: '"3.17.0 3.16.5 3.15.7 3.14.7 3.13.5 3.12.4 3.11.4 3.10.3 3.9.6 3.8.2 3.7.2 3.6.3 3.5.2 3.4.3 3.3.2 3.2.3 3.1.3"'
- GSL_CXX_STANDARD: 14
addons: # Get latest release (candidate)
apt:
sources:
- sourceline: 'deb https://apt.kitware.com/ubuntu/ bionic main'
key_url: 'https://apt.kitware.com/keys/kitware-archive-latest.asc'
- sourceline: 'deb https://apt.kitware.com/ubuntu/ bionic-rc main'
packages:
- cmake
script:
- |
cd ./build
( set -eu
for CMAKE in ${CMAKE_path[@]}; do test_CMake_generate $CMAKE; done
export CXX=clang++
for CMAKE in ${CMAKE_path[@]}; do test_CMake_generate $CMAKE; done
)
- name: CMake 3.2.3 - 3.17.0
stage: Validation
os: osx
osx_image: xcode11.3
env:
- CMAKE_VERSION: '"3.17.0 3.16.5 3.15.7 3.14.7 3.13.5 3.12.4 3.11.4 3.10.3 3.9.6 3.8.2 3.7.2 3.6.3 3.5.2 3.4.3 3.3.2 3.2.3"'
script:
- |
cd ./build
( set -eu
for CMAKE in ${CMAKE_path[@]}; do test_CMake_generate $CMAKE; done
)
##########################################################################
# AppleClang on OSX
##########################################################################
# Xcode 10.3
- name: AppleClang Xcode-10.3 C++14 Debug
stage: Previous
env: BUILD_TYPE=Debug GSL_CXX_STANDARD=14
os: osx
osx_image: xcode10.3 # AppleClang 10.0.1 same compiler as Xcode 10.2
- name: AppleClang Xcode-10.3 C++14 Release
env: BUILD_TYPE=Release GSL_CXX_STANDARD=14
os: osx
osx_image: xcode10.3
- name: AppleClang Xcode-10.3 C++17 Debug
env: BUILD_TYPE=Debug GSL_CXX_STANDARD=17
os: osx
osx_image: xcode10.3
- name: AppleClang Xcode-10.3 C++17 Release
env: BUILD_TYPE=Release GSL_CXX_STANDARD=17
os: osx
osx_image: xcode10.3
# Xcode 11.4
- name: AppleClang Xcode-11.4 C++17 Debug
stage: Latest
env: BUILD_TYPE=Debug GSL_CXX_STANDARD=17
os: osx
osx_image: xcode11.4
- name: AppleClang Xcode-11.4 C++17 Release
env: BUILD_TYPE=Release GSL_CXX_STANDARD=17
os: osx
osx_image: xcode11.4
- name: AppleClang Xcode-11.4 C++14 Debug
env: BUILD_TYPE=Debug GSL_CXX_STANDARD=14
os: osx
osx_image: xcode11.4
- name: AppleClang Xcode-11.4 C++14 Release
env: BUILD_TYPE=Release GSL_CXX_STANDARD=14
os: osx
osx_image: xcode11.4
##########################################################################
# Clang on Linux
##########################################################################
# Clang 9
- name: Clang-9 C++14 Debug
stage: Previous
env: CXX=clang++-9 BUILD_TYPE=Debug GSL_CXX_STANDARD=14
addons: &clang9
apt:
sources:
- sourceline: 'deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main'
key_url: https://apt.llvm.org/llvm-snapshot.gpg.key
packages:
- clang-9
- name: Clang-9 C++14 Release
env: CXX=clang++-9 BUILD_TYPE=Release GSL_CXX_STANDARD=14
addons: *clang9
- name: Clang-9 C++17 Debug
env: CXX=clang++-9 BUILD_TYPE=Debug GSL_CXX_STANDARD=17
addons: *clang9
- name: Clang-9 C++17 Release
env: CXX=clang++-9 BUILD_TYPE=Release GSL_CXX_STANDARD=17
addons: *clang9
# Clang 10
- name: Clang-10 C++14 Debug
stage: Latest
env: CXX=clang++-10 BUILD_TYPE=Debug GSL_CXX_STANDARD=14
addons: &clang10
apt:
sources:
- sourceline: 'deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-10 main'
key_url: https://apt.llvm.org/llvm-snapshot.gpg.key
packages:
- clang-10
- name: Clang-10 C++14 Release
env: CXX=clang++-10 BUILD_TYPE=Release GSL_CXX_STANDARD=14
addons: *clang10
- name: Clang-10 C++17 Debug
env: CXX=clang++-10 BUILD_TYPE=Debug GSL_CXX_STANDARD=17
addons: *clang10
- name: Clang-10 C++17 Release
env: CXX=clang++-10 BUILD_TYPE=Release GSL_CXX_STANDARD=17
addons: *clang10
##########################################################################
# GCC on Linux
##########################################################################
# GCC 8
- name: GCC-8 C++14 Debug
stage: Previous
env: CXX=g++-8 BUILD_TYPE=Debug GSL_CXX_STANDARD=14
addons: &gcc8
apt:
packages: g++-8
- name: GCC-8 C++14 Release
env: CXX=g++-8 BUILD_TYPE=Release GSL_CXX_STANDARD=14
addons: *gcc8
- name: GCC-8 C++17 Debug
env: CXX=g++-8 BUILD_TYPE=Debug GSL_CXX_STANDARD=17
addons: *gcc8
- name: GCC-8 C++17 Release
env: CXX=g++-8 BUILD_TYPE=Release GSL_CXX_STANDARD=17
addons: *gcc8
# GCC 9
- name: GCC-9 C++14 Debug
stage: Latest
env: CXX=g++-9 BUILD_TYPE=Debug GSL_CXX_STANDARD=14
addons: &gcc9
apt:
sources:
- sourceline: ppa:ubuntu-toolchain-r/test
packages:
- g++-9
- name: GCC-9 C++14 Release
env: CXX=g++-9 BUILD_TYPE=Release GSL_CXX_STANDARD=14
addons: *gcc9
- name: GCC-9 C++17 Debug
env: CXX=g++-9 BUILD_TYPE=Debug GSL_CXX_STANDARD=17
addons: *gcc9
- name: GCC-9 C++17 Release
env: CXX=g++-9 BUILD_TYPE=Release GSL_CXX_STANDARD=17
addons: *gcc9
before_install:
- |
# Configuration
JOBS=2 # Travis machines have 2 cores
# Dependencies required by the CI (cached directory)
DEPS_DIR="${TRAVIS_BUILD_DIR}/deps"
- |
# Setup
mkdir -p "${DEPS_DIR:?}" && cd "${DEPS_DIR:?}"
mkdir -p ~/tools && cd ~/tools
if [[ ${TRAVIS_OS_NAME:?} == "osx" ]]; then
export PATH="/usr/local/opt/coreutils/libexec/gnubin:$PATH"
fi
- |
# Helper functions
# usage: if [[ $(check_url '<url>') ]]; then ...
function check_url {( set +e
if [[ "$1" =~ 'github.com' ]]; then # check for first byte
if curl --fail --silent --output /dev/null --connect-timeout 12 --range 0-0 "$1"
then echo true; fi
else # request head
if curl --fail --silent --output /dev/null --connect-timeout 12 --head "$1"
then echo true; fi
fi
return
)}
install:
############################################################################
# Install a different CMake version (or several)
############################################################################
- |
# Install CMake versions
( set -euo pipefail
if [[ ${CMAKE_VERSION:-} ]]; then
if [[ "${TRAVIS_OS_NAME}" == "linux" ]]; then
OS="Linux"; EXT="sh"
if [[ ! ("${CMAKE_VERSION:-}" =~ .+[' '].+) ]]; then
# Single entry -> default CMake version
CMAKE_DEFAULT_DIR="/usr/local"
fi
elif [[ "${TRAVIS_OS_NAME}" == "osx" ]]; then OS="Darwin"; EXT="tar.gz"
else echo "CMake install not supported for this OS."; exit 1
fi
CMAKE_INSTALLER="install-cmake.${EXT}"
fi
for VERSION in ${CMAKE_VERSION:-}; do
CMAKE_URL="https://github.com/Kitware/CMake/releases/download/v${VERSION}/cmake-${VERSION}-${OS}-x86_64.${EXT}"
if [[ $(check_url "$CMAKE_URL") ]]; then
curl -sSL ${CMAKE_URL} -o ${CMAKE_INSTALLER}
CMAKE_DIR="${CMAKE_DEFAULT_DIR:-"${HOME}/tools/cmake-${VERSION}"}"
mkdir -p ${CMAKE_DIR}
if [[ "${TRAVIS_OS_NAME}" == "linux" ]]; then
chmod +x ${CMAKE_INSTALLER}
sudo ./${CMAKE_INSTALLER} --prefix=${CMAKE_DIR} --skip-license
else # OSX
mkdir -p ./CMake_tmp
tar --extract --gzip --file=${CMAKE_INSTALLER} --directory=./CMake_tmp
mv ./CMake_tmp/*/CMake.app/Contents/* ${CMAKE_DIR}
fi
rm --recursive --force ./CMake_tmp ${CMAKE_INSTALLER}
else echo 'Invalid url!'; echo "Version: ${VERSION}"
fi
done
)
if [[ ${CMAKE_VERSION:-} && "${TRAVIS_OS_NAME:?}" == "osx" && ! ("${CMAKE_VERSION:-}" =~ .+[' '].+) ]]
then # Single entry -> default CMake version
export PATH=${HOME}/tools/cmake-${CMAKE_VERSION:?}/bin:$PATH
fi
CMAKE_path=("cmake") # start with installed CMake version
for VERSION in ${CMAKE_VERSION:-}; do
tmp_path="$HOME/tools/cmake-${VERSION:?}/bin/cmake"
if [[ -x "$(command -v ${tmp_path:?})" ]]; then CMAKE_path+=("${tmp_path:?}"); fi
done
function test_CMake_generate {
# $1: cmake or full path to cmake
shopt -s extglob
if [[ "$1" == "cmake" || -x "$(command -v $1)" && "$1" =~ .*cmake$ ]]; then
echo "----------------"
$1 --version
echo "Configuration = ${BUILD_TYPE:-Debug}"
$1 -DCMAKE_BUILD_TYPE=${BUILD_TYPE:-Debug} ${CMAKE_GEN_FLAGS[@]:?} ..
rm -rf !(tests/googletest-*)
if [[ ! ${BUILD_TYPE:-} ]]; then echo "" && echo "Configuration = Release"
$1 -DCMAKE_BUILD_TYPE=Release ${CMAKE_GEN_FLAGS[@]:?} ..
rm -rf !(tests/googletest-*)
fi
else echo "Non existing command: $1"
fi
}
- |
# CMake wrapper (Trusty, Xenial & Bionic); restore default behaviour.
if [[ "${TRAVIS_OS_NAME:?}" == "linux" &&
"$(lsb_release --codename)" =~ (trusty|xenial|bionic)$ ]]
then
if [[ -x $(command -v /usr/local/bin/cmake) ]]; then
function cmake { command /usr/local/bin/cmake $@; }
elif [[ -x $(command -v /usr/bin/cmake) ]]; then
function cmake { command /usr/bin/cmake $@; }
fi
fi
############################################################################
# [linux]: Install the right version of libc++
# Based on https://github.com/ldionne/hana/blob/master/.travis.yml
############################################################################
- |
LLVM_INSTALL=${DEPS_DIR:?}/llvm/install
# if in linux and compiler clang and llvm not installed
if [[ "${TRAVIS_OS_NAME:?}" == "linux" && "${CXX%%+*}" == "clang" && -n "$(ls -A ${LLVM_INSTALL:?})" ]]; then
if [[ "${CXX}" == "clang++-3.6" ]]; then LLVM_VERSION="3.6.2";
elif [[ "${CXX}" == "clang++-3.7" ]]; then LLVM_VERSION="3.7.1";
elif [[ "${CXX}" == "clang++-3.8" ]]; then LLVM_VERSION="3.8.1";
elif [[ "${CXX}" == "clang++-3.9" ]]; then LLVM_VERSION="3.9.1";
fi
LLVM_URL="http://llvm.org/releases/${LLVM_VERSION}/llvm-${LLVM_VERSION}.src.tar.xz"
LIBCXX_URL="http://llvm.org/releases/${LLVM_VERSION}/libcxx-${LLVM_VERSION}.src.tar.xz"
LIBCXXABI_URL="http://llvm.org/releases/${LLVM_VERSION}/libcxxabi-${LLVM_VERSION}.src.tar.xz"
mkdir -p llvm llvm/build llvm/projects/libcxx llvm/projects/libcxxabi
travis_retry wget -O - ${LLVM_URL} | tar --strip-components=1 -xJ -C llvm
travis_retry wget -O - ${LIBCXX_URL} | tar --strip-components=1 -xJ -C llvm/projects/libcxx
travis_retry wget -O - ${LIBCXXABI_URL} | tar --strip-components=1 -xJ -C llvm/projects/libcxxabi
(cd llvm/build && cmake .. -DCMAKE_INSTALL_PREFIX=${LLVM_INSTALL})
(cd llvm/build/projects/libcxx && make install -j2)
(cd llvm/build/projects/libcxxabi && make install -j2)
export CXXFLAGS="-isystem ${LLVM_INSTALL}/include/c++/v1"
export LDFLAGS="-L ${LLVM_INSTALL}/lib -l c++ -l c++abi"
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${LLVM_INSTALL}/lib"
fi
before_script:
- |
cd "${TRAVIS_BUILD_DIR:?}"
mkdir build && cd build
if [[ ${GSL_CXX_STANDARD:-} ]]; then
CMAKE_GEN_FLAGS=("-DGSL_CXX_STANDARD=$GSL_CXX_STANDARD")
fi
CMAKE_GEN_FLAGS+=("-Wdev -Werror=dev --warn-uninitialized")
script:
# generate build files
- cmake .. -DCMAKE_BUILD_TYPE=${BUILD_TYPE:?} ${CMAKE_GEN_FLAGS[@]:?}
# build and run tests
- cmake --build . -- -j${JOBS}
- ctest --output-on-failure -j${JOBS}

View File

@ -1,48 +1,119 @@
cmake_minimum_required(VERSION 3.14...3.16)
cmake_minimum_required(VERSION 3.1.3...3.16)
project(GSL VERSION 4.2.0 LANGUAGES CXX)
project(GSL VERSION 3.1.0 LANGUAGES CXX)
include(ExternalProject)
find_package(Git)
# Use GNUInstallDirs to provide the right locations on all platforms
include(GNUInstallDirs)
# creates a library GSL which is an interface (header files only)
add_library(GSL INTERFACE)
# determine whether this is a standalone project or included by other projects
set(GSL_STANDALONE_PROJECT OFF)
if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(GSL_STANDALONE_PROJECT ON)
endif ()
set(GSL_CXX_STANDARD "14" CACHE STRING "Use c++ standard")
set(GSL_CXX_STD "cxx_std_${GSL_CXX_STANDARD}")
if (MSVC)
set(GSL_CXX_STD_OPT "-std:c++${GSL_CXX_STANDARD}")
else()
set(GSL_CXX_STD_OPT "-std=c++${GSL_CXX_STANDARD}")
endif()
# when minimum version required is 3.8.0 remove if below
# both branches do exactly the same thing
if (CMAKE_VERSION VERSION_LESS 3.7.9)
include(CheckCXXCompilerFlag)
CHECK_CXX_COMPILER_FLAG("${GSL_CXX_STD_OPT}" COMPILER_SUPPORTS_CXX_STANDARD)
if(COMPILER_SUPPORTS_CXX_STANDARD)
target_compile_options(GSL INTERFACE "${GSL_CXX_STD_OPT}")
else()
message(FATAL_ERROR "The compiler ${CMAKE_CXX_COMPILER} has no c++${GSL_CXX_STANDARD} support. Please use a different C++ compiler.")
endif()
else ()
target_compile_features(GSL INTERFACE "${GSL_CXX_STD}")
# on *nix systems force the use of -std=c++XX instead of -std=gnu++XX (default)
set(CMAKE_CXX_EXTENSIONS OFF)
endif()
# add definitions to the library and targets that consume it
target_compile_definitions(GSL INTERFACE
$<$<CXX_COMPILER_ID:MSVC>:
# remove unnecessary warnings about unchecked iterators
_SCL_SECURE_NO_WARNINGS
# remove deprecation warnings about std::uncaught_exception() (from catch)
_SILENCE_CXX17_UNCAUGHT_EXCEPTION_DEPRECATION_WARNING
>
)
# add include folders to the library and targets that consume it
# the SYSTEM keyword suppresses warnings for users of the library
if(GSL_STANDALONE_PROJECT)
target_include_directories(GSL INTERFACE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
)
else()
target_include_directories(GSL SYSTEM INTERFACE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
)
endif()
if (CMAKE_VERSION VERSION_GREATER 3.7.8)
if (MSVC_IDE)
option(VS_ADD_NATIVE_VISUALIZERS "Configure project to use Visual Studio native visualizers" TRUE)
else()
set(VS_ADD_NATIVE_VISUALIZERS FALSE CACHE INTERNAL "Native visualizers are Visual Studio extension" FORCE)
endif()
# add natvis file to the library so it will automatically be loaded into Visual Studio
if(VS_ADD_NATIVE_VISUALIZERS)
target_sources(GSL INTERFACE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/GSL.natvis>
)
endif()
endif()
install(TARGETS GSL EXPORT Microsoft.GSLConfig)
install(
DIRECTORY include/gsl
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
# Make library importable by other projects
install(EXPORT Microsoft.GSLConfig NAMESPACE Microsoft.GSL:: DESTINATION ${CMAKE_INSTALL_DATADIR}/cmake/Microsoft.GSL)
export(TARGETS GSL NAMESPACE Microsoft.GSL:: FILE Microsoft.GSLConfig.cmake)
# Add find_package() versioning support. The version for
# generated Microsoft.GSLConfigVersion.cmake will be used from
# last project() command. The version's compatibility is set between all
# minor versions (as it was in prev. GSL releases).
include(CMakePackageConfigHelpers)
write_basic_package_version_file(
${CMAKE_CURRENT_BINARY_DIR}/Microsoft.GSLConfigVersion.cmake
COMPATIBILITY SameMajorVersion
)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/Microsoft.GSLConfigVersion.cmake DESTINATION ${CMAKE_INSTALL_DATADIR}/cmake/Microsoft.GSL)
# Add Microsoft.GSL::GSL alias for GSL so that dependents can be agnostic about
# whether GSL was added via `add_subdirectory` or `find_package`
add_library(Microsoft.GSL::GSL ALIAS GSL)
# https://cmake.org/cmake/help/latest/variable/PROJECT_IS_TOP_LEVEL.html
string(COMPARE EQUAL ${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_SOURCE_DIR} PROJECT_IS_TOP_LEVEL)
option(GSL_INSTALL "Generate and install GSL target" ${PROJECT_IS_TOP_LEVEL})
option(GSL_TEST "Build and perform GSL tests" ${PROJECT_IS_TOP_LEVEL})
# The implementation generally assumes a platform that implements C++14 support
target_compile_features(GSL INTERFACE "cxx_std_14")
# Setup include directory
add_subdirectory(include)
target_sources(GSL INTERFACE $<BUILD_INTERFACE:${GSL_SOURCE_DIR}/GSL.natvis>)
option(GSL_TEST "Generate tests." ${GSL_STANDALONE_PROJECT})
if (GSL_TEST)
enable_testing()
if(IOS)
add_compile_definitions(
GTEST_HAS_DEATH_TEST=1
)
endif()
add_subdirectory(tests)
endif()
if (GSL_INSTALL)
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
install(DIRECTORY "${PROJECT_SOURCE_DIR}/include/gsl" DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
set(export_name "Microsoft.GSLConfig")
set(namespace "Microsoft.GSL::")
set(cmake_files_install_dir ${CMAKE_INSTALL_DATADIR}/cmake/Microsoft.GSL)
install(TARGETS GSL EXPORT ${export_name} INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
install(EXPORT ${export_name} NAMESPACE ${namespace} DESTINATION ${cmake_files_install_dir})
export(TARGETS GSL NAMESPACE ${namespace} FILE ${export_name}.cmake)
set(gls_config_version "${CMAKE_CURRENT_BINARY_DIR}/Microsoft.GSLConfigVersion.cmake")
write_basic_package_version_file(${gls_config_version} COMPATIBILITY SameMajorVersion ARCH_INDEPENDENT)
install(FILES ${gls_config_version} DESTINATION ${cmake_files_install_dir})
install(FILES GSL.natvis DESTINATION ${cmake_files_install_dir})
endif()
endif ()

View File

@ -17,7 +17,7 @@ Please submit a Contributor License Agreement (CLA) before submitting a pull req
Your pull request should:
* Include a description of what your change intends to do
* Be a child commit of a reasonably recent commit in the **main** branch
* Be a child commit of a reasonably recent commit in the **master** branch
* Requests need not be a single commit, but should be a linear sequence of commits (i.e. no merge commits in your PR)
* It is desirable, but not necessary, for the tests to pass at each commit. Please see [README.md](./README.md) for instructions to build the test suite.
* Have clear commit messages

View File

@ -4,7 +4,13 @@
vim: syntax=xml
-->
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<!-- These types are from the util header. -->
<!-- These types are from the gsl_assert header. -->
<Type Name="gsl::fail_fast">
<!-- na hides the address, otherwise it would appear as 0x.... "Message" -->
<DisplayString>{_Data._What,nasb}</DisplayString>
</Type>
<!-- These types are from the gsl_util header. -->
<Type Name="gsl::final_action&lt;*&gt;">
<DisplayString>{{ invoke = {invoke_}, action = {f_} }}</DisplayString>
<Expand>
@ -13,8 +19,7 @@
</Expand>
</Type>
<!-- These types are from the span header. -->
<Type Name="gsl::span&lt;*, *&gt;">
<Type Name="gsl::span&lt;*, *&gt;">
<DisplayString>{{ extent = {storage_.size_} }}</DisplayString>
<Expand>
<ArrayItems>
@ -24,7 +29,29 @@
</Expand>
</Type>
<!-- These types are from the pointers header. -->
<Type Name="gsl::basic_string_span&lt;*, *&gt;">
<DisplayString>{span_.storage_.data_,[span_.storage_.size_]na}</DisplayString>
<Expand>
<Item Name="[size]">span_.storage_.size_</Item>
<ArrayItems>
<Size>span_.storage_.size_</Size>
<ValuePointer>span_.storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<Type Name="gsl::basic_zstring_span&lt;*, *&gt;">
<DisplayString>{span_.storage_.data_,[span_.storage_.size_]na}</DisplayString>
<Expand>
<Item Name="[size]">span_.storage_.size_</Item>
<ArrayItems>
<Size>span_.storage_.size_</Size>
<ValuePointer>span_.storage_.data_</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- These types are from the gsl header. -->
<Type Name="gsl::not_null&lt;*&gt;">
<!-- We can always dereference this since it's an invariant. -->
<DisplayString>value = {*ptr_}</DisplayString>

148
README.md
View File

@ -1,12 +1,13 @@
# GSL: Guidelines Support Library
[![CI](https://github.com/Microsoft/GSL/actions/workflows/compilers.yml/badge.svg)](https://github.com/microsoft/GSL/actions/workflows/compilers.yml?query=branch%3Amain)
[![vcpkg](https://img.shields.io/vcpkg/v/ms-gsl)](https://vcpkg.io/en/package/ms-gsl)
[![Build Status](https://travis-ci.org/Microsoft/GSL.svg?branch=master)](https://travis-ci.org/Microsoft/GSL) [![Build status](https://ci.appveyor.com/api/projects/status/github/Microsoft/GSL?svg=true)](https://ci.appveyor.com/project/neilmacintosh/GSL)
The Guidelines Support Library (GSL) contains functions and types that are suggested for use by the
[C++ Core Guidelines](https://github.com/isocpp/CppCoreGuidelines) maintained by the [Standard C++ Foundation](https://isocpp.org).
This repo contains Microsoft's implementation of GSL.
The entire implementation is provided inline in the headers under the [gsl](./include/gsl) directory. The implementation generally assumes a platform that implements C++14 support.
The library includes types like `span<T>`, `string_span`, `owner<>` and others.
The entire implementation is provided inline in the headers under the [gsl](./include/gsl) directory. The implementation generally assumes a platform that implements C++14 support. There are specific workarounds to support MSVC 2015.
While some types have been broken out into their own headers (e.g. [gsl/span](./include/gsl/span)),
it is simplest to just include [gsl/gsl](./include/gsl/gsl) and gain access to the entire library.
@ -20,88 +21,21 @@ This project has adopted the [Microsoft Open Source Code of Conduct](https://ope
# Usage of Third Party Libraries
This project makes use of the [Google Test](https://github.com/google/googletest) testing library. Please see the [ThirdPartyNotices.txt](./ThirdPartyNotices.txt) file for details regarding the licensing of Google Test.
# Supported features
## Microsoft GSL implements the following from the C++ Core Guidelines:
Feature | Supported? | Description
-------------------------------------------------------------------------|:----------:|-------------
[**1. Views**][cg-views] | |
[owner](docs/headers.md#user-content-H-pointers-owner) | &#x2611; | An alias for a raw pointer
[not_null](docs/headers.md#user-content-H-pointers-not_null) | &#x2611; | Restricts a pointer/smart pointer to hold non-null values
[span](docs/headers.md#user-content-H-span-span) | &#x2611; | A view over a contiguous sequence of memory. Based on the standardized version of `std::span`, however `gsl::span` enforces bounds checking.
span_p | &#x2610; | Spans a range starting from a pointer to the first place for which the predicate is true
[basic_zstring](docs/headers.md#user-content-H-zstring) | &#x2611; | A pointer to a C-string (zero-terminated array) with a templated char type
[zstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `char`
[czstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `const char`
[wzstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `wchar_t`
[cwzstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `const wchar_t`
[u16zstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `char16_t`
[cu16zstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `const char16_t`
[u32zstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `char32_t`
[cu32zstring](docs/headers.md#user-content-H-zstring) | &#x2611; | An alias to `basic_zstring` with dynamic extent and a char type of `const char32_t`
[**2. Owners**][cg-owners] | |
stack_array | &#x2610; | A stack-allocated array
dyn_array | &#x2610; | A heap-allocated array
[**3. Assertions**][cg-assertions] | |
[Expects](docs/headers.md#user-content-H-assert-expects) | &#x2611; | A precondition assertion; on failure it terminates
[Ensures](docs/headers.md#user-content-H-assert-ensures) | &#x2611; | A postcondition assertion; on failure it terminates
[**4. Utilities**][cg-utilities] | |
move_owner | &#x2610; | A helper function that moves one `owner` to the other
[final_action](docs/headers.md#user-content-H-util-final_action) | &#x2611; | A RAII style class that invokes a functor on its destruction
[finally](docs/headers.md#user-content-H-util-finally) | &#x2611; | A helper function instantiating [final_action](docs/headers.md#user-content-H-util-final_action)
[GSL_SUPPRESS](docs/headers.md#user-content-H-assert-gsl_suppress) | &#x2611; | A macro that takes an argument and turns it into `[[gsl::suppress(x)]]` or `[[gsl::suppress("x")]]`
[[implicit]] | &#x2610; | A "marker" to put on single-argument constructors to explicitly make them non-explicit
[index](docs/headers.md#user-content-H-util-index) | &#x2611; | A type to use for all container and array indexing (currently an alias for `std::ptrdiff_t`)
[narrow](docs/headers.md#user-content-H-narrow-narrow) | &#x2611; | A checked version of `narrow_cast`; it can throw [narrowing_error](docs/headers.md#user-content-H-narrow-narrowing_error)
[narrow_cast](docs/headers.md#user-content-H-util-narrow_cast) | &#x2611; | A narrowing cast for values and a synonym for `static_cast`
[narrowing_error](docs/headers.md#user-content-H-narrow-narrowing_error) | &#x2611; | A custom exception type thrown by [narrow](docs/headers.md#user-content-H-narrow-narrow)
[**5. Concepts**][cg-concepts] | &#x2610; |
## The following features do not exist in or have been removed from the C++ Core Guidelines:
Feature | Supported? | Description
-----------------------------------|:----------:|-------------
[strict_not_null](docs/headers.md#user-content-H-pointers-strict_not_null) | &#x2611; | A stricter version of [not_null](docs/headers.md#user-content-H-pointers-not_null) with explicit constructors
multi_span | &#x2610; | Deprecated. Multi-dimensional span.
strided_span | &#x2610; | Deprecated. Support for this type has been discontinued.
basic_string_span | &#x2610; | Deprecated. Like `span` but for strings with a templated char type
string_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `char`
cstring_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `const char`
wstring_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `wchar_t`
cwstring_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `const wchar_t`
u16string_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `char16_t`
cu16string_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `const char16_t`
u32string_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `char32_t`
cu32string_span | &#x2610; | Deprecated. An alias to `basic_string_span` with a char type of `const char32_t`
## The following features have been adopted by WG21. They are deprecated in GSL.
Feature | Deprecated Since | Notes
------------------------------------------------------------------|------------------|------
[unique_ptr](docs/headers.md#user-content-H-pointers-unique_ptr) | C++11 | Use std::unique_ptr instead.
[shared_ptr](docs/headers.md#user-content-H-pointers-shared_ptr) | C++11 | Use std::shared_ptr instead.
[byte](docs/headers.md#user-content-H-byte-byte) | C++17 | Use std::byte instead.
joining_thread | C++20 (Note: Not yet implemented in GSL) | Use std::jthread instead.
This is based on [CppCoreGuidelines semi-specification](https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#gsl-guidelines-support-library).
[cg-views]: https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#gslview-views
[cg-owners]: https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#gslowner-ownership-pointers
[cg-assertions]: https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#gslassert-assertions
[cg-utilities]: https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#gslutil-utilities
[cg-concepts]: https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#gslconcept-concepts
# Quick Start
## Supported Compilers / Toolsets
The GSL officially supports recent major versions of Visual Studio with both MSVC and LLVM, GCC, Clang, and XCode with Apple-Clang.
For each of these major versions, the GSL officially supports C++14, C++17, C++20, and C++23 (when supported by the compiler).
Below is a table showing the versions currently being tested (also see [.github/workflows/compilers.yml](the workflow).)
## Supported Compilers
The GSL officially supports the current and previous major release of MSVC, GCC, Clang, and XCode's Apple-Clang.
See our latest test results for the most up-to-date list of supported configurations.
Compiler |Toolset Versions Currently Tested
:------- |--:
GCC | 12, 13, 14
XCode | 14.3.1, 15.4
Clang | 16, 17, 18
Visual Studio with MSVC | VS2019, VS2022
Visual Studio with LLVM | VS2019, VS2022
Compiler |Toolset Versions Currently Tested| Build Status
:------- |:--|------------:
XCode |11.4 & 10.3 | [![Status](https://travis-ci.org/Microsoft/GSL.svg?branch=master)](https://travis-ci.org/Microsoft/GSL)
GCC |9 & 8| [![Status](https://travis-ci.org/Microsoft/GSL.svg?branch=master)](https://travis-ci.org/Microsoft/GSL)
Clang |11 & 10| [![Status](https://travis-ci.org/Microsoft/GSL.svg?branch=master)](https://travis-ci.org/Microsoft/GSL)
Visual Studio with MSVC | VS2017 (15.9) & VS2019 (16.4) | [![Status](https://ci.appveyor.com/api/projects/status/github/Microsoft/GSL?svg=true)](https://ci.appveyor.com/project/neilmacintosh/GSL)
Visual Studio with LLVM | VS2017 (Clang 9) & VS2019 (Clang 10) | [![Status](https://ci.appveyor.com/api/projects/status/github/Microsoft/GSL?svg=true)](https://ci.appveyor.com/project/neilmacintosh/GSL)
Note: For `gsl::byte` to work correctly with Clang and GCC you might have to use the ` -fno-strict-aliasing` compiler option.
---
If you successfully port GSL to another platform, we would love to hear from you!
@ -111,19 +45,19 @@ If you successfully port GSL to another platform, we would love to hear from you
Target | CI/CD Status
:------- | -----------:
iOS | [![CI_iOS](https://github.com/microsoft/GSL/workflows/CI_iOS/badge.svg?branch=main)](https://github.com/microsoft/GSL/actions/workflows/ios.yml?query=branch%3Amain)
Android | [![CI_Android](https://github.com/microsoft/GSL/workflows/CI_Android/badge.svg?branch=main)](https://github.com/microsoft/GSL/actions/workflows/android.yml?query=branch%3Amain)
iOS | ![CI](https://github.com/microsoft/GSL/workflows/CI/badge.svg)
Android | ![CI](https://github.com/microsoft/GSL/workflows/CI/badge.svg)
Note: These CI/CD steps are run with each pull request, however failures in them are non-blocking.
## Building the tests
To build the tests, you will require the following:
* [CMake](http://cmake.org), version 3.14 or later to be installed and in your PATH.
* [CMake](http://cmake.org), version 3.1.3 (3.2.3 for AppleClang) or later to be installed and in your PATH.
These steps assume the source code of this repository has been cloned into a directory named `c:\GSL`.
1. Create a directory to contain the build outputs for a particular architecture (we name it `c:\GSL\build-x86` in this example).
1. Create a directory to contain the build outputs for a particular architecture (we name it c:\GSL\build-x86 in this example).
cd GSL
md build-x86
@ -131,7 +65,7 @@ These steps assume the source code of this repository has been cloned into a dir
2. Configure CMake to use the compiler of your choice (you can see a list by running `cmake --help`).
cmake -G "Visual Studio 15 2017" c:\GSL
cmake -G "Visual Studio 14 2015" c:\GSL
3. Build the test suite (in this case, in the Debug configuration, Release is another good choice).
@ -177,44 +111,12 @@ Include the library using:
## Usage in CMake
The library provides a Config file for CMake, once installed it can be found via `find_package`.
The library provides a Config file for CMake, once installed it can be found via
find_package(Microsoft.GSL CONFIG)
Which, when successful, will add library target called `Microsoft.GSL::GSL` which you can use via the usual
`target_link_libraries` mechanism.
```cmake
find_package(Microsoft.GSL CONFIG REQUIRED)
target_link_libraries(foobar PRIVATE Microsoft.GSL::GSL)
```
### FetchContent
If you are using CMake version 3.11+ you can use the official [FetchContent module](https://cmake.org/cmake/help/latest/module/FetchContent.html).
This allows you to easily incorporate GSL into your project.
```cmake
# NOTE: This example uses CMake version 3.14 (FetchContent_MakeAvailable).
# Since it streamlines the FetchContent process
cmake_minimum_required(VERSION 3.14)
include(FetchContent)
FetchContent_Declare(GSL
GIT_REPOSITORY "https://github.com/microsoft/GSL"
GIT_TAG "v4.2.0"
GIT_SHALLOW ON
)
FetchContent_MakeAvailable(GSL)
target_link_libraries(foobar PRIVATE Microsoft.GSL::GSL)
```
## Debugging visualization support
For Visual Studio users, the file [GSL.natvis](./GSL.natvis) in the root directory of the repository can be added to your project if you would like more helpful visualization of GSL types in the Visual Studio debugger than would be offered by default.
## See Also
For information on [Microsoft Gray Systems Lab (GSL)](https://aka.ms/gsl) of applied data management and system research see <https://aka.ms/gsl>.

View File

@ -1,41 +0,0 @@
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.7 BLOCK -->
## Security
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), and [our GitHub organizations](https://opensource.microsoft.com/).
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/opensource/security/definition), please report it to us as described below.
## Reporting Security Issues
**Please do not report security vulnerabilities through public GitHub issues.**
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/opensource/security/create-report).
If you prefer to submit without logging in, send email to [secure@microsoft.com](mailto:secure@microsoft.com). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/opensource/security/pgpkey).
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://aka.ms/opensource/security/msrc).
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
* Full paths of source file(s) related to the manifestation of the issue
* The location of the affected source code (tag/branch/commit or direct URL)
* Any special configuration required to reproduce the issue
* Step-by-step instructions to reproduce the issue
* Proof-of-concept or exploit code (if possible)
* Impact of the issue, including how an attacker might exploit the issue
This information will help us triage your report more quickly.
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/opensource/security/bounty) page for more details about our active programs.
## Preferred Languages
We prefer all communications to be in English.
## Policy
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/opensource/security/cvd).
<!-- END MICROSOFT SECURITY.MD BLOCK -->

114
appveyor.yml Normal file
View File

@ -0,0 +1,114 @@
shallow_clone: true
platform:
- x86
- x64
configuration:
- Debug
- Release
image:
- Visual Studio 2017
- Visual Studio 2019
environment:
NINJA_TAG: v1.8.2
NINJA_SHA512: 9B9CE248240665FCD6404B989F3B3C27ED9682838225E6DC9B67B551774F251E4FF8A207504F941E7C811E7A8BE1945E7BCB94472A335EF15E23A0200A32E6D5
NINJA_PATH: C:\Tools\ninja\ninja-%NINJA_TAG%
VCVAR2017: 'C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat'
VCVAR2019: 'C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat'
matrix:
- GSL_CXX_STANDARD: 14
USE_TOOLSET: MSVC
USE_GENERATOR: MSBuild
- GSL_CXX_STANDARD: 17
USE_TOOLSET: MSVC
USE_GENERATOR: MSBuild
- GSL_CXX_STANDARD: 14
USE_TOOLSET: LLVM
USE_GENERATOR: Ninja
- GSL_CXX_STANDARD: 17
USE_TOOLSET: LLVM
USE_GENERATOR: Ninja
cache:
- C:\cmake-3.14.4-win32-x86
- C:\Tools\ninja
install:
- ps: |
if (![IO.File]::Exists("$env:NINJA_PATH\ninja.exe")) {
Start-FileDownload `
"https://github.com/ninja-build/ninja/releases/download/$env:NINJA_TAG/ninja-win.zip"
$hash = (Get-FileHash ninja-win.zip -Algorithm SHA512).Hash
if ($env:NINJA_SHA512 -eq $hash) {
7z e -y -bso0 ninja-win.zip -o"$env:NINJA_PATH"
} else { Write-Warning "Ninja download hash changed!"; Write-Output "$hash" }
}
if ([IO.File]::Exists("$env:NINJA_PATH\ninja.exe")) {
$env:PATH = "$env:NINJA_PATH;$env:PATH"
} else { Write-Warning "Failed to find ninja.exe in expected location." }
if ($env:USE_TOOLSET -ne "LLVM") {
if (![IO.File]::Exists("C:\cmake-3.14.0-win32-x86\bin\cmake.exe")) {
Start-FileDownload 'https://cmake.org/files/v3.14/cmake-3.14.4-win32-x86.zip'
7z x -y -bso0 cmake-3.14.4-win32-x86.zip -oC:\
}
$env:PATH="C:\cmake-3.14.4-win32-x86\bin;$env:PATH"
}
before_build:
- ps: |
if ("$env:USE_GENERATOR" -eq "Ninja") {
$GeneratorFlags = '-k 10'
$Architecture = $env:PLATFORM
if ("$env:APPVEYOR_BUILD_WORKER_IMAGE" -eq "Visual Studio 2017") {
$env:VCVARSALL = "`"$env:VCVAR2017`" $Architecture"
} else {
$env:VCVARSALL = "`"$env:VCVAR2019`" $Architecture"
}
$env:CMakeGenFlags = "-G Ninja -DGSL_CXX_STANDARD=$env:GSL_CXX_STANDARD"
} else {
$GeneratorFlags = '/m /v:minimal'
if ("$env:APPVEYOR_BUILD_WORKER_IMAGE" -eq "Visual Studio 2017") {
$Generator = 'Visual Studio 15 2017'
} else {
$Generator = 'Visual Studio 16 2019'
}
if ("$env:PLATFORM" -eq "x86") {
$Architecture = "Win32"
} else {
$Architecture = "x64"
}
if ("$env:USE_TOOLSET" -eq "LLVM") {
$env:CMakeGenFlags = "-G `"$Generator`" -A $Architecture -T llvm -DGSL_CXX_STANDARD=$env:GSL_CXX_STANDARD"
} else {
$env:CMakeGenFlags = "-G `"$Generator`" -A $Architecture -DGSL_CXX_STANDARD=$env:GSL_CXX_STANDARD"
}
}
if ("$env:USE_TOOLSET" -eq "LLVM") {
$env:CC = "clang-cl"
$env:CXX = "clang-cl"
if ("$env:PLATFORM" -eq "x86") {
$env:CFLAGS = "-m32";
$env:CXXFLAGS = "-m32";
} else {
$env:CFLAGS = "-m64";
$env:CXXFLAGS = "-m64";
}
}
$env:CMakeBuildFlags = "--config $env:CONFIGURATION -- $GeneratorFlags"
- mkdir build
- cd build
- if %USE_GENERATOR%==Ninja (call %VCVARSALL%)
- echo %CMakeGenFlags%
- cmake .. %CMakeGenFlags%
build_script:
- echo %CMakeBuildFlags%
- cmake --build . %CMakeBuildFlags%
test_script:
- ctest -j2
deploy: off

View File

@ -1,884 +0,0 @@
The Guidelines Support Library (GSL) interface is very lightweight and exposed via a header-only library. This document attempts to document all of the headers and their exposed classes and functions.
Types and functions are exported in the namespace `gsl`.
See [GSL: Guidelines support library](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl)
# <a name="H" />Headers
- [`<algorithms>`](#user-content-H-algorithms)
- [`<assert>`](#user-content-H-assert)
- [`<byte>`](#user-content-H-byte)
- [`<gsl>`](#user-content-H-gsl)
- [`<narrow>`](#user-content-H-narrow)
- [`<pointers>`](#user-content-H-pointers)
- [`<span>`](#user-content-H-span)
- [`<span_ext>`](#user-content-H-span_ext)
- [`<zstring>`](#user-content-H-zstring)
- [`<util>`](#user-content-H-util)
## <a name="H-algorithms" />`<algorithms>`
This header contains some common algorithms that have been wrapped in GSL safety features.
- [`gsl::copy`](#user-content-H-algorithms-copy)
### <a name="H-algorithms-copy" />`gsl::copy`
```cpp
template <class SrcElementType, std::size_t SrcExtent, class DestElementType,
std::size_t DestExtent>
void copy(span<SrcElementType, SrcExtent> src, span<DestElementType, DestExtent> dest);
```
This function copies the content from the `src` [`span`](#user-content-H-span-span) to the `dest` [`span`](#user-content-H-span-span). It [`Expects`](#user-content-H-assert-expects)
that the destination `span` is at least as large as the source `span`.
## <a name="H-assert" />`<assert>`
This header contains some macros used for contract checking and suppressing code analysis warnings.
See [GSL.assert: Assertions](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-assertions)
- [`GSL_SUPPRESS`](#user-content-H-assert-gsl_suppress)
- [`Expects`](#user-content-H-assert-expects)
- [`Ensures`](#user-content-H-assert-ensures)
### <a name="H-assert-gsl_suppress" />`GSL_SUPPRESS`
This macro can be used to suppress a code analysis warning.
The core guidelines request tools that check for the rules to respect suppressing a rule by writing
`[[gsl::suppress(tag)]]` or `[[gsl::suppress(tag, justification: "message")]]`.
Clang does not use exactly that syntax, but requires `tag` to be put in double quotes `[[gsl::suppress("tag")]]`.
For portable code you can use `GSL_SUPPRESS(tag)`.
See [In.force: Enforcement](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#inforce-enforcement).
### <a name="H-assert-expects" />`Expects`
This macro can be used for expressing a precondition. If the precondition is not held, then `std::terminate` will be called.
See [I.6: Prefer `Expects()` for expressing preconditions](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i6-prefer-expects-for-expressing-preconditions)
### <a name="H-assert-ensures" />`Ensures`
This macro can be used for expressing a postcondition. If the postcondition is not held, then `std::terminate` will be called.
See [I.8: Prefer `Ensures()` for expressing postconditions](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i8-prefer-ensures-for-expressing-postconditions)
## <a name="H-byte" />`<byte>`
This header contains the definition of a byte type, implementing `std::byte` before it was standardized into C++17.
- [`gsl::byte`](#user-content-H-byte-byte)
### <a name="H-byte-byte" />`gsl::byte`
If `GSL_USE_STD_BYTE` is defined to be `1`, then `gsl::byte` will be an alias to `std::byte`.
If `GSL_USE_STD_BYTE` is defined to be `0`, then `gsl::byte` will be a distinct type that implements the concept of byte.
If `GSL_USE_STD_BYTE` is not defined, then the header file will check if `std::byte` is available (C\+\+17 or higher). If yes,
`gsl::byte` will be an alias to `std::byte`, otherwise `gsl::byte` will be a distinct type that implements the concept of byte.
&#x26a0; Take care when linking projects that were compiled with different language standards (before C\+\+17 and C\+\+17 or higher).
If you do so, you might want to `#define GSL_USE_STD_BYTE 0` to a fixed value to be sure that both projects use exactly
the same type. Otherwise you might get linker errors.
See [SL.str.5: Use `std::byte` to refer to byte values that do not necessarily represent characters](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rstr-byte)
### Non-member functions
```cpp
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
constexpr byte& operator<<=(byte& b, IntegerType shift) noexcept;
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
constexpr byte operator<<(byte b, IntegerType shift) noexcept;
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
constexpr byte& operator>>=(byte& b, IntegerType shift) noexcept;
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
constexpr byte operator>>(byte b, IntegerType shift) noexcept;
```
Left or right shift a `byte` by a given number of bits.
```cpp
constexpr byte& operator|=(byte& l, byte r) noexcept;
constexpr byte operator|(byte l, byte r) noexcept;
```
Bitwise "or" of two `byte`s.
```cpp
constexpr byte& operator&=(byte& l, byte r) noexcept;
constexpr byte operator&(byte l, byte r) noexcept;
```
Bitwise "and" of two `byte`s.
```cpp
constexpr byte& operator^=(byte& l, byte r) noexcept;
constexpr byte operator^(byte l, byte r) noexcept;
```
Bitwise xor of two `byte`s.
```cpp
constexpr byte operator~(byte b) noexcept;
```
Bitwise negation of a `byte`. Flips all bits. Zeroes become ones, ones become zeroes.
```cpp
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
constexpr IntegerType to_integer(byte b) noexcept;
```
Convert the given `byte` value to an integral type.
```cpp
template <typename T>
constexpr byte to_byte(T t) noexcept;
```
Convert the given value to a `byte`. The template requires `T` to be an `unsigned char` so that no data loss can occur.
If you want to convert an integer constant to a `byte` you probably want to call `to_byte<integer constant>()`.
```cpp
template <int I>
constexpr byte to_byte() noexcept;
```
Convert the given value `I` to a `byte`. The template requires `I` to be in the valid range 0..255 for a `gsl::byte`.
## <a name="H-gsl" />`<gsl>`
This header is a convenience header that includes all other [GSL headers](#user-content-H).
Since `<narrow>` requires exceptions, it will only be included if exceptions are enabled.
## <a name="H-narrow" />`<narrow>`
This header contains utility functions and classes, for narrowing casts, which require exceptions. The narrowing-related utilities that don't require exceptions are found inside [util](#user-content-H-util).
See [GSL.util: Utilities](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-utilities)
- [`gsl::narrowing_error`](#user-content-H-narrow-narrowing_error)
- [`gsl::narrow`](#user-content-H-narrow-narrow)
### <a name="H-narrow-narrowing_error" />`gsl::narrowing_error`
`gsl::narrowing_error` is the exception thrown by [`gsl::narrow`](#user-content-H-narrow-narrow) when a narrowing conversion fails. It is derived from `std::exception`.
### <a name="H-narrow-narrow" />`gsl::narrow`
`gsl::narrow<T>(x)` is a named cast that does a `static_cast<T>(x)` for narrowing conversions with no signedness promotions.
If the argument `x` cannot be represented in the target type `T`, then the function throws a [`gsl::narrowing_error`](#user-content-H-narrow-narrowing_error) (e.g., `narrow<unsigned>(-42)` and `narrow<char>(300)` throw).
Note: compare [`gsl::narrow_cast`](#user-content-H-util-narrow_cast) in header [util](#user-content-H-util).
See [ES.46: Avoid lossy (narrowing, truncating) arithmetic conversions](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing) and [ES.49: If you must use a cast, use a named cast](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-named)
## <a name="H-pointers" />`<pointers>`
This header contains some pointer types.
See [GSL.view](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-views)
- [`gsl::unique_ptr`](#user-content-H-pointers-unique_ptr)
- [`gsl::shared_ptr`](#user-content-H-pointers-shared_ptr)
- [`gsl::owner`](#user-content-H-pointers-owner)
- [`gsl::not_null`](#user-content-H-pointers-not_null)
- [`gsl::strict_not_null`](#user-content-H-pointers-strict_not_null)
### <a name="H-pointers-unique_ptr" />`gsl::unique_ptr`
`gsl::unique_ptr` is an alias to `std::unique_ptr`.
See [GSL.owner: Ownership pointers](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-ownership)
### <a name="H-pointers-shared_ptr" />`gsl::shared_ptr`
`gsl::shared_ptr` is an alias to `std::shared_ptr`.
See [GSL.owner: Ownership pointers](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-ownership)
### <a name="H-pointers-owner" />`gsl::owner`
`gsl::owner<T>` is designed as a safety mechanism for code that must deal directly with raw pointers that own memory. Ideally such code should be restricted to the implementation of low-level abstractions. `gsl::owner` can also be used as a stepping point in converting legacy code to use more modern RAII constructs such as smart pointers.
`T` must be a pointer type (`std::is_pointer<T>`).
A `gsl::owner<T>` is a typedef to `T`. It adds no runtime overhead whatsoever, as it is purely syntactic and does not add any runtime checks. Instead, it serves as an annotation for static analysis tools which check for memory safety, and as a code comprehension guide for human readers.
See Enforcement section of [C.31: All resources acquired by a class must be released by the classs destructor](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-dtor-release).
### <a name="H-pointers-not_null" />`gsl::not_null`
`gsl::not_null<T>` restricts a pointer or smart pointer to only hold non-null values. It has no size overhead over `T`.
The checks for ensuring that the pointer is not null are done in the constructor. There is no overhead when retrieving or dereferencing the checked pointer.
When a nullptr check fails, `std::terminate` is called.
See [F.23: Use a `not_null<T>` to indicate that “null” is not a valid value](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-nullptr)
#### Member Types
```cpp
using element_type = T;
```
The type of the pointer or smart pointer that is managed by this object.
#### Member functions
##### Construct/Copy
```cpp
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(U&& u);
template <typename = std::enable_if_t<!std::is_same<std::nullptr_t, T>::value>>
constexpr not_null(T u);
```
Constructs a `gsl_owner<T>` from a pointer that is convertible to `T` or that is a `T`. It [`Expects`](#user-content-H-assert-expects) that the provided pointer is not `== nullptr`.
```cpp
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(const not_null<U>& other);
```
Constructs a `gsl_owner<T>` from another `gsl_owner` where the other pointer is convertible to `T`. It [`Expects`](#user-content-H-assert-expects) that the provided pointer is not `== nullptr`.
```cpp
not_null(const not_null& other) = default;
not_null& operator=(const not_null& other) = default;
```
Copy construction and assignment.
```cpp
not_null(std::nullptr_t) = delete;
not_null& operator=(std::nullptr_t) = delete;
```
Construction from `std::nullptr_t` and assignment of `std::nullptr_t` are explicitly deleted.
##### Modifiers
```cpp
not_null& operator++() = delete;
not_null& operator--() = delete;
not_null operator++(int) = delete;
not_null operator--(int) = delete;
not_null& operator+=(std::ptrdiff_t) = delete;
not_null& operator-=(std::ptrdiff_t) = delete;
```
Explicitly deleted operators. Pointers point to single objects ([I.13: Do not pass an array as a single pointer](http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array)), so don't allow these operators.
##### Observers
```cpp
constexpr details::value_or_reference_return_t<T> get() const;
constexpr operator T() const { return get(); }
```
Get the underlying pointer.
```cpp
constexpr decltype(auto) operator->() const { return get(); }
constexpr decltype(auto) operator*() const { return *get(); }
```
Dereference the underlying pointer.
```cpp
void operator[](std::ptrdiff_t) const = delete;
```
Array index operator is explicitly deleted. Pointers point to single objects ([I.13: Do not pass an array as a single pointer](http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array)), so don't allow treating them as an array.
```cpp
void swap(not_null<T>& other) { std::swap(ptr_, other.ptr_); }
```
Swaps contents with another `gsl::not_null` object.
#### Non-member functions
```cpp
template <class T>
auto make_not_null(T&& t) noexcept;
```
Creates a `gsl::not_null` object, deducing the target type from the type of the argument.
```cpp
template <typename T, std::enable_if_t<std::is_move_assignable<T>::value && std::is_move_constructible<T>::value, bool> = true>
void swap(not_null<T>& a, not_null<T>& b);
```
Swaps the contents of two `gsl::not_null` objects.
```cpp
template <class T, class U>
auto operator==(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() == rhs.get()))
-> decltype(lhs.get() == rhs.get());
template <class T, class U>
auto operator!=(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() != rhs.get()))
-> decltype(lhs.get() != rhs.get());
template <class T, class U>
auto operator<(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() < rhs.get()))
-> decltype(lhs.get() < rhs.get());
template <class T, class U>
auto operator<=(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() <= rhs.get()))
-> decltype(lhs.get() <= rhs.get());
template <class T, class U>
auto operator>(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() > rhs.get()))
-> decltype(lhs.get() > rhs.get());
template <class T, class U>
auto operator>=(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() >= rhs.get()))
-> decltype(lhs.get() >= rhs.get());
```
Comparison of pointers that are convertible to each other.
##### Input/Output
```cpp
template <class T>
std::ostream& operator<<(std::ostream& os, const not_null<T>& val);
```
Performs stream output on a `not_null` pointer, invoking `os << val.get()`. This function is only available when `GSL_NO_IOSTREAMS` is not defined.
##### Modifiers
```cpp
template <class T, class U>
std::ptrdiff_t operator-(const not_null<T>&, const not_null<U>&) = delete;
template <class T>
not_null<T> operator-(const not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
not_null<T> operator+(const not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
not_null<T> operator+(std::ptrdiff_t, const not_null<T>&) = delete;
```
Addition and subtraction are explicitly deleted. Pointers point to single objects ([I.13: Do not pass an array as a single pointer](http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-array)), so don't allow these operators.
##### STL integration
```cpp
template <class T>
struct std::hash<gsl::not_null<T>> { ... };
```
Specialization of `std::hash` for `gsl::not_null`.
### <a name="H-pointers-strict_not_null" />`gsl::strict_not_null`
`strict_not_null` is the same as [`not_null`](#user-content-H-pointers-not_null) except that the constructors are `explicit`.
The free function that deduces the target type from the type of the argument and creates a `gsl::strict_not_null` object is `gsl::make_strict_not_null`.
## <a name="H-span" />`<span>`
This header file exports the class `gsl::span`, a bounds-checked implementation of `std::span`.
- [`gsl::span`](#user-content-H-span-span)
### <a name="H-span-span" />`gsl::span`
```cpp
template <class ElementType, std::size_t Extent>
class span;
```
`gsl::span` is a view over memory. It does not own the memory and is only a way to access contiguous sequences of objects.
The extent can be either a fixed size or [`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent).
The `gsl::span` is based on the standardized version of `std::span` which was added to C++20. Originally, the plan was to
deprecate `gsl::span` when `std::span` finished standardization, however that plan changed when the runtime bounds checking
was removed from `std::span`'s design.
The only difference between `gsl::span` and `std::span` is that `gsl::span` strictly enforces runtime bounds checking.
Any violations of the bounds check results in termination of the program.
Like `gsl::span`, `gsl::span`'s iterators also differ from `std::span`'s iterator in that all access operations are bounds checked.
#### Which version of span should I use?
##### Use `gsl::span` if
- you want to guarantee bounds safety in your project.
- All data accessing operations use bounds checking to ensure you are only accessing valid memory.
- your project uses C++14 or C++17.
- `std::span` is not available as it was not introduced into the STL until C++20.
##### Use `std::span` if
- your project is C++20 and you need the performance offered by `std::span`.
#### Types
```cpp
using element_type = ElementType;
using value_type = std::remove_cv_t<ElementType>;
using size_type = std::size_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using difference_type = std::ptrdiff_t;
using iterator = details::span_iterator<ElementType>;
using reverse_iterator = std::reverse_iterator<iterator>;
```
#### Member functions
```cpp
constexpr span() noexcept;
```
Constructs an empty `span`. This constructor is only available if `Extent` is 0 or [`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent).
`span::data()` will return `nullptr`.
```cpp
constexpr explicit(Extent != gsl::dynamic_extent) span(pointer ptr, size_type count) noexcept;
```
Constructs a `span` from a pointer and a size. If `Extent` is not [`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent),
then the constructor [`Expects`](#user-content-H-assert-expects) that `count == Extent`.
```cpp
constexpr explicit(Extent != gsl::dynamic_extent) span(pointer firstElem, pointer lastElem) noexcept;
```
Constructs a `span` from a pointer to the begin and the end of the data. If `Extent` is not [`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent),
then the constructor [`Expects`](#user-content-H-assert-expects) that `lastElem - firstElem == Extent`.
```cpp
template <std::size_t N>
constexpr span(element_type (&arr)[N]) noexcept;
```
Constructs a `span` from a C style array. This overload is available if `Extent ==`[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent)
or `N == Extent`.
```cpp
template <class T, std::size_t N>
constexpr span(std::array<T, N>& arr) noexcept;
template <class T, std::size_t N>
constexpr span(const std::array<T, N>& arr) noexcept;
```
Constructs a `span` from a `std::array`. These overloads are available if `Extent ==`[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent)
or `N == Extent`, and if the array can be interpreted as a `ElementType` array.
```cpp
template <class Container>
constexpr explicit(Extent != gsl::dynamic_extent) span(Container& cont) noexcept;
template <class Container>
constexpr explicit(Extent != gsl::dynamic_extent) span(const Container& cont) noexcept;
```
Constructs a `span` from a container. These overloads are available if `Extent ==`[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent)
or `N == Extent`, and if the container can be interpreted as a contiguous `ElementType` array.
```cpp
constexpr span(const span& other) noexcept = default;
```
Copy constructor.
```cpp
template <class OtherElementType, std::size_t OtherExtent>
explicit(Extent != gsl::dynamic_extent && OtherExtent == dynamic_extent)
constexpr span(const span<OtherElementType, OtherExtent>& other) noexcept;
```
Constructs a `span` from another `span`. This constructor is available if `OtherExtent == Extent || Extent ==`[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent)` || OtherExtent ==`[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent)
and if `ElementType` and `OtherElementType` are compatible.
If `Extent !=`[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent) and `OtherExtent ==`[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent),
then the constructor [`Expects`](#user-content-H-assert-expects) that `other.size() == Extent`.
```cpp
constexpr span& operator=(const span& other) noexcept = default;
```
Copy assignment
```cpp
template <std::size_t Count>
constexpr span<element_type, Count> first() const noexcept;
constexpr span<element_type, dynamic_extent> first(size_type count) const noexcept;
template <std::size_t Count>
constexpr span<element_type, Count> last() const noexcept;
constexpr span<element_type, dynamic_extent> last(size_type count) const noexcept;
```
Return a subspan of the first/last `Count` elements. [`Expects`](#user-content-H-assert-expects) that `Count` does not exceed the `span`'s size.
```cpp
template <std::size_t offset, std::size_t count = dynamic_extent>
constexpr auto subspan() const noexcept;
constexpr span<element_type, dynamic_extent>
subspan(size_type offset, size_type count = dynamic_extent) const noexcept;
```
Return a subspan starting at `offset` and having size `count`. [`Expects`](#user-content-H-assert-expects) that `offset` does not exceed the `span`'s size,
and that `offset == `[`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent) or `offset + count` does not exceed the `span`'s size.
If `count` is `gsl::dynamic_extent`, the number of elements in the subspan is `size() - offset`.
```cpp
constexpr size_type size() const noexcept;
constexpr size_type size_bytes() const noexcept;
```
Returns the size respective the size in bytes of the `span`.
```cpp
constexpr bool empty() const noexcept;
```
Is the `span` empty?
```cpp
constexpr reference operator[](size_type idx) const noexcept;
```
Returns a reference to the element at the given index. [`Expects`](#user-content-H-assert-expects) that `idx` is less than the `span`'s size.
```cpp
constexpr reference front() const noexcept;
constexpr reference back() const noexcept;
```
Returns a reference to the first/last element in the `span`. [`Expects`](#user-content-H-assert-expects) that the `span` is not empty.
```cpp
constexpr pointer data() const noexcept;
```
Returns a pointer to the beginning of the contained data.
```cpp
constexpr iterator begin() const noexcept;
constexpr iterator end() const noexcept;
constexpr reverse_iterator rbegin() const noexcept;
constexpr reverse_iterator rend() const noexcept;
```
Returns an iterator to the first/last normal/reverse iterator.
```cpp
template <class Type, std::size_t Extent>
span(Type (&)[Extent]) -> span<Type, Extent>;
template <class Type, std::size_t Size>
span(std::array<Type, Size>&) -> span<Type, Size>;
template <class Type, std::size_t Size>
span(const std::array<Type, Size>&) -> span<const Type, Size>;
template <class Container,
class Element = std::remove_pointer_t<decltype(std::declval<Container&>().data())>>
span(Container&) -> span<Element>;
template <class Container,
class Element = std::remove_pointer_t<decltype(std::declval<const Container&>().data())>>
span(const Container&) -> span<Element>;
```
Deduction guides.
```cpp
template <class ElementType, std::size_t Extent>
span<const byte, details::calculate_byte_size<ElementType, Extent>::value>
as_bytes(span<ElementType, Extent> s) noexcept;
template <class ElementType, std::size_t Extent>
span<byte, details::calculate_byte_size<ElementType, Extent>::value>
as_writable_bytes(span<ElementType, Extent> s) noexcept;
```
Converts a `span` into a `span` of `byte`s.
`as_writable_bytes` will only be available for non-const `ElementType`s.
## <a name="H-span_ext" />`<span_ext>`
This file is a companion for and included by [`<gsl/span>`](#user-content-H-span), and should not be used on its own. It contains useful features that aren't part of the `std::span` API as found inside the STL `<span>` header (with the exception of [`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent), which is included here due to implementation constraints).
- [`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent)
- [`gsl::span`](#user-content-H-span_ext-span)
- [`gsl::span` comparison operators](#user-content-H-span_ext-span_comparison_operators)
- [`gsl::make_span`](#user-content-H-span_ext-make_span)
- [`gsl::at`](#user-content-H-span_ext-at)
- [`gsl::ssize`](#user-content-H-span_ext-ssize)
- [`gsl::span` iterator functions](#user-content-H-span_ext-span_iterator_functions)
### <a name="H-span_ext-dynamic_extent" />`gsl::dynamic_extent`
Defines the extent value to be used by all `gsl::span` with dynamic extent.
Note: `std::dynamic_extent` is exposed by the STL `<span>` header and so ideally `gsl::dynamic_extent` would be under [`<gsl/span>`](#user-content-H-span), but to avoid cyclic dependency issues it is under `<span_ext>` instead.
### <a name="H-span_ext-span" />`gsl::span`
```cpp
template <class ElementType, std::size_t Extent = dynamic_extent>
class span;
```
Forward declaration of `gsl::span`.
### <a name="H-span_ext-span_comparison_operators" />`gsl::span` comparison operators
```cpp
template <class ElementType, std::size_t FirstExtent, std::size_t SecondExtent>
constexpr bool operator==(span<ElementType, FirstExtent> l, span<ElementType, SecondExtent> r);
template <class ElementType, std::size_t FirstExtent, std::size_t SecondExtent>
constexpr bool operator!=(span<ElementType, FirstExtent> l, span<ElementType, SecondExtent> r);
template <class ElementType, std::size_t Extent>
constexpr bool operator<(span<ElementType, Extent> l, span<ElementType, Extent> r);
template <class ElementType, std::size_t Extent>
constexpr bool operator<=(span<ElementType, Extent> l, span<ElementType, Extent> r);
template <class ElementType, std::size_t Extent>
constexpr bool operator>(span<ElementType, Extent> l, span<ElementType, Extent> r);
template <class ElementType, std::size_t Extent>
constexpr bool operator>=(span<ElementType, Extent> l, span<ElementType, Extent> r);
```
The comparison operators for two `span`s lexicographically compare the elements in the `span`s.
### <a name="H-span_ext-make_span" />`gsl::make_span`
```cpp
template <class ElementType>
constexpr span<ElementType> make_span(ElementType* ptr, typename span<ElementType>::size_type count);
template <class ElementType>
constexpr span<ElementType> make_span(ElementType* firstElem, ElementType* lastElem);
template <class ElementType, std::size_t N>
constexpr span<ElementType, N> make_span(ElementType (&arr)[N]) noexcept;
template <class Container>
constexpr span<typename Container::value_type> make_span(Container& cont);
template <class Container>
constexpr span<const typename Container::value_type> make_span(const Container& cont);
```
Utility function for creating a `span` with [`gsl::dynamic_extent`](#user-content-H-span_ext-dynamic_extent) from
- pointer and length,
- pointer to start and pointer to end,
- a C style array, or
- a container.
### <a name="H-span_ext-at" />`gsl::at`
```cpp
template <class ElementType, std::size_t Extent>
constexpr ElementType& at(span<ElementType, Extent> s, index i);
```
The function `gsl::at` offers a safe way to access data with index bounds checking.
This is the specialization of [`gsl::at`](#user-content-H-util-at) for [`span`](#user-content-H-span-span). It returns a reference to the `i`th element and
[`Expects`](#user-content-H-assert-expects) that the provided index is within the bounds of the `span`.
Note: `gsl::at` supports indexes up to `PTRDIFF_MAX`.
### <a name="H-span_ext-ssize" />`gsl::ssize`
```cpp
template <class ElementType, std::size_t Extent>
constexpr std::ptrdiff_t ssize(const span<ElementType, Extent>& s) noexcept;
```
Return the size of a [`span`](#user-content-H-span-span) as a `ptrdiff_t`.
### <a name="H-span_ext-span_iterator_functions" />`gsl::span` iterator functions
```cpp
template <class ElementType, std::size_t Extent>
constexpr typename span<ElementType, Extent>::iterator
begin(const span<ElementType, Extent>& s) noexcept;
template <class ElementType, std::size_t Extent = dynamic_extent>
constexpr typename span<ElementType, Extent>::iterator
end(const span<ElementType, Extent>& s) noexcept;
template <class ElementType, std::size_t Extent>
constexpr typename span<ElementType, Extent>::reverse_iterator
rbegin(const span<ElementType, Extent>& s) noexcept;
template <class ElementType, std::size_t Extent>
constexpr typename span<ElementType, Extent>::reverse_iterator
rend(const span<ElementType, Extent>& s) noexcept;
template <class ElementType, std::size_t Extent>
constexpr typename span<ElementType, Extent>::iterator
cbegin(const span<ElementType, Extent>& s) noexcept;
template <class ElementType, std::size_t Extent = dynamic_extent>
constexpr typename span<ElementType, Extent>::iterator
cend(const span<ElementType, Extent>& s) noexcept;
template <class ElementType, std::size_t Extent>
constexpr typename span<ElementType, Extent>::reverse_iterator
crbegin(const span<ElementType, Extent>& s) noexcept;
template <class ElementType, std::size_t Extent>
constexpr typename span<ElementType, Extent>::reverse_iterator
crend(const span<ElementType, Extent>& s) noexcept;
```
Free functions for getting a non-const/const begin/end normal/reverse iterator for a [`span`](#user-content-H-span-span).
## <a name="H-zstring" />`<zstring>`
This header exports a family of `*zstring` types.
A `gsl::XXzstring<T>` is a typedef to `T`. It adds no checks whatsoever, it is just for having a syntax to describe
that a pointer points to a zero terminated C style string. This helps static code analysis, and it helps human readers.
`basic_zstring` is a pointer to a C-string (zero-terminated array) with a templated char type. Used to implement the rest of the `*zstring` family.
`zstring` is a zero terminated `char` string.
`czstring` is a const zero terminated `char` string.
`wzstring` is a zero terminated `wchar_t` string.
`cwzstring` is a const zero terminated `wchar_t` string.
`u16zstring` is a zero terminated `char16_t` string.
`cu16zstring` is a const zero terminated `char16_t` string.
`u32zstring` is a zero terminated `char32_t` string.
`cu32zstring` is a const zero terminated `char32_t` string.
See [GSL.view](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-views) and [SL.str.3: Use zstring or czstring to refer to a C-style, zero-terminated, sequence of characters](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rstr-zstring).
## <a name="H-util" />`<util>`
This header contains utility functions and classes. This header works without exceptions being available. The parts that require
exceptions being available are in their own header file [narrow](#user-content-H-narrow).
See [GSL.util: Utilities](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-utilities)
- [`gsl::narrow_cast`](#user-content-H-util-narrow_cast)
- [`gsl::final_action`](#user-content-H-util-final_action)
- [`gsl::at`](#user-content-H-util-at)
### <a name="H-util-index" />`gsl::index`
An alias to `std::ptrdiff_t`. It serves as the index type for all container indexes/subscripts/sizes.
### <a name="H-util-narrow_cast" />`gsl::narrow_cast`
`gsl::narrow_cast<T>(x)` is a named cast that is identical to a `static_cast<T>(x)`. It exists to make clear to static code analysis tools and to human readers that a lossy conversion is acceptable.
Note: compare the throwing version [`gsl::narrow`](#user-content-H-narrow-narrow) in header [narrow](#user-content-H-narrow).
See [ES.46: Avoid lossy (narrowing, truncating) arithmetic conversions](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-narrowing) and [ES.49: If you must use a cast, use a named cast](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-casts-named)
### <a name="H-util-final_action" />`gsl::final_action`
```cpp
template <class F>
class final_action { ... };
```
`final_action` allows you to ensure something gets run at the end of a scope.
See [E.19: Use a final_action object to express cleanup if no suitable resource handle is available](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-finally)
#### Member functions
```cpp
explicit final_action(const F& ff) noexcept;
explicit final_action(F&& ff) noexcept;
```
Construct an object with the action to invoke in the destructor.
```cpp
~final_action() noexcept;
```
The destructor will call the action that was passed in the constructor.
```cpp
final_action(final_action&& other) noexcept;
final_action(const final_action&) = delete;
void operator=(const final_action&) = delete;
void operator=(final_action&&) = delete;
```
Move construction is allowed. Copy construction is deleted. Copy and move assignment are also explicitly deleted.
#### <a name="H-util-finally" />Non-member functions
```cpp
template <class F>
auto finally(F&& f) noexcept;
```
Creates a `gsl::final_action` object, deducing the template argument type from the type of the argument.
### <a name="H-util-at" />`gsl::at`
The function `gsl::at` offers a safe way to access data with index bounds checking.
Note: `gsl::at` supports indexes up to `PTRDIFF_MAX`.
See [ES.42: Keep use of pointers simple and straightforward](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-ptr)
```cpp
template <class T, std::size_t N>
constexpr T& at(T (&arr)[N], const index i);
```
This overload returns a reference to the `i`s element of a C style array `arr`. It [`Expects`](#user-content-H-assert-expects) that the provided index is within the bounds of the array.
```cpp
template <class Cont>
constexpr auto at(Cont& cont, const index i) -> decltype(cont[cont.size()]);
```
This overload returns a reference to the `i`s element of the container `cont`. It [`Expects`](#user-content-H-assert-expects) that the provided index is within the bounds of the array.
```cpp
template <class T>
constexpr T at(const std::initializer_list<T> cont, const index i);
```
This overload returns a reference to the `i`s element of the initializer list `cont`. It [`Expects`](#user-content-H-assert-expects) that the provided index is within the bounds of the array.
```cpp
template <class T, std::size_t extent = std::dynamic_extent>
constexpr auto at(std::span<T, extent> sp, const index i) -> decltype(sp[sp.size()]);
```
This overload returns a reference to the `i`s element of the `std::span` `sp`. It [`Expects`](#user-content-H-assert-expects) that the provided index is within the bounds of the array.
For [`gsl::at`](#user-content-H-span_ext-at) for [`gsl::span`](#user-content-H-span-span) see header [`span_ext`](#user-content-H-span_ext).
```cpp
template <class T, std::enable_if_t<std::is_move_assignable<T>::value && std::is_move_constructible<T>::value>>
void swap(T& a, T& b);
```
Swaps the contents of two objects. Exists only to specialize `gsl::swap<T>(gsl::not_null<T>&, gsl::not_null<T>&)`.

View File

@ -1,13 +0,0 @@
# Add include folders to the library and targets that consume it
# the SYSTEM keyword suppresses warnings for users of the library
#
# By adding this directory as an include directory the user gets a
# namespace effect.
#
# IE:
# #include <gsl/gsl>
if(PROJECT_IS_TOP_LEVEL)
target_include_directories(GSL INTERFACE $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
else()
target_include_directories(GSL SYSTEM INTERFACE $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>)
endif()

View File

@ -17,18 +17,13 @@
#ifndef GSL_GSL_H
#define GSL_GSL_H
// IWYU pragma: begin_exports
#include "./algorithm" // copy
#include "./assert" // Ensures/Expects
#include "./byte" // byte
#include "./pointers" // owner, not_null
#include "./span" // span
#include "./zstring" // zstring
#include "./util" // finally()/narrow_cast()...
#ifdef __cpp_exceptions
#include "./narrow" // narrow()
#endif
// IWYU pragma: end_exports
#include <gsl/gsl_algorithm> // copy
#include <gsl/gsl_assert> // Ensures/Expects
#include <gsl/gsl_byte> // byte
#include <gsl/gsl_util> // finally()/narrow()/narrow_cast()...
#include <gsl/multi_span> // multi_span, strided_span...
#include <gsl/pointers> // owner, not_null
#include <gsl/span> // span
#include <gsl/string_span> // zstring, string_span, zstring_builder...
#endif // GSL_GSL_H

View File

@ -17,8 +17,8 @@
#ifndef GSL_ALGORITHM_H
#define GSL_ALGORITHM_H
#include "./assert" // for Expects
#include "./span" // for dynamic_extent, span
#include <gsl/gsl_assert> // for Expects
#include <gsl/span> // for dynamic_extent, span
#include <algorithm> // for copy_n
#include <cstddef> // for ptrdiff_t
@ -48,9 +48,7 @@ void copy(span<SrcElementType, SrcExtent> src, span<DestElementType, DestExtent>
"Source range is longer than target range");
Expects(dest.size() >= src.size());
// clang-format off
GSL_SUPPRESS(stl.1) // NO-FORMAT: attribute
// clang-format on
std::copy_n(src.data(), src.size(), dest.data());
}

View File

@ -14,15 +14,14 @@
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_ASSERT_H
#define GSL_ASSERT_H
#ifndef GSL_CONTRACTS_H
#define GSL_CONTRACTS_H
//
// Temporary until MSVC STL supports no-exceptions mode.
// Currently terminate is a no-op in this mode, so we add termination behavior back
//
#if defined(_MSC_VER) && (defined(_KERNEL_MODE) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS))
#define GSL_KERNEL_MODE
#define GSL_MSVC_USE_STL_NOEXCEPTION_WORKAROUND
#include <intrin.h>
@ -33,28 +32,29 @@
#pragma clang diagnostic ignored "-Winvalid-noreturn"
#endif // defined(__clang__)
#else // defined(_MSC_VER) && (defined(_KERNEL_MODE) || (defined(_HAS_EXCEPTIONS) &&
// !_HAS_EXCEPTIONS))
#else // defined(_MSC_VER) && (defined(_KERNEL_MODE) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS))
#include <exception>
#endif // defined(_MSC_VER) && (defined(_KERNEL_MODE) || (defined(_HAS_EXCEPTIONS) &&
// !_HAS_EXCEPTIONS))
#endif // defined(_MSC_VER) && (defined(_KERNEL_MODE) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS))
//
// make suppress attributes parse for some compilers
// Hopefully temporary until suppression standardization occurs
//
#if defined(__clang__)
#define GSL_SUPPRESS(x) [[gsl::suppress(#x)]]
#define GSL_SUPPRESS(x) [[gsl::suppress("x")]]
#else
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__NVCC__)
#if defined(_MSC_VER)
#define GSL_SUPPRESS(x) [[gsl::suppress(x)]]
#else
#define GSL_SUPPRESS(x)
#endif // _MSC_VER
#endif // __clang__
#define GSL_STRINGIFY_DETAIL(x) #x
#define GSL_STRINGIFY(x) GSL_STRINGIFY_DETAIL(x)
#if defined(__clang__) || defined(__GNUC__)
#define GSL_LIKELY(x) __builtin_expect(!!(x), 1)
#define GSL_UNLIKELY(x) __builtin_expect(!!(x), 0)
@ -130,4 +130,4 @@ namespace details
#pragma clang diagnostic pop
#endif
#endif // GSL_ASSERT_H
#endif // GSL_CONTRACTS_H

View File

@ -17,40 +17,53 @@
#ifndef GSL_BYTE_H
#define GSL_BYTE_H
#include "./util" // for GSL_DEPRECATED
//
// make suppress attributes work for some compilers
// Hopefully temporary until suppression standardization occurs
//
#if defined(__clang__)
#define GSL_SUPPRESS(x) [[gsl::suppress("x")]]
#else
#if defined(_MSC_VER)
#define GSL_SUPPRESS(x) [[gsl::suppress(x)]]
#else
#define GSL_SUPPRESS(x)
#endif // _MSC_VER
#endif // __clang__
#include <type_traits>
// VS2017 15.8 added support for the __cpp_lib_byte definition
// To do: drop _HAS_STD_BYTE when support for pre 15.8 expires
#ifdef _MSC_VER
#pragma warning(push)
// Turn MSVC /analyze rules that generate too much noise. TODO: fix in the tool.
#pragma warning(disable : 26493) // don't use c-style casts // TODO: MSVC suppression in templates
// does not always work
#pragma warning(disable : 26493) // don't use c-style casts // TODO: MSVC suppression in templates does not always work
#ifndef GSL_USE_STD_BYTE
// this tests if we are under MSVC and the standard lib has std::byte and it is enabled
#if defined(__cpp_lib_byte) && __cpp_lib_byte >= 201603
#if (defined(_HAS_STD_BYTE) && _HAS_STD_BYTE) || (defined(__cpp_lib_byte) && __cpp_lib_byte >= 201603)
#define GSL_USE_STD_BYTE 1
#else // defined(__cpp_lib_byte) && __cpp_lib_byte >= 201603
#else // (defined(_HAS_STD_BYTE) && _HAS_STD_BYTE) || (defined(__cpp_lib_byte) && __cpp_lib_byte >= 201603)
#define GSL_USE_STD_BYTE 0
#endif // defined(__cpp_lib_byte) && __cpp_lib_byte >= 201603
#endif // (defined(_HAS_STD_BYTE) && _HAS_STD_BYTE) || (defined(__cpp_lib_byte) && __cpp_lib_byte >= 201603)
#endif // GSL_USE_STD_BYTE
#else // _MSC_VER
#ifndef GSL_USE_STD_BYTE
#include <cstddef> /* __cpp_lib_byte */
// this tests if we are under GCC or Clang with enough -std=c++1z power to get us std::byte
// also check if libc++ version is sufficient (> 5.0) or libstdc++ actually contains std::byte
#if defined(__cplusplus) && (__cplusplus >= 201703L) && \
(defined(__cpp_lib_byte) && (__cpp_lib_byte >= 201603) || \
defined(_LIBCPP_VERSION) && (_LIBCPP_VERSION >= 5000))
// this tests if we are under GCC or Clang with enough -std:c++1z power to get us std::byte
// also check if libc++ version is sufficient (> 5.0) or libstc++ actually contains std::byte
#if defined(__cplusplus) && (__cplusplus >= 201703L) && \
(defined(__cpp_lib_byte) && (__cpp_lib_byte >= 201603) || \
defined(_LIBCPP_VERSION) && (_LIBCPP_VERSION >= 5000))
#define GSL_USE_STD_BYTE 1
@ -60,7 +73,7 @@
#define GSL_USE_STD_BYTE 0
#endif // defined(__cplusplus) && (__cplusplus >= 201703L) &&
#endif //defined(__cplusplus) && (__cplusplus >= 201703L) &&
// (defined(__cpp_lib_byte) && (__cpp_lib_byte >= 201603) ||
// defined(_LIBCPP_VERSION) && (_LIBCPP_VERSION >= 5000))
#endif // GSL_USE_STD_BYTE
@ -82,14 +95,7 @@ namespace gsl
{
#if GSL_USE_STD_BYTE
namespace impl {
// impl::byte is used by gsl::as_bytes so our own code does not trigger a deprecation warning as would be the case when we used gsl::byte.
// Users of GSL should only use gsl::byte, not gsl::impl::byte.
using byte = std::byte;
}
using byte GSL_DEPRECATED("Use std::byte instead.") = std::byte;
using std::byte;
using std::to_integer;
#else // GSL_USE_STD_BYTE
@ -100,31 +106,25 @@ enum class byte_may_alias byte : unsigned char
{
};
namespace impl {
// impl::byte is used by gsl::as_bytes so our own code does not trigger a deprecation warning as would be the case when we used gsl::byte.
// Users of GSL should only use gsl::byte, not gsl::impl::byte.
using byte = gsl::byte;
}
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte& operator<<=(byte& b, IntegerType shift) noexcept
{
return b = byte(static_cast<unsigned char>(b) << shift);
}
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte operator<<(byte b, IntegerType shift) noexcept
{
return byte(static_cast<unsigned char>(b) << shift);
}
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte& operator>>=(byte& b, IntegerType shift) noexcept
{
return b = byte(static_cast<unsigned char>(b) >> shift);
}
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr byte operator>>(byte b, IntegerType shift) noexcept
{
return byte(static_cast<unsigned char>(b) >> shift);
@ -162,7 +162,7 @@ constexpr byte operator^(byte l, byte r) noexcept
constexpr byte operator~(byte b) noexcept { return byte(~static_cast<unsigned char>(b)); }
template <class IntegerType, std::enable_if_t<std::is_integral<IntegerType>::value, bool> = true>
template <class IntegerType, class = std::enable_if_t<std::is_integral<IntegerType>::value>>
constexpr IntegerType to_integer(byte b) noexcept
{
return static_cast<IntegerType>(b);
@ -170,24 +170,34 @@ constexpr IntegerType to_integer(byte b) noexcept
#endif // GSL_USE_STD_BYTE
template <typename T>
template <bool E, typename T>
constexpr byte to_byte_impl(T t) noexcept
{
static_assert(
E, "gsl::to_byte(t) must be provided an unsigned char, otherwise data loss may occur. "
"If you are calling to_byte with an integer contant use: gsl::to_byte<t>() version.");
return static_cast<byte>(t);
}
template <>
// NOTE: need suppression since c++14 does not allow "return {t}"
// GSL_SUPPRESS(type.4) // NO-FORMAT: attribute // TODO: suppression does not work
constexpr gsl::impl::byte to_byte(T t) noexcept
constexpr byte to_byte_impl<true, unsigned char>(unsigned char t) noexcept
{
static_assert(std::is_same<T, unsigned char>::value,
"gsl::to_byte(t) must be provided an unsigned char, otherwise data loss may occur. "
"If you are calling to_byte with an integer constant use: gsl::to_byte<t>() version.");
return gsl::impl::byte(t);
return byte(t);
}
template <typename T>
constexpr byte to_byte(T t) noexcept
{
return to_byte_impl<std::is_same<T, unsigned char>::value, T>(t);
}
template <int I>
constexpr gsl::impl::byte to_byte() noexcept
constexpr byte to_byte() noexcept
{
static_assert(I >= 0 && I <= 255,
"gsl::byte only has 8 bits of storage, values must be in range 0-255");
return static_cast<gsl::impl::byte>(I);
return static_cast<byte>(I);
}
} // namespace gsl

154
include/gsl/gsl_util Normal file
View File

@ -0,0 +1,154 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_UTIL_H
#define GSL_UTIL_H
#include <gsl/gsl_assert> // for Expects
#include <array>
#include <cstddef> // for ptrdiff_t, size_t
#include <initializer_list> // for initializer_list
#include <type_traits> // for is_signed, integral_constant
#include <utility> // for exchange, forward
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif // _MSC_VER
namespace gsl
{
//
// GSL.util: utilities
//
// index type for all container indexes/subscripts/sizes
using index = std::ptrdiff_t;
// final_action allows you to ensure something gets run at the end of a scope
template <class F>
class final_action
{
public:
explicit final_action(F f) noexcept : f_(std::move(f)) {}
final_action(final_action&& other) noexcept : f_(std::move(other.f_)), invoke_(std::exchange(other.invoke_, false)) {}
final_action(const final_action&) = delete;
final_action& operator=(const final_action&) = delete;
final_action& operator=(final_action&&) = delete;
GSL_SUPPRESS(f.6) // NO-FORMAT: attribute // terminate if throws
~final_action() noexcept
{
if (invoke_) f_();
}
private:
F f_;
bool invoke_{true};
};
// finally() - convenience function to generate a final_action
template <class F>
final_action<F> finally(const F& f) noexcept
{
return final_action<F>(f);
}
template <class F>
final_action<F> finally(F&& f) noexcept
{
return final_action<F>(std::forward<F>(f));
}
// narrow_cast(): a searchable way to do narrowing casts of values
template <class T, class U>
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
constexpr T narrow_cast(U&& u) noexcept
{
return static_cast<T>(std::forward<U>(u));
}
struct narrowing_error : public std::exception
{
};
namespace details
{
template <class T, class U>
struct is_same_signedness
: public std::integral_constant<bool, std::is_signed<T>::value == std::is_signed<U>::value>
{
};
} // namespace details
// narrow() : a checked version of narrow_cast() that throws if the cast changed the value
template <class T, class U>
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
GSL_SUPPRESS(f.6) // NO-FORMAT: attribute // TODO: MSVC /analyze does not recognise noexcept(false)
constexpr
T narrow(U u) noexcept(false)
{
T t = narrow_cast<T>(u);
if (static_cast<U>(t) != u) throw narrowing_error{};
if (!details::is_same_signedness<T, U>::value && ((t < T{}) != (u < U{})))
throw narrowing_error{};
return t;
}
//
// at() - Bounds-checked way of accessing builtin arrays, std::array, std::vector
//
template <class T, std::size_t N>
GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute
constexpr T& at(T (&arr)[N], const index i)
{
Expects(i >= 0 && i < narrow_cast<index>(N));
return arr[narrow_cast<std::size_t>(i)];
}
template <class Cont>
GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute
constexpr auto at(Cont& cont, const index i) -> decltype(cont[cont.size()])
{
Expects(i >= 0 && i < narrow_cast<index>(cont.size()));
using size_type = decltype(cont.size());
return cont[narrow_cast<size_type>(i)];
}
template <class T>
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
constexpr T at(const std::initializer_list<T> cont, const index i)
{
Expects(i >= 0 && i < narrow_cast<index>(cont.size()));
return *(cont.begin() + i);
}
} // namespace gsl
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_UTIL_H

2273
include/gsl/multi_span Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,82 +0,0 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_NARROW_H
#define GSL_NARROW_H
#include "./assert" // for GSL_SUPPRESS
#include "./util" // for narrow_cast
#include <exception> // for std::exception
namespace gsl
{
struct narrowing_error : public std::exception
{
const char* what() const noexcept override { return "narrowing_error"; }
};
// narrow() : a checked version of narrow_cast() that throws if the cast changed the value
template <class T, class U, typename std::enable_if<std::is_arithmetic<T>::value>::type* = nullptr>
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
GSL_SUPPRESS(es.46) // NO-FORMAT: attribute // The warning suggests that a floating->unsigned conversion can occur
// in the static_cast below, and that gsl::narrow should be used instead.
// Suppress this warning, since gsl::narrow is defined in terms of
// static_cast
// clang-format on
constexpr T narrow(U u)
{
constexpr const bool is_different_signedness =
(std::is_signed<T>::value != std::is_signed<U>::value);
GSL_SUPPRESS(es.103) // NO-FORMAT: attribute // don't overflow
GSL_SUPPRESS(es.104) // NO-FORMAT: attribute // don't underflow
GSL_SUPPRESS(p.2) // NO-FORMAT: attribute // don't rely on undefined behavior
const T t = narrow_cast<T>(u); // While this is technically undefined behavior in some cases (i.e., if the source value is of floating-point type
// and cannot fit into the destination integral type), the resultant behavior is benign on the platforms
// that we target (i.e., no hardware trap representations are hit).
#if defined(__clang__) || defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
// Note: NaN will always throw, since NaN != NaN
if (static_cast<U>(t) != u || (is_different_signedness && ((t < T{}) != (u < U{}))))
{
throw narrowing_error{};
}
#if defined(__clang__) || defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
return t;
}
template <class T, class U, typename std::enable_if<!std::is_arithmetic<T>::value>::type* = nullptr>
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
constexpr T narrow(U u)
{
const T t = narrow_cast<T>(u);
if (static_cast<U>(t) != u)
{
throw narrowing_error{};
}
return t;
}
} // namespace gsl
#endif // GSL_NARROW_H

View File

@ -17,69 +17,38 @@
#ifndef GSL_POINTERS_H
#define GSL_POINTERS_H
#include "./assert" // for Ensures, Expects
#include "./util" // for GSL_DEPRECATED
#include <gsl/gsl_assert> // for Ensures, Expects
#include <cstddef> // for ptrdiff_t, nullptr_t, size_t
#include <functional> // for less, greater
#include <memory> // for shared_ptr, unique_ptr, hash
#include <algorithm> // for forward
#include <iosfwd> // for ptrdiff_t, nullptr_t, ostream, size_t
#include <memory> // for shared_ptr, unique_ptr
#include <system_error> // for hash
#include <type_traits> // for enable_if_t, is_convertible, is_assignable
#include <utility> // for declval, forward
#if !defined(GSL_NO_IOSTREAMS)
#include <iosfwd> // for ostream
#endif // !defined(GSL_NO_IOSTREAMS)
#if defined(_MSC_VER) && _MSC_VER < 1910 && !defined(__clang__)
#pragma push_macro("constexpr")
#define constexpr /*constexpr*/
#endif // defined(_MSC_VER) && _MSC_VER < 1910
namespace gsl
{
namespace details
{
template <typename T, typename = void>
struct is_comparable_to_nullptr : std::false_type
{
};
template <typename T>
struct is_comparable_to_nullptr<
T,
std::enable_if_t<std::is_convertible<decltype(std::declval<T>() != nullptr), bool>::value>>
: std::true_type
{
};
// Resolves to the more efficient of `const T` or `const T&`, in the context of returning a const-qualified value
// of type T.
//
// Copied from cppfront's implementation of the CppCoreGuidelines F.16 (https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-in)
template<typename T>
using value_or_reference_return_t = std::conditional_t<
sizeof(T) < 2*sizeof(void*) && std::is_trivially_copy_constructible<T>::value,
const T,
const T&>;
} // namespace details
//
// GSL.owner: ownership pointers
//
template <typename... Ts>
using shared_ptr GSL_DEPRECATED("Use std::shared_ptr instead") = std::shared_ptr<Ts...>;
template <typename... Ts>
using unique_ptr GSL_DEPRECATED("Use std::unique_ptr instead") = std::unique_ptr<Ts...>;
using std::unique_ptr;
using std::shared_ptr;
//
// owner
//
// `gsl::owner<T>` is designed as a safety mechanism for code that must deal directly with raw pointers that own memory.
// Ideally such code should be restricted to the implementation of low-level abstractions. `gsl::owner` can also be used
// as a stepping point in converting legacy code to use more modern RAII constructs, such as smart pointers.
// owner<T> is designed as a bridge for code that must deal directly with owning pointers for some reason
//
// T must be a pointer type
// - disallow construction from any type other than pointer type
//
template <class T, std::enable_if_t<std::is_pointer<T>::value, bool> = true>
template <class T, class = std::enable_if_t<std::is_pointer<T>::value>>
using owner = T;
//
@ -100,36 +69,36 @@ template <class T>
class not_null
{
public:
static_assert(details::is_comparable_to_nullptr<T>::value, "T cannot be compared to nullptr.");
using element_type = T;
static_assert(std::is_assignable<T&, std::nullptr_t>::value, "T cannot be assigned nullptr.");
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(U&& u) noexcept(std::is_nothrow_move_constructible<T>::value) : ptr_(std::forward<U>(u))
constexpr not_null(U&& u) : ptr_(std::forward<U>(u))
{
Expects(ptr_ != nullptr);
}
template <typename = std::enable_if_t<!std::is_same<std::nullptr_t, T>::value>>
constexpr not_null(T u) noexcept(std::is_nothrow_move_constructible<T>::value) : ptr_(std::move(u))
constexpr not_null(T u) : ptr_(u)
{
Expects(ptr_ != nullptr);
}
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr not_null(const not_null<U>& other) noexcept(std::is_nothrow_move_constructible<T>::value) : not_null(other.get())
{}
constexpr not_null(const not_null<U>& other) : not_null(other.get())
{
}
not_null(const not_null& other) = default;
not_null& operator=(const not_null& other) = default;
constexpr details::value_or_reference_return_t<T> get() const
noexcept(noexcept(details::value_or_reference_return_t<T>(std::declval<T&>())))
constexpr T get() const
{
Ensures(ptr_ != nullptr);
return ptr_;
}
constexpr operator T() const { return get(); }
constexpr decltype(auto) operator->() const { return get(); }
constexpr T operator->() const { return get(); }
constexpr decltype(auto) operator*() const { return *get(); }
// prevents compilation when someone attempts to assign a null pointer constant
@ -145,79 +114,56 @@ public:
not_null& operator-=(std::ptrdiff_t) = delete;
void operator[](std::ptrdiff_t) const = delete;
void swap(not_null<T>& other) { std::swap(ptr_, other.ptr_); }
private:
T ptr_;
};
template <typename T, std::enable_if_t<std::is_move_assignable<T>::value && std::is_move_constructible<T>::value, bool> = true>
void swap(not_null<T>& a, not_null<T>& b)
{
a.swap(b);
}
template <class T>
auto make_not_null(T&& t) noexcept
{
auto make_not_null(T&& t) {
return not_null<std::remove_cv_t<std::remove_reference_t<T>>>{std::forward<T>(t)};
}
#if !defined(GSL_NO_IOSTREAMS)
template <class T>
std::ostream& operator<<(std::ostream& os, const not_null<T>& val)
{
os << val.get();
return os;
}
#endif // !defined(GSL_NO_IOSTREAMS)
template <class T, class U>
auto operator==(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() == rhs.get()))
-> decltype(lhs.get() == rhs.get())
auto operator==(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() == rhs.get())
{
return lhs.get() == rhs.get();
}
template <class T, class U>
auto operator!=(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(lhs.get() != rhs.get()))
-> decltype(lhs.get() != rhs.get())
auto operator!=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() != rhs.get())
{
return lhs.get() != rhs.get();
}
template <class T, class U>
auto operator<(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(std::less<>{}(lhs.get(), rhs.get())))
-> decltype(std::less<>{}(lhs.get(), rhs.get()))
auto operator<(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() < rhs.get())
{
return std::less<>{}(lhs.get(), rhs.get());
return lhs.get() < rhs.get();
}
template <class T, class U>
auto operator<=(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(std::less_equal<>{}(lhs.get(), rhs.get())))
-> decltype(std::less_equal<>{}(lhs.get(), rhs.get()))
auto operator<=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() <= rhs.get())
{
return std::less_equal<>{}(lhs.get(), rhs.get());
return lhs.get() <= rhs.get();
}
template <class T, class U>
auto operator>(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(std::greater<>{}(lhs.get(), rhs.get())))
-> decltype(std::greater<>{}(lhs.get(), rhs.get()))
auto operator>(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() > rhs.get())
{
return std::greater<>{}(lhs.get(), rhs.get());
return lhs.get() > rhs.get();
}
template <class T, class U>
auto operator>=(const not_null<T>& lhs,
const not_null<U>& rhs) noexcept(noexcept(std::greater_equal<>{}(lhs.get(), rhs.get())))
-> decltype(std::greater_equal<>{}(lhs.get(), rhs.get()))
auto operator>=(const not_null<T>& lhs, const not_null<U>& rhs) -> decltype(lhs.get() >= rhs.get())
{
return std::greater_equal<>{}(lhs.get(), rhs.get());
return lhs.get() >= rhs.get();
}
// more unwanted operators
@ -230,28 +176,14 @@ not_null<T> operator+(const not_null<T>&, std::ptrdiff_t) = delete;
template <class T>
not_null<T> operator+(std::ptrdiff_t, const not_null<T>&) = delete;
template <class T, class U = decltype(std::declval<const T&>().get()), bool = std::is_default_constructible<std::hash<U>>::value>
struct not_null_hash
{
std::size_t operator()(const T& value) const { return std::hash<U>{}(value.get()); }
};
template <class T, class U>
struct not_null_hash<T, U, false>
{
not_null_hash() = delete;
not_null_hash(const not_null_hash&) = delete;
not_null_hash& operator=(const not_null_hash&) = delete;
};
} // namespace gsl
namespace std
{
template <class T>
struct hash<gsl::not_null<T>> : gsl::not_null_hash<gsl::not_null<T>>
struct hash<gsl::not_null<T>>
{
std::size_t operator()(const gsl::not_null<T>& value) const { return hash<T>{}(value); }
};
} // namespace std
@ -277,28 +209,31 @@ namespace gsl
// - remove unnecessary asserts
//
template <class T>
class strict_not_null : public not_null<T>
class strict_not_null: public not_null<T>
{
public:
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr explicit strict_not_null(U&& u) noexcept(std::is_nothrow_move_constructible<T>::value) : not_null<T>(std::forward<U>(u))
constexpr explicit strict_not_null(U&& u) :
not_null<T>(std::forward<U>(u))
{}
template <typename = std::enable_if_t<!std::is_same<std::nullptr_t, T>::value>>
constexpr explicit strict_not_null(T u) noexcept(std::is_nothrow_move_constructible<T>::value) : not_null<T>(std::move(u))
constexpr explicit strict_not_null(T u) :
not_null<T>(u)
{}
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr strict_not_null(const not_null<U>& other) noexcept(std::is_nothrow_move_constructible<T>::value) : not_null<T>(other)
constexpr strict_not_null(const not_null<U>& other) :
not_null<T>(other)
{}
template <typename U, typename = std::enable_if_t<std::is_convertible<U, T>::value>>
constexpr strict_not_null(const strict_not_null<U>& other) noexcept(std::is_nothrow_move_constructible<T>::value) : not_null<T>(other)
constexpr strict_not_null(const strict_not_null<U>& other) :
not_null<T>(other)
{}
// To avoid invalidating the "not null" invariant, the contained pointer is actually copied
// instead of moved. If it is a custom pointer, its constructor could in theory throw exceptions.
strict_not_null(strict_not_null&& other) noexcept(std::is_nothrow_copy_constructible<T>::value) = default;
strict_not_null(strict_not_null&& other) = default;
strict_not_null(const strict_not_null& other) = default;
strict_not_null& operator=(const strict_not_null& other) = default;
strict_not_null& operator=(const not_null<T>& other)
@ -332,18 +267,15 @@ template <class T>
strict_not_null<T> operator+(std::ptrdiff_t, const strict_not_null<T>&) = delete;
template <class T>
auto make_strict_not_null(T&& t) noexcept
{
auto make_strict_not_null(T&& t) {
return strict_not_null<std::remove_cv_t<std::remove_reference_t<T>>>{std::forward<T>(t)};
}
#if (defined(__cpp_deduction_guides) && (__cpp_deduction_guides >= 201611L))
#if ( defined(__cpp_deduction_guides) && (__cpp_deduction_guides >= 201611L) )
// deduction guides to prevent the ctad-maybe-unsupported warning
template <class T>
not_null(T) -> not_null<T>;
template <class T>
strict_not_null(T) -> strict_not_null<T>;
template <class T> not_null(T) -> not_null<T>;
template <class T> strict_not_null(T) -> strict_not_null<T>;
#endif // ( defined(__cpp_deduction_guides) && (__cpp_deduction_guides >= 201611L) )
@ -352,10 +284,18 @@ strict_not_null(T) -> strict_not_null<T>;
namespace std
{
template <class T>
struct hash<gsl::strict_not_null<T>> : gsl::not_null_hash<gsl::strict_not_null<T>>
struct hash<gsl::strict_not_null<T>>
{
std::size_t operator()(const gsl::strict_not_null<T>& value) const { return hash<T>{}(value); }
};
} // namespace std
#if defined(_MSC_VER) && _MSC_VER < 1910 && !defined(__clang__)
#undef constexpr
#pragma pop_macro("constexpr")
#endif // defined(_MSC_VER) && _MSC_VER < 1910 && !defined(__clang__)
#endif // GSL_POINTERS_H

View File

@ -17,21 +17,14 @@
#ifndef GSL_SPAN_H
#define GSL_SPAN_H
#include "./assert" // for Expects
#include "./byte" // for gsl::impl::byte
#include "./span_ext" // for span specialization of gsl::at and other span-related extensions
#include "./util" // for narrow_cast
#include <gsl/gsl_assert> // for Expects
#include <gsl/gsl_byte> // for byte
#include <array> // for array
#include <cstddef> // for ptrdiff_t, size_t, nullptr_t
#include <iterator> // for reverse_iterator, distance, random_access_...
#include <memory> // for pointer_traits
#include <type_traits> // for enable_if_t, declval, is_convertible, inte...
#if defined(__has_include) && __has_include(<version>)
#include <version>
#endif
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
@ -42,7 +35,7 @@
#pragma warning(disable : 4702) // unreachable code
// Turn MSVC /analyze rules that generate too much noise. TODO: fix in the tool.
#pragma warning(disable : 26495) // uninitialized member when constructor calls constructor
#pragma warning(disable : 26495) // uninitalized member when constructor calls constructor
#pragma warning(disable : 26446) // parser bug does not allow attributes on some templates
#endif // _MSC_VER
@ -53,7 +46,7 @@
#define GSL_USE_STATIC_CONSTEXPR_WORKAROUND
#endif // !(defined(__cplusplus) && (__cplusplus >= 201703L))
// GCC 7 does not like the signed unsigned mismatch (size_t ptrdiff_t)
// GCC 7 does not like the signed unsigned missmatch (size_t ptrdiff_t)
// While there is a conversion from signed to unsigned, it happens at
// compiletime, so the compiler wouldn't have to warn indiscriminately, but
// could check if the source value actually doesn't fit into the target type
@ -63,17 +56,15 @@
#pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
// Turn off clang unsafe buffer warnings as all accessed are guarded by runtime checks
#if defined(__clang__)
#if __has_warning("-Wunsafe-buffer-usage")
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
#endif // __has_warning("-Wunsafe-buffer-usage")
#endif // defined(__clang__)
namespace gsl
{
// [views.constants], constants
constexpr const std::size_t dynamic_extent = static_cast<std::size_t>(-1);
template <class ElementType, std::size_t Extent = dynamic_extent>
class span;
// implementation details
namespace details
{
@ -109,7 +100,7 @@ namespace details
template <std::size_t From, std::size_t To>
struct is_allowed_extent_conversion
: std::integral_constant<bool, From == To || To == dynamic_extent>
: std::integral_constant<bool, From == To || To == gsl::dynamic_extent>
{
};
@ -123,9 +114,6 @@ namespace details
class span_iterator
{
public:
#if defined(__cpp_lib_ranges) || (defined(_MSVC_STL_VERSION) && defined(__cpp_lib_concepts))
using iterator_concept = std::contiguous_iterator_tag;
#endif // __cpp_lib_ranges
using iterator_category = std::random_access_iterator_tag;
using value_type = std::remove_cv_t<Type>;
using difference_type = std::ptrdiff_t;
@ -134,15 +122,12 @@ namespace details
#ifdef _MSC_VER
using _Unchecked_type = pointer;
using _Prevent_inheriting_unwrap = span_iterator;
#endif // _MSC_VER
constexpr span_iterator() = default;
constexpr span_iterator(pointer begin, pointer end, pointer current)
: begin_(begin), end_(end), current_(current)
{
Expects(begin_ <= current_ && current <= end_);
}
{}
constexpr operator span_iterator<const Type>() const noexcept
{
@ -151,21 +136,21 @@ namespace details
constexpr reference operator*() const noexcept
{
Expects(current_ != end_);
Expects(begin_ && end_);
Expects(begin_ <= current_ && current_ < end_);
return *current_;
}
constexpr pointer operator->() const noexcept
{
Expects(current_ != end_);
Expects(begin_ && end_);
Expects(begin_ <= current_ && current_ < end_);
return current_;
}
constexpr span_iterator& operator++() noexcept
{
Expects(current_ != end_);
// clang-format off
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
// clang-format on
Expects(begin_ && current_ && end_);
Expects(current_ < end_);
++current_;
return *this;
}
@ -179,7 +164,8 @@ namespace details
constexpr span_iterator& operator--() noexcept
{
Expects(begin_ != current_);
Expects(begin_ && end_);
Expects(begin_ < current_);
--current_;
return *this;
}
@ -196,9 +182,6 @@ namespace details
if (n != 0) Expects(begin_ && current_ && end_);
if (n > 0) Expects(end_ - current_ >= n);
if (n < 0) Expects(current_ - begin_ >= -n);
// clang-format off
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
// clang-format on
current_ += n;
return *this;
}
@ -221,7 +204,6 @@ namespace details
if (n != 0) Expects(begin_ && current_ && end_);
if (n > 0) Expects(current_ - begin_ >= n);
if (n < 0) Expects(end_ - current_ >= -n);
GSL_SUPPRESS(bounds .1)
current_ -= n;
return *this;
}
@ -345,26 +327,8 @@ namespace details
pointer begin_ = nullptr;
pointer end_ = nullptr;
pointer current_ = nullptr;
template <typename Ptr>
friend struct std::pointer_traits;
};
}} // namespace gsl::details
namespace std
{
template <class Type>
struct pointer_traits<::gsl::details::span_iterator<Type>>
{
using pointer = ::gsl::details::span_iterator<Type>;
using element_type = Type;
using difference_type = ptrdiff_t;
static constexpr element_type* to_address(const pointer i) noexcept { return i.current_; }
};
} // namespace std
namespace gsl { namespace details {
template <std::size_t Ext>
class extent_type
{
@ -457,32 +421,32 @@ public:
constexpr span() noexcept : storage_(nullptr, details::extent_type<0>())
{}
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent != dynamic_extent, int> = 0>
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent != gsl::dynamic_extent, int> = 0>
constexpr explicit span(pointer ptr, size_type count) noexcept : storage_(ptr, count)
{
Expects(count == Extent);
}
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent == dynamic_extent, int> = 0>
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent == gsl::dynamic_extent, int> = 0>
constexpr span(pointer ptr, size_type count) noexcept : storage_(ptr, count)
{}
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent != dynamic_extent, int> = 0>
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent != gsl::dynamic_extent, int> = 0>
constexpr explicit span(pointer firstElem, pointer lastElem) noexcept
: storage_(firstElem, narrow_cast<std::size_t>(lastElem - firstElem))
: storage_(firstElem, static_cast<std::size_t>(lastElem - firstElem))
{
Expects(lastElem - firstElem == static_cast<difference_type>(Extent));
}
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent == dynamic_extent, int> = 0>
template <std::size_t MyExtent = Extent, std::enable_if_t<MyExtent == gsl::dynamic_extent, int> = 0>
constexpr span(pointer firstElem, pointer lastElem) noexcept
: storage_(firstElem, narrow_cast<std::size_t>(lastElem - firstElem))
: storage_(firstElem, static_cast<std::size_t>(lastElem - firstElem))
{}
template <std::size_t N,
std::enable_if_t<details::is_allowed_extent_conversion<N, Extent>::value, int> = 0>
constexpr span(element_type (&arr)[N]) noexcept
: storage_(KnownNotNull{arr}, details::extent_type<N>())
: storage_(KnownNotNull{arr + 0}, details::extent_type<N>())
{}
template <
@ -507,70 +471,66 @@ public:
// requirement on Container to be a contiguous sequence container.
template <std::size_t MyExtent = Extent, class Container,
std::enable_if_t<
MyExtent != dynamic_extent && !details::is_span<Container>::value &&
!details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<Container&>().data())>::value &&
std::is_convertible<
std::remove_pointer_t<decltype(std::declval<Container&>().data())> (*)[],
element_type (*)[]>::value,
int> = 0>
MyExtent != dynamic_extent &&
!details::is_span<Container>::value && !details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<Container&>().data())>::value &&
std::is_convertible<
std::remove_pointer_t<decltype(std::declval<Container&>().data())> (*)[],
element_type (*)[]>::value, int> = 0>
constexpr explicit span(Container& cont) noexcept : span(cont.data(), cont.size())
{}
template <std::size_t MyExtent = Extent, class Container,
std::enable_if_t<
MyExtent == dynamic_extent && !details::is_span<Container>::value &&
!details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<Container&>().data())>::value &&
std::is_convertible<
std::remove_pointer_t<decltype(std::declval<Container&>().data())> (*)[],
element_type (*)[]>::value,
int> = 0>
MyExtent == dynamic_extent &&
!details::is_span<Container>::value && !details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<Container&>().data())>::value &&
std::is_convertible<
std::remove_pointer_t<decltype(std::declval<Container&>().data())> (*)[],
element_type (*)[]>::value, int> = 0>
constexpr span(Container& cont) noexcept : span(cont.data(), cont.size())
{}
template <
std::size_t MyExtent = Extent, class Container,
std::enable_if_t<
MyExtent != dynamic_extent && std::is_const<element_type>::value &&
!details::is_span<Container>::value && !details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<const Container&>().data())>::value &&
std::is_convertible<
std::remove_pointer_t<decltype(std::declval<const Container&>().data())> (*)[],
element_type (*)[]>::value,
int> = 0>
template <std::size_t MyExtent = Extent, class Container,
std::enable_if_t<
MyExtent != dynamic_extent &&
std::is_const<element_type>::value && !details::is_span<Container>::value &&
!details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<const Container&>().data())>::value &&
std::is_convertible<std::remove_pointer_t<
decltype(std::declval<const Container&>().data())> (*)[],
element_type (*)[]>::value, int> = 0>
constexpr explicit span(const Container& cont) noexcept : span(cont.data(), cont.size())
{}
template <
std::size_t MyExtent = Extent, class Container,
std::enable_if_t<
MyExtent == dynamic_extent && std::is_const<element_type>::value &&
!details::is_span<Container>::value && !details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<const Container&>().data())>::value &&
std::is_convertible<
std::remove_pointer_t<decltype(std::declval<const Container&>().data())> (*)[],
element_type (*)[]>::value,
int> = 0>
template <std::size_t MyExtent = Extent, class Container,
std::enable_if_t<
MyExtent == dynamic_extent &&
std::is_const<element_type>::value && !details::is_span<Container>::value &&
!details::is_std_array<Container>::value &&
std::is_pointer<decltype(std::declval<const Container&>().data())>::value &&
std::is_convertible<std::remove_pointer_t<
decltype(std::declval<const Container&>().data())> (*)[],
element_type (*)[]>::value, int> = 0>
constexpr span(const Container& cont) noexcept : span(cont.data(), cont.size())
{}
constexpr span(const span& other) noexcept = default;
template <class OtherElementType, std::size_t OtherExtent, std::size_t MyExtent = Extent,
std::enable_if_t<(MyExtent == dynamic_extent || MyExtent == OtherExtent) &&
details::is_allowed_element_type_conversion<OtherElementType,
element_type>::value,
int> = 0>
template <
class OtherElementType, std::size_t OtherExtent, std::size_t MyExtent = Extent,
std::enable_if_t<
(MyExtent == dynamic_extent || MyExtent == OtherExtent) &&
details::is_allowed_element_type_conversion<OtherElementType, element_type>::value, int> = 0>
constexpr span(const span<OtherElementType, OtherExtent>& other) noexcept
: storage_(other.data(), details::extent_type<OtherExtent>(other.size()))
{}
template <class OtherElementType, std::size_t OtherExtent, std::size_t MyExtent = Extent,
std::enable_if_t<MyExtent != dynamic_extent && OtherExtent == dynamic_extent &&
details::is_allowed_element_type_conversion<OtherElementType,
element_type>::value,
int> = 0>
template <
class OtherElementType, std::size_t OtherExtent, std::size_t MyExtent = Extent,
std::enable_if_t<
MyExtent != dynamic_extent && OtherExtent == dynamic_extent &&
details::is_allowed_element_type_conversion<OtherElementType, element_type>::value, int> = 0>
constexpr explicit span(const span<OtherElementType, OtherExtent>& other) noexcept
: storage_(other.data(), details::extent_type<OtherExtent>(other.size()))
{}
@ -582,8 +542,6 @@ public:
template <std::size_t Count>
constexpr span<element_type, Count> first() const noexcept
{
static_assert(Extent == dynamic_extent || Count <= Extent,
"first() cannot extract more elements from a span than it contains.");
Expects(Count <= size());
return span<element_type, Count>{data(), Count};
}
@ -594,8 +552,6 @@ public:
// clang-format on
constexpr span<element_type, Count> last() const noexcept
{
static_assert(Extent == dynamic_extent || Count <= Extent,
"last() cannot extract more elements from a span than it contains.");
Expects(Count <= size());
return span<element_type, Count>{data() + (size() - Count), Count};
}
@ -607,12 +563,8 @@ public:
constexpr auto subspan() const noexcept ->
typename details::calculate_subspan_type<ElementType, Extent, Offset, Count>::type
{
static_assert(Extent == dynamic_extent || (Extent >= Offset && (Count == dynamic_extent ||
Count <= Extent - Offset)),
"subspan() cannot extract more elements from a span than it contains.");
Expects((size() >= Offset) && (Count == dynamic_extent || (Count <= size() - Offset)));
using type =
typename details::calculate_subspan_type<ElementType, Extent, Offset, Count>::type;
using type = typename details::calculate_subspan_type<ElementType, Extent, Offset, Count>::type;
return type{data() + Offset, Count == dynamic_extent ? size() - Offset : Count};
}
@ -628,8 +580,9 @@ public:
return make_subspan(size() - count, dynamic_extent, subspan_selector<Extent>{});
}
constexpr span<element_type, dynamic_extent>
subspan(size_type offset, size_type count = dynamic_extent) const noexcept
constexpr span<element_type, dynamic_extent> subspan(size_type offset,
size_type count = dynamic_extent) const
noexcept
{
return make_subspan(offset, count, subspan_selector<Extent>{});
}
@ -637,7 +590,11 @@ public:
// [span.obs], span observers
constexpr size_type size() const noexcept { return storage_.size(); }
constexpr size_type size_bytes() const noexcept { return size() * sizeof(element_type); }
constexpr size_type size_bytes() const noexcept
{
Expects(size() < dynamic_extent / sizeof(element_type));
return size() * sizeof(element_type);
}
constexpr bool empty() const noexcept { return size() == 0; }
@ -719,11 +676,14 @@ private:
template <class OtherExtentType>
constexpr storage_type(KnownNotNull data, OtherExtentType ext)
: ExtentType(ext), data_(data.p)
{}
{
Expects(ExtentType::size() != dynamic_extent);
}
template <class OtherExtentType>
constexpr storage_type(pointer data, OtherExtentType ext) : ExtentType(ext), data_(data)
{
Expects(ExtentType::size() != dynamic_extent);
Expects(data || ExtentType::size() == 0);
}
@ -745,8 +705,9 @@ private:
};
template <std::size_t CallerExtent>
constexpr span<element_type, dynamic_extent>
make_subspan(size_type offset, size_type count, subspan_selector<CallerExtent>) const noexcept
constexpr span<element_type, dynamic_extent> make_subspan(size_type offset, size_type count,
subspan_selector<CallerExtent>) const
noexcept
{
const span<element_type, dynamic_extent> tmp(*this);
return tmp.subspan(offset, count);
@ -771,34 +732,27 @@ private:
// Deduction Guides
template <class Type, std::size_t Extent>
span(Type (&)[Extent]) -> span<Type, Extent>;
span(Type (&)[Extent])->span<Type, Extent>;
template <class Type, std::size_t Size>
span(std::array<Type, Size>&) -> span<Type, Size>;
span(std::array<Type, Size>&)->span<Type, Size>;
template <class Type, std::size_t Size>
span(const std::array<Type, Size>&) -> span<const Type, Size>;
span(const std::array<Type, Size>&)->span<const Type, Size>;
template <class Container,
class Element = std::remove_pointer_t<decltype(std::declval<Container&>().data())>>
span(Container&) -> span<Element>;
class Element = std::remove_pointer_t<decltype(std::declval<Container&>().data())>>
span(Container&)->span<Element>;
template <class Container,
class Element = std::remove_pointer_t<decltype(std::declval<const Container&>().data())>>
span(const Container&) -> span<Element>;
class Element = std::remove_pointer_t<decltype(std::declval<const Container&>().data())>>
span(const Container&)->span<Element>;
#endif // ( defined(__cpp_deduction_guides) && (__cpp_deduction_guides >= 201611L) )
#if defined(GSL_USE_STATIC_CONSTEXPR_WORKAROUND)
#if defined(__clang__) && defined(_MSC_VER) && defined(__cplusplus) && (__cplusplus < 201703L)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated" // Bug in clang-cl.exe which raises a C++17 -Wdeprecated warning about this static constexpr workaround in C++14 mode.
#endif // defined(__clang__) && defined(_MSC_VER) && defined(__cplusplus) && (__cplusplus < 201703L)
template <class ElementType, std::size_t Extent>
constexpr const typename span<ElementType, Extent>::size_type span<ElementType, Extent>::extent;
#if defined(__clang__) && defined(_MSC_VER) && defined(__cplusplus) && (__cplusplus < 201703L)
#pragma clang diagnostic pop
#endif // defined(__clang__) && defined(_MSC_VER) && defined(__cplusplus) && (__cplusplus < 201703L)
#endif
namespace details
@ -824,28 +778,28 @@ namespace details
// [span.objectrep], views of object representation
template <class ElementType, std::size_t Extent>
span<const gsl::impl::byte, details::calculate_byte_size<ElementType, Extent>::value>
span<const byte, details::calculate_byte_size<ElementType, Extent>::value>
as_bytes(span<ElementType, Extent> s) noexcept
{
using type = span<const gsl::impl::byte, details::calculate_byte_size<ElementType, Extent>::value>;
using type = span<const byte, details::calculate_byte_size<ElementType, Extent>::value>;
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return type{reinterpret_cast<const gsl::impl::byte*>(s.data()), s.size_bytes()};
return type{reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <class ElementType, std::size_t Extent,
std::enable_if_t<!std::is_const<ElementType>::value, int> = 0>
span<gsl::impl::byte, details::calculate_byte_size<ElementType, Extent>::value>
span<byte, details::calculate_byte_size<ElementType, Extent>::value>
as_writable_bytes(span<ElementType, Extent> s) noexcept
{
using type = span<gsl::impl::byte, details::calculate_byte_size<ElementType, Extent>::value>;
using type = span<byte, details::calculate_byte_size<ElementType, Extent>::value>;
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return type{reinterpret_cast<gsl::impl::byte*>(s.data()), s.size_bytes()};
return type{reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
} // namespace gsl
@ -859,10 +813,4 @@ as_writable_bytes(span<ElementType, Extent> s) noexcept
#pragma GCC diagnostic pop
#endif // __GNUC__ > 6
#if defined(__clang__)
#if __has_warning("-Wunsafe-buffer-usage")
#pragma clang diagnostic pop
#endif // __has_warning("-Wunsafe-buffer-usage")
#endif // defined(__clang__)
#endif // GSL_SPAN_H

View File

@ -27,29 +27,17 @@
//
///////////////////////////////////////////////////////////////////////////////
#include "./assert" // GSL_KERNEL_MODE
#include "./util" // for narrow_cast, narrow
#include <cstddef> // for ptrdiff_t, size_t
#include <utility>
#include <gsl/gsl_util> // for narrow_cast, narrow
#include <gsl/span> // for span
#ifndef GSL_KERNEL_MODE
#include <algorithm> // for lexicographical_compare
#endif // GSL_KERNEL_MODE
#include <cstddef> // for ptrdiff_t, size_t
#include <utility>
namespace gsl
{
// [span.views.constants], constants
GSL_INLINE constexpr const std::size_t dynamic_extent = narrow_cast<std::size_t>(-1);
template <class ElementType, std::size_t Extent = dynamic_extent>
class span;
// std::equal and std::lexicographical_compare are not /kernel compatible
// so all comparison operators must be removed for kernel mode.
#ifndef GSL_KERNEL_MODE
// [span.comparison], span comparison operators
template <class ElementType, std::size_t FirstExtent, std::size_t SecondExtent>
constexpr bool operator==(span<ElementType, FirstExtent> l, span<ElementType, SecondExtent> r)
@ -87,8 +75,6 @@ constexpr bool operator>=(span<ElementType, Extent> l, span<ElementType, Extent>
return !(l < r);
}
#endif // GSL_KERNEL_MODE
//
// make_span() - Utility functions for creating spans
//
@ -123,14 +109,12 @@ constexpr span<const typename Container::value_type> make_span(const Container&
}
template <class Ptr>
GSL_DEPRECATED("This function is deprecated. See GSL issue #1092.")
constexpr span<typename Ptr::element_type> make_span(Ptr& cont, std::size_t count)
{
return span<typename Ptr::element_type>(cont, count);
}
template <class Ptr>
GSL_DEPRECATED("This function is deprecated. See GSL issue #1092.")
constexpr span<typename Ptr::element_type> make_span(Ptr& cont)
{
return span<typename Ptr::element_type>(cont);

706
include/gsl/string_span Normal file
View File

@ -0,0 +1,706 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_STRING_SPAN_H
#define GSL_STRING_SPAN_H
#include <gsl/gsl_assert> // for Ensures, Expects
#include <gsl/gsl_util> // for narrow_cast
#include <gsl/span_ext> // for operator!=, operator==, dynamic_extent
#include <algorithm> // for equal, lexicographical_compare
#include <array> // for array
#include <cstddef> // for size_t, nullptr_t
#include <cstdint> // for PTRDIFF_MAX
#include <cstring>
#include <string> // for basic_string, allocator, char_traits
#include <type_traits> // for declval, is_convertible, enable_if_t, add_...
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
// Turn MSVC /analyze rules that generate too much noise. TODO: fix in the tool.
#pragma warning(disable : 26446) // TODO: bug in parser - attributes and templates
#pragma warning(disable : 26481) // TODO: suppress does not work inside templates sometimes
#endif // _MSC_VER
namespace gsl
{
//
// czstring and wzstring
//
// These are "tag" typedefs for C-style strings (i.e. null-terminated character arrays)
// that allow static analysis to help find bugs.
//
// There are no additional features/semantics that we can find a way to add inside the
// type system for these types that will not either incur significant runtime costs or
// (sometimes needlessly) break existing programs when introduced.
//
template <typename CharT, std::size_t Extent = dynamic_extent>
using basic_zstring = CharT*;
template <std::size_t Extent = dynamic_extent>
using czstring = basic_zstring<const char, Extent>;
template <std::size_t Extent = dynamic_extent>
using cwzstring = basic_zstring<const wchar_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using cu16zstring = basic_zstring<const char16_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using cu32zstring = basic_zstring<const char32_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using zstring = basic_zstring<char, Extent>;
template <std::size_t Extent = dynamic_extent>
using wzstring = basic_zstring<wchar_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using u16zstring = basic_zstring<char16_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using u32zstring = basic_zstring<char32_t, Extent>;
namespace details
{
template <class CharT>
std::size_t string_length(const CharT* str, std::size_t n)
{
if (str == nullptr || n == dynamic_extent) return 0;
const span<const CharT> str_span{str, n};
std::size_t len = 0;
while (len < n && str_span[len]) len++;
return len;
}
} // namespace details
//
// ensure_sentinel()
//
// Provides a way to obtain an span from a contiguous sequence
// that ends with a (non-inclusive) sentinel value.
//
// Will fail-fast if sentinel cannot be found before max elements are examined.
//
template <typename T, const T Sentinel>
span<T, dynamic_extent> ensure_sentinel(T* seq,
std::size_t max = static_cast<std::size_t>(-1))
{
Ensures(seq != nullptr);
GSL_SUPPRESS(
f.23) // NO-FORMAT: attribute // TODO: false positive // TODO: suppress does not work
auto cur = seq;
Ensures(cur != nullptr); // workaround for removing the warning
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute // TODO: suppress does not work
while (static_cast<std::size_t>(cur - seq) < max && *cur != Sentinel) ++cur;
Ensures(*cur == Sentinel);
return {seq, static_cast<std::size_t>(cur - seq)};
}
//
// ensure_z - creates a span for a zero terminated strings.
// Will fail fast if a null-terminator cannot be found before
// the limit of size_type.
//
template <typename CharT>
span<CharT, dynamic_extent> ensure_z(CharT* const& sz,
std::size_t max = static_cast<std::size_t>(-1))
{
return ensure_sentinel<CharT, CharT(0)>(sz, max);
}
template <typename CharT, std::size_t N>
span<CharT, dynamic_extent> ensure_z(CharT (&sz)[N])
{
return ensure_z(&sz[0], N);
}
template <class Cont>
span<typename std::remove_pointer<typename Cont::pointer>::type, dynamic_extent>
ensure_z(Cont& cont)
{
return ensure_z(cont.data(), cont.size());
}
template <typename CharT, std::size_t>
class basic_string_span;
namespace details
{
template <typename T>
struct is_basic_string_span_oracle : std::false_type
{
};
template <typename CharT, std::size_t Extent>
struct is_basic_string_span_oracle<basic_string_span<CharT, Extent>> : std::true_type
{
};
template <typename T>
struct is_basic_string_span : is_basic_string_span_oracle<std::remove_cv_t<T>>
{
};
} // namespace details
//
// string_span and relatives
//
template <typename CharT, std::size_t Extent = dynamic_extent>
class basic_string_span
{
public:
using element_type = CharT;
using value_type = std::remove_cv_t<element_type>;
using pointer = std::add_pointer_t<element_type>;
using reference = std::add_lvalue_reference_t<element_type>;
using const_reference = std::add_lvalue_reference_t<std::add_const_t<element_type>>;
using impl_type = span<element_type, Extent>;
using size_type = typename impl_type::size_type;
using iterator = typename impl_type::iterator;
using reverse_iterator = typename impl_type::reverse_iterator;
// default (empty)
constexpr basic_string_span() noexcept = default;
// copy
constexpr basic_string_span(const basic_string_span& other) noexcept = default;
// assign
constexpr basic_string_span& operator=(const basic_string_span& other) noexcept = default;
constexpr basic_string_span(pointer ptr, size_type length) : span_(ptr, length) {}
constexpr basic_string_span(pointer firstElem, pointer lastElem) : span_(firstElem, lastElem) {}
// From static arrays - if 0-terminated, remove 0 from the view
// All other containers allow 0s within the length, so we do not remove them
template <std::size_t N>
constexpr basic_string_span(element_type (&arr)[N]) : span_(remove_z(arr))
{}
template <std::size_t N, class ArrayElementType = std::remove_const_t<element_type>>
constexpr basic_string_span(std::array<ArrayElementType, N>& arr) noexcept : span_(arr)
{}
template <std::size_t N, class ArrayElementType = std::remove_const_t<element_type>>
constexpr basic_string_span(const std::array<ArrayElementType, N>& arr) noexcept : span_(arr)
{}
// Container signature should work for basic_string after C++17 version exists
template <class Traits, class Allocator>
// GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute // TODO: parser bug
constexpr basic_string_span(std::basic_string<element_type, Traits, Allocator>& str)
: span_(&str[0], str.length())
{}
template <class Traits, class Allocator>
constexpr basic_string_span(const std::basic_string<element_type, Traits, Allocator>& str)
: span_(&str[0], str.length())
{}
// from containers. Containers must have a pointer type and data() function signatures
template <class Container,
class = std::enable_if_t<
!details::is_basic_string_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr basic_string_span(Container& cont) : span_(cont)
{}
template <class Container,
class = std::enable_if_t<
!details::is_basic_string_span<Container>::value &&
std::is_convertible<typename Container::pointer, pointer>::value &&
std::is_convertible<typename Container::pointer,
decltype(std::declval<Container>().data())>::value>>
constexpr basic_string_span(const Container& cont) : span_(cont)
{}
// from string_span
template <
class OtherValueType, std::size_t OtherExtent,
class = std::enable_if_t<std::is_convertible<
typename basic_string_span<OtherValueType, OtherExtent>::impl_type, impl_type>::value>>
constexpr basic_string_span(basic_string_span<OtherValueType, OtherExtent> other)
: span_(other.data(), other.length())
{}
template <size_type Count>
constexpr basic_string_span<element_type, Count> first() const
{
return {span_.template first<Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent> first(size_type count) const
{
return {span_.first(count)};
}
template <size_type Count>
constexpr basic_string_span<element_type, Count> last() const
{
return {span_.template last<Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent> last(size_type count) const
{
return {span_.last(count)};
}
template <size_type Offset, size_type Count>
constexpr basic_string_span<element_type, Count> subspan() const
{
return {span_.template subspan<Offset, Count>()};
}
constexpr basic_string_span<element_type, dynamic_extent>
subspan(size_type offset, size_type count = dynamic_extent) const
{
return {span_.subspan(offset, count)};
}
constexpr reference operator[](size_type idx) const { return span_[idx]; }
constexpr reference operator()(size_type idx) const { return span_[idx]; }
constexpr pointer data() const { return span_.data(); }
constexpr size_type length() const noexcept { return span_.size(); }
constexpr size_type size() const noexcept { return span_.size(); }
constexpr size_type size_bytes() const noexcept { return span_.size_bytes(); }
constexpr size_type length_bytes() const noexcept { return span_.length_bytes(); }
constexpr bool empty() const noexcept { return size() == 0; }
constexpr iterator begin() const noexcept { return span_.begin(); }
constexpr iterator end() const noexcept { return span_.end(); }
constexpr reverse_iterator rbegin() const noexcept { return span_.rbegin(); }
constexpr reverse_iterator rend() const noexcept { return span_.rend(); }
private:
static impl_type remove_z(pointer const& sz, std::size_t max)
{
return impl_type(sz, details::string_length(sz, max));
}
template <std::size_t N>
static impl_type remove_z(element_type (&sz)[N])
{
return remove_z(&sz[0], N);
}
impl_type span_;
};
template <std::size_t Extent = dynamic_extent>
using string_span = basic_string_span<char, Extent>;
template <std::size_t Extent = dynamic_extent>
using cstring_span = basic_string_span<const char, Extent>;
template <std::size_t Extent = dynamic_extent>
using wstring_span = basic_string_span<wchar_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using cwstring_span = basic_string_span<const wchar_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using u16string_span = basic_string_span<char16_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using cu16string_span = basic_string_span<const char16_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using u32string_span = basic_string_span<char32_t, Extent>;
template <std::size_t Extent = dynamic_extent>
using cu32string_span = basic_string_span<const char32_t, Extent>;
//
// to_string() allow (explicit) conversions from string_span to string
//
template <typename CharT, std::size_t Extent>
std::basic_string<typename std::remove_const<CharT>::type>
to_string(basic_string_span<CharT, Extent> view)
{
return {view.data(), narrow_cast<std::size_t>(view.length())};
}
template <typename CharT, typename Traits = typename std::char_traits<CharT>,
typename Allocator = std::allocator<CharT>, typename gCharT, std::size_t Extent>
std::basic_string<CharT, Traits, Allocator> to_basic_string(basic_string_span<gCharT, Extent> view)
{
return {view.data(), narrow_cast<std::size_t>(view.length())};
}
template <class ElementType, std::size_t Extent>
basic_string_span<const byte, details::calculate_byte_size<ElementType, Extent>::value>
as_bytes(basic_string_span<ElementType, Extent> s) noexcept
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <class ElementType, std::size_t Extent,
class = std::enable_if_t<!std::is_const<ElementType>::value>>
basic_string_span<byte, details::calculate_byte_size<ElementType, Extent>::value>
as_writable_bytes(basic_string_span<ElementType, Extent> s) noexcept
{
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
// zero-terminated string span, used to convert
// zero-terminated spans to legacy strings
template <typename CharT, std::size_t Extent = dynamic_extent>
class basic_zstring_span
{
public:
using value_type = CharT;
using const_value_type = std::add_const_t<CharT>;
using pointer = std::add_pointer_t<value_type>;
using const_pointer = std::add_pointer_t<const_value_type>;
using zstring_type = basic_zstring<value_type, Extent>;
using const_zstring_type = basic_zstring<const_value_type, Extent>;
using impl_type = span<value_type, Extent>;
using string_span_type = basic_string_span<value_type, Extent>;
constexpr basic_zstring_span(impl_type s) : span_(s)
{
// expects a zero-terminated span
Expects(s[s.size() - 1] == '\0');
}
// copy
constexpr basic_zstring_span(const basic_zstring_span& other) = default;
// move
constexpr basic_zstring_span(basic_zstring_span&& other) = default;
// assign
constexpr basic_zstring_span& operator=(const basic_zstring_span& other) = default;
// move assign
constexpr basic_zstring_span& operator=(basic_zstring_span&& other) = default;
constexpr bool empty() const noexcept { return span_.size() == 0; }
constexpr string_span_type as_string_span() const noexcept
{
const auto sz = span_.size();
return {span_.data(), sz > 1 ? sz - 1 : 0};
}
constexpr string_span_type ensure_z() const { return gsl::ensure_z(span_); }
constexpr const_zstring_type assume_z() const noexcept { return span_.data(); }
private:
impl_type span_;
};
template <std::size_t Max = dynamic_extent>
using zstring_span = basic_zstring_span<char, Max>;
template <std::size_t Max = dynamic_extent>
using wzstring_span = basic_zstring_span<wchar_t, Max>;
template <std::size_t Max = dynamic_extent>
using u16zstring_span = basic_zstring_span<char16_t, Max>;
template <std::size_t Max = dynamic_extent>
using u32zstring_span = basic_zstring_span<char32_t, Max>;
template <std::size_t Max = dynamic_extent>
using czstring_span = basic_zstring_span<const char, Max>;
template <std::size_t Max = dynamic_extent>
using cwzstring_span = basic_zstring_span<const wchar_t, Max>;
template <std::size_t Max = dynamic_extent>
using cu16zstring_span = basic_zstring_span<const char16_t, Max>;
template <std::size_t Max = dynamic_extent>
using cu32zstring_span = basic_zstring_span<const char32_t, Max>;
// operator ==
template <class CharT, std::size_t Extent, class T,
class = std::enable_if_t<
details::is_basic_string_span<T>::value ||
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>>
bool operator==(const gsl::basic_string_span<CharT, Extent>& one, const T& other)
{
const gsl::basic_string_span<std::add_const_t<CharT>> tmp(other);
return std::equal(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <class CharT, std::size_t Extent, class T,
class = std::enable_if_t<
!details::is_basic_string_span<T>::value &&
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>>
bool operator==(const T& one, const gsl::basic_string_span<CharT, Extent>& other)
{
const gsl::basic_string_span<std::add_const_t<CharT>> tmp(one);
return std::equal(tmp.begin(), tmp.end(), other.begin(), other.end());
}
// operator !=
template <typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator!=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(one == other);
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator!=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(one == other);
}
// operator<
template <typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
const gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other);
return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator<(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(one);
return std::lexicographical_compare(tmp.begin(), tmp.end(), other.begin(), other.end());
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other);
return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end());
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(one);
return std::lexicographical_compare(tmp.begin(), tmp.end(), other.begin(), other.end());
}
#endif
// operator <=
template <typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator<=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(other < one);
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator<=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(other < one);
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(other < one);
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator<=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(other < one);
}
#endif
// operator>
template <typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator>(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return other < one;
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator>(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return other < one;
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return other < one;
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return other < one;
}
#endif
// operator >=
template <typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<std::is_convertible<
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator>=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(one < other);
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename = std::enable_if_t<
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value &&
!gsl::details::is_basic_string_span<T>::value>>
bool operator>=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(one < other);
}
#ifndef _MSC_VER
// VS treats temp and const containers as convertible to basic_string_span,
// so the cases below are already covered by the previous operators
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>=(gsl::basic_string_span<CharT, Extent> one, const T& other)
{
return !(one < other);
}
template <
typename CharT, std::size_t Extent = gsl::dynamic_extent, typename T,
typename DataType = typename T::value_type,
typename = std::enable_if_t<
!gsl::details::is_span<T>::value && !gsl::details::is_basic_string_span<T>::value &&
std::is_convertible<DataType*, CharT*>::value &&
std::is_same<std::decay_t<decltype(std::declval<T>().size(), *std::declval<T>().data())>,
DataType>::value>>
bool operator>=(const T& one, gsl::basic_string_span<CharT, Extent> other)
{
return !(one < other);
}
#endif
} // namespace gsl
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif // _MSC_VER
#endif // GSL_STRING_SPAN_H

View File

@ -1,200 +0,0 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_UTIL_H
#define GSL_UTIL_H
#include "./assert" // for Expects
#include <array>
#include <cstddef> // for ptrdiff_t, size_t
#include <limits> // for numeric_limits
#include <initializer_list> // for initializer_list
#include <type_traits> // for is_signed, integral_constant
#include <utility> // for exchange, forward
#if defined(__has_include) && __has_include(<version>)
#include <version>
#if defined(__cpp_lib_span) && __cpp_lib_span >= 202002L
#include <span>
#endif // __cpp_lib_span >= 202002L
#endif //__has_include(<version>)
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif // _MSC_VER
// Turn off clang unsafe buffer warnings as all accessed are guarded by runtime checks
#if defined(__clang__)
#if __has_warning("-Wunsafe-buffer-usage")
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunsafe-buffer-usage"
#endif // __has_warning("-Wunsafe-buffer-usage")
#endif // defined(__clang__)
#if defined(__cplusplus) && (__cplusplus >= 201703L)
#define GSL_NODISCARD [[nodiscard]]
#else
#define GSL_NODISCARD
#endif // defined(__cplusplus) && (__cplusplus >= 201703L)
#if defined(__cpp_inline_variables)
#define GSL_INLINE inline
#else
#define GSL_INLINE
#endif
#if defined(__has_cpp_attribute)
#if __has_cpp_attribute(deprecated)
#define GSL_DEPRECATED(msg) [[deprecated(msg)]]
#endif // __has_cpp_attribute(deprecated)
#endif // defined(__has_cpp_attribute)
#if !defined(GSL_DEPRECATED)
#if defined(__cplusplus)
#if __cplusplus >= 201309L
#define GSL_DEPRECATED(msg) [[deprecated(msg)]]
#endif // __cplusplus >= 201309L
#endif // defined(__cplusplus)
#endif // !defined(GSL_DEPRECATED)
#if !defined(GSL_DEPRECATED)
#if defined(_MSC_VER)
#define GSL_DEPRECATED(msg) __declspec(deprecated(msg))
#elif defined(__GNUC__)
#define GSL_DEPRECATED(msg) __attribute__((deprecated(msg)))
#endif // defined(_MSC_VER)
#endif // !defined(GSL_DEPRECATED)
#if !defined(GSL_DEPRECATED)
#define GSL_DEPRECATED(msg)
#endif // !defined(GSL_DEPRECATED)
namespace gsl
{
//
// GSL.util: utilities
//
// index type for all container indexes/subscripts/sizes
using index = std::ptrdiff_t;
// final_action allows you to ensure something gets run at the end of a scope
template <class F>
class final_action
{
public:
explicit final_action(const F& ff) noexcept : f{ff} { }
explicit final_action(F&& ff) noexcept : f{std::move(ff)} { }
~final_action() noexcept { if (invoke) f(); }
final_action(final_action&& other) noexcept
: f(std::move(other.f)), invoke(std::exchange(other.invoke, false))
{ }
final_action(const final_action&) = delete;
void operator=(const final_action&) = delete;
void operator=(final_action&&) = delete;
private:
F f;
bool invoke = true;
};
// finally() - convenience function to generate a final_action
template <class F>
GSL_NODISCARD auto finally(F&& f) noexcept
{
return final_action<std::decay_t<F>>{std::forward<F>(f)};
}
// narrow_cast(): a searchable way to do narrowing casts of values
template <class T, class U>
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
constexpr T narrow_cast(U&& u) noexcept
{
return static_cast<T>(std::forward<U>(u));
}
//
// at() - Bounds-checked way of accessing builtin arrays, std::array, std::vector
//
template <class T, std::size_t N>
// clang-format off
GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute
// clang-format on
constexpr T& at(T (&arr)[N], const index i)
{
static_assert(N <= static_cast<std::size_t>((std::numeric_limits<std::ptrdiff_t>::max)()), "We only support arrays up to PTRDIFF_MAX bytes.");
Expects(i >= 0 && i < narrow_cast<index>(N));
return arr[narrow_cast<std::size_t>(i)];
}
template <class Cont>
// clang-format off
GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute
// clang-format on
constexpr auto at(Cont& cont, const index i) -> decltype(cont[cont.size()])
{
Expects(i >= 0 && i < narrow_cast<index>(cont.size()));
using size_type = decltype(cont.size());
return cont[narrow_cast<size_type>(i)];
}
template <class T>
// clang-format off
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
// clang-format on
constexpr T at(const std::initializer_list<T> cont, const index i)
{
Expects(i >= 0 && i < narrow_cast<index>(cont.size()));
return *(cont.begin() + i);
}
template <class T, std::enable_if_t<std::is_move_assignable<T>::value && std::is_move_constructible<T>::value>>
void swap(T& a, T& b) { std::swap(a, b); }
#if defined(__cpp_lib_span) && __cpp_lib_span >= 202002L
template <class T, std::size_t extent = std::dynamic_extent>
constexpr auto at(std::span<T, extent> sp, const index i) -> decltype(sp[sp.size()])
{
Expects(i >= 0 && i < narrow_cast<index>(sp.size()));
return sp[gsl::narrow_cast<std::size_t>(i)];
}
#endif // __cpp_lib_span >= 202002L
} // namespace gsl
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#endif // _MSC_VER
#if defined(__clang__)
#if __has_warning("-Wunsafe-buffer-usage")
#pragma clang diagnostic pop
#endif // __has_warning("-Wunsafe-buffer-usage")
#endif // defined(__clang__)
#endif // GSL_UTIL_H

View File

@ -1,58 +0,0 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef GSL_ZSTRING_H
#define GSL_ZSTRING_H
#include "./span_ext" // for dynamic_extent
#include <cstddef> // for size_t, nullptr_t
namespace gsl
{
//
// czstring and wzstring
//
// These are "tag" typedefs for C-style strings (i.e. null-terminated character arrays)
// that allow static analysis to help find bugs.
//
// There are no additional features/semantics that we can find a way to add inside the
// type system for these types that will not either incur significant runtime costs or
// (sometimes needlessly) break existing programs when introduced.
//
template <typename CharT, std::size_t Extent = dynamic_extent>
using basic_zstring = CharT*;
using czstring = basic_zstring<const char, dynamic_extent>;
using cwzstring = basic_zstring<const wchar_t, dynamic_extent>;
using cu16zstring = basic_zstring<const char16_t, dynamic_extent>;
using cu32zstring = basic_zstring<const char32_t, dynamic_extent>;
using zstring = basic_zstring<char, dynamic_extent>;
using wzstring = basic_zstring<wchar_t, dynamic_extent>;
using u16zstring = basic_zstring<char16_t, dynamic_extent>;
using u32zstring = basic_zstring<char32_t, dynamic_extent>;
} // namespace gsl
#endif // GSL_ZSTRING_H

View File

@ -1,77 +1,41 @@
cmake_minimum_required(VERSION 3.14...3.16)
cmake_minimum_required(VERSION 3.0.2)
project(GSLTests LANGUAGES CXX)
set(GSL_CXX_STANDARD "14" CACHE STRING "Use c++ standard")
set(CMAKE_CXX_STANDARD ${GSL_CXX_STANDARD})
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
include(FindPkgConfig)
include(ExternalProject)
project(GSLTests CXX)
# will make visual studio generated project group files
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
if(CI_TESTING AND GSL_CXX_STANDARD EQUAL 20)
add_compile_definitions(FORCE_STD_SPAN_TESTS=1)
configure_file(CMakeLists.txt.in googletest-download/CMakeLists.txt)
execute_process(
COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download
)
if(result)
message(FATAL_ERROR "CMake step for googletest failed: ${result}")
endif()
if(IOS)
add_compile_definitions(GTEST_HAS_DEATH_TEST=1 IOS_PROCESS_DELAY_WORKAROUND=1)
execute_process(
COMMAND ${CMAKE_COMMAND} --build .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download
)
if(result)
message(FATAL_ERROR "CMake step for googletest failed: ${result}")
endif()
pkg_search_module(GTestMain gtest_main)
if (NOT GTestMain_FOUND)
# No pre-installed GTest is available, try to download it using Git.
find_package(Git REQUIRED QUIET)
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
configure_file(CMakeLists.txt.in googletest-download/CMakeLists.txt)
execute_process(
COMMAND ${CMAKE_COMMAND} -G "${CMAKE_GENERATOR}" .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download
)
if(result)
message(FATAL_ERROR "CMake step for googletest failed: ${result}")
endif()
add_subdirectory(
${CMAKE_CURRENT_BINARY_DIR}/googletest-src
${CMAKE_CURRENT_BINARY_DIR}/googletest-build
EXCLUDE_FROM_ALL
)
execute_process(
COMMAND ${CMAKE_COMMAND} --build .
RESULT_VARIABLE result
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/googletest-download
)
if(result)
message(FATAL_ERROR "CMake step for googletest failed: ${result}")
endif()
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
set(GTestMain_LIBRARIES gtest_main)
add_subdirectory(
${CMAKE_CURRENT_BINARY_DIR}/googletest-src
${CMAKE_CURRENT_BINARY_DIR}/googletest-build
EXCLUDE_FROM_ALL
)
endif()
if (CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
find_package(Microsoft.GSL CONFIG REQUIRED)
enable_testing()
if (NOT DEFINED Microsoft.GSL_VERSION)
message(FATAL_ERROR "Microsoft.GSL_VERSION not defined!")
endif()
message(STATUS "Microsoft.GSL_VERSION = ${Microsoft.GSL_VERSION}")
endif()
if (MSVC AND (GSL_CXX_STANDARD GREATER_EQUAL 17))
if (MSVC AND (GSL_CXX_STANDARD EQUAL 17))
set(GSL_CPLUSPLUS_OPT -Zc:__cplusplus -permissive-)
endif()
include(CheckCXXCompilerFlag)
# this interface adds compile options to how the tests are run
# please try to keep entries ordered =)
add_library(gsl_tests_config INTERFACE)
@ -98,7 +62,6 @@ if(MSVC) # MSVC or simulating MSVC
>
$<$<CXX_COMPILER_ID:Clang>:
-Weverything
-Wfloat-equal
-Wno-c++98-compat
-Wno-c++98-compat-pedantic
-Wno-covered-switch-default # GTest
@ -110,20 +73,12 @@ if(MSVC) # MSVC or simulating MSVC
-Wno-shift-sign-overflow # GTest gtest-port.h
-Wno-undef # GTest
-Wno-used-but-marked-unused # GTest EXPECT_DEATH
-Wno-switch-default # GTest EXPECT_DEATH
$<$<EQUAL:${GSL_CXX_STANDARD},14>: # no support for [[maybe_unused]]
-Wno-unused-member-function
-Wno-unused-variable
$<$<VERSION_EQUAL:$<CXX_COMPILER_VERSION>,15.0.1>:
-Wno-deprecated # False positive in MSVC Clang 15.0.1 raises a C++17 warning
>
>
>
)
check_cxx_compiler_flag("-Wno-reserved-identifier" WARN_RESERVED_ID)
if (WARN_RESERVED_ID)
target_compile_options(gsl_tests_config INTERFACE "-Wno-reserved-identifier")
endif()
else()
target_compile_options(gsl_tests_config INTERFACE
-fno-strict-aliasing
@ -136,7 +91,6 @@ else()
-Wpedantic
-Wshadow
-Wsign-conversion
-Wfloat-equal
-Wno-deprecated-declarations # Allow tests for [[deprecated]] elements
$<$<OR:$<CXX_COMPILER_ID:Clang>,$<CXX_COMPILER_ID:AppleClang>>:
-Weverything
@ -147,7 +101,6 @@ else()
-Wno-global-constructors # GTest
-Wno-missing-prototypes
-Wno-padded
-Wno-switch-default
-Wno-unknown-attributes
-Wno-used-but-marked-unused # GTest EXPECT_DEATH
-Wno-weak-vtables
@ -160,11 +113,6 @@ else()
$<$<AND:$<VERSION_GREATER:$<CXX_COMPILER_VERSION>,4.99>,$<VERSION_LESS:$<CXX_COMPILER_VERSION>,6>>:
$<$<EQUAL:${GSL_CXX_STANDARD},17>:-Wno-undefined-func-template>
>
$<$<AND:$<EQUAL:${GSL_CXX_STANDARD},20>,$<OR:$<CXX_COMPILER_VERSION:11.0.0>,$<CXX_COMPILER_VERSION:10.0.0>>>:
-Wno-zero-as-null-pointer-constant # failing Clang Ubuntu 20.04 tests, seems to be a bug with clang 10.0.0
# and clang 11.0.0. (operator< is being re-written by the compiler
# as operator<=> and raising the warning)
>
>
$<$<CXX_COMPILER_ID:AppleClang>:
$<$<AND:$<VERSION_GREATER:$<CXX_COMPILER_VERSION>,9.1>,$<VERSION_LESS:$<CXX_COMPILER_VERSION>,10>>:
@ -188,39 +136,45 @@ else()
>
)
endif(MSVC)
check_cxx_compiler_flag("-Wno-unsafe-buffer-usage" WARN_UNSAFE_BUFFER)
if (WARN_UNSAFE_BUFFER)
# This test uses very greedy heuristics such as "no pointer arithmetic on raw buffer"
target_compile_options(gsl_tests_config INTERFACE "-Wno-unsafe-buffer-usage")
endif()
# for tests to find the gtest header
target_include_directories(gsl_tests_config SYSTEM INTERFACE
googletest/googletest/include
)
add_executable(gsl_tests
algorithm_tests.cpp
assertion_tests.cpp
at_tests.cpp
byte_tests.cpp
notnull_tests.cpp
owner_tests.cpp
pointers_tests.cpp
span_compatibility_tests.cpp
span_ext_tests.cpp
span_tests.cpp
strict_notnull_tests.cpp
utils_tests.cpp
)
set_property(TARGET PROPERTY FOLDER "GSL_tests")
function(add_gsl_test name)
add_executable(${name} ${name}.cpp)
target_link_libraries(${name}
GSL
gsl_tests_config
gtest_main
)
add_test(
${name}
${name}
)
# group all tests under GSL_tests
set_property(TARGET ${name} PROPERTY FOLDER "GSL_tests")
endfunction()
add_gsl_test(span_tests)
add_gsl_test(span_ext_tests)
add_gsl_test(span_compatibility_tests)
add_gsl_test(multi_span_tests)
add_gsl_test(strided_span_tests)
add_gsl_test(string_span_tests)
add_gsl_test(at_tests)
add_gsl_test(bounds_tests)
add_gsl_test(notnull_tests)
add_gsl_test(assertion_tests)
add_gsl_test(utils_tests)
add_gsl_test(owner_tests)
add_gsl_test(byte_tests)
add_gsl_test(algorithm_tests)
add_gsl_test(strict_notnull_tests)
target_link_libraries(gsl_tests
Microsoft.GSL::GSL
gsl_tests_config
${GTestMain_LIBRARIES}
)
add_test(gsl_tests gsl_tests)
# No exception tests
@ -249,22 +203,12 @@ if(MSVC) # MSVC or simulating MSVC
>
$<$<CXX_COMPILER_ID:Clang>:
-Weverything
-Wfloat-equal
-Wno-c++98-compat
-Wno-c++98-compat-pedantic
-Wno-missing-prototypes
-Wno-unknown-attributes
$<$<EQUAL:${GSL_CXX_STANDARD},14>:
$<$<VERSION_EQUAL:$<CXX_COMPILER_VERSION>,15.0.1>:
-Wno-deprecated # False positive in MSVC Clang 15.0.1 raises a C++17 warning
>
>
>
)
check_cxx_compiler_flag("-Wno-reserved-identifier" WARN_RESERVED_ID)
if (WARN_RESERVED_ID)
target_compile_options(gsl_tests_config_noexcept INTERFACE "-Wno-reserved-identifier")
endif()
else()
target_compile_options(gsl_tests_config_noexcept INTERFACE
-fno-exceptions
@ -278,7 +222,6 @@ else()
-Wpedantic
-Wshadow
-Wsign-conversion
-Wfloat-equal
$<$<OR:$<CXX_COMPILER_ID:Clang>,$<CXX_COMPILER_ID:AppleClang>>:
-Weverything
-Wno-c++98-compat
@ -305,15 +248,20 @@ else()
>
)
endif(MSVC)
check_cxx_compiler_flag("-Wno-unsafe-buffer-usage" WARN_UNSAFE_BUFFER)
if (WARN_UNSAFE_BUFFER)
# This test uses very greedy heuristics such as "no pointer arithmetic on raw buffer"
target_compile_options(gsl_tests_config_noexcept INTERFACE "-Wno-unsafe-buffer-usage")
endif()
add_executable(gsl_noexcept_tests no_exception_ensure_tests.cpp)
target_link_libraries(gsl_noexcept_tests
Microsoft.GSL::GSL
gsl_tests_config_noexcept
)
add_test(gsl_noexcept_tests gsl_noexcept_tests)
function(add_gsl_test_noexcept name)
add_executable(${name} ${name}.cpp)
target_link_libraries(${name}
GSL
gsl_tests_config_noexcept
gtest_main
)
add_test(
${name}
${name}
)
# group all tests under GSL_tests_noexcept
set_property(TARGET ${name} PROPERTY FOLDER "GSL_tests_noexcept")
endfunction()
add_gsl_test_noexcept(no_exception_ensure_tests)

View File

@ -1,10 +1,10 @@
cmake_minimum_required(VERSION 3.13)
cmake_minimum_required(VERSION 3.0.2)
project(googletest-download NONE)
include(ExternalProject)
ExternalProject_Add(googletest
GIT_REPOSITORY https://github.com/google/googletest.git
GIT_TAG v1.14.0
GIT_TAG 703bd9caab50b139428cea1aaff9974ebee5742e
SOURCE_DIR "${CMAKE_CURRENT_BINARY_DIR}/googletest-src"
BINARY_DIR "${CMAKE_CURRENT_BINARY_DIR}/googletest-build"
CONFIGURE_COMMAND ""

View File

@ -14,19 +14,23 @@
//
///////////////////////////////////////////////////////////////////////////////
#include <array> // for array
#include <cstddef> // for size_t
#include <gsl/algorithm> // for copy
#include <gsl/span> // for span
#include <gtest/gtest.h>
#include <gsl/gsl_algorithm> // for copy
#include <gsl/span> // for span
#include <array> // for array
#include <cstddef> // for size_t
#include "deathTestCommon.h"
namespace
{
static constexpr char deathstring[] = "Expected Death";
}
namespace gsl
{
struct fail_fast;
} // namespace gsl
using namespace std;
using namespace gsl;
TEST(algorithm_tests, same_type)
@ -72,8 +76,8 @@ TEST(algorithm_tests, same_type)
std::array<int, 5> src{1, 2, 3, 4, 5};
std::array<int, 10> dst{};
const gsl::span<int> src_span(src);
const gsl::span<int, 10> dst_span(dst);
const span<int> src_span(src);
const span<int, 10> dst_span(dst);
copy(src_span, dst_span);
copy(src_span, dst_span.subspan(src_span.size()));
@ -188,7 +192,7 @@ TEST(algorithm_tests, incompatible_type)
span<int> src_span_dyn(src);
span<int, 4> src_span_static(src);
span<int*> dst_span_dyn(dst);
span<int*, 4> dst_span_static(gsl::make_span(dst));
span<int*, 4> dst_span_static(dst);
// every line should produce a compilation error
copy(src_span_dyn, dst_span_dyn);
@ -200,11 +204,10 @@ TEST(algorithm_tests, incompatible_type)
TEST(algorithm_tests, small_destination_span)
{
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. small_destination_span";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
std::array<int, 12> src{1, 2, 3, 4};
std::array<int, 4> dst{};
@ -214,9 +217,9 @@ TEST(algorithm_tests, small_destination_span)
const span<int> dst_span_dyn(dst);
const span<int, 4> dst_span_static(dst);
EXPECT_DEATH(copy(src_span_dyn, dst_span_dyn), expected);
EXPECT_DEATH(copy(src_span_dyn, dst_span_static), expected);
EXPECT_DEATH(copy(src_span_static, dst_span_dyn), expected);
EXPECT_DEATH(copy(src_span_dyn, dst_span_dyn), deathstring);
EXPECT_DEATH(copy(src_span_dyn, dst_span_static), deathstring);
EXPECT_DEATH(copy(src_span_static, dst_span_dyn), deathstring);
#ifdef CONFIRM_COMPILATION_ERRORS
copy(src_span_static, dst_span_static);

View File

@ -14,14 +14,14 @@
//
///////////////////////////////////////////////////////////////////////////////
#include "deathTestCommon.h"
#include <gsl/assert> // for Ensures, Expects
#include <gtest/gtest.h>
#include <gsl/gsl_assert> // for fail_fast (ptr only), Ensures, Expects
using namespace gsl;
namespace
{
static constexpr char deathstring[] = "Expected Death";
int f(int i)
{
@ -39,22 +39,23 @@ int g(int i)
TEST(assertion_tests, expects)
{
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. expects";
std::abort();
});
EXPECT_TRUE(f(2) == 2);
EXPECT_DEATH(f(10), GetExpectedDeathString(terminateHandler));
EXPECT_DEATH(f(10), deathstring);
}
TEST(assertion_tests, ensures)
{
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. ensures";
std::abort();
});
EXPECT_TRUE(g(2) == 3);
EXPECT_DEATH(g(9), GetExpectedDeathString(terminateHandler));
EXPECT_DEATH(g(9), deathstring);
}

View File

@ -16,40 +16,37 @@
#include <gtest/gtest.h>
#include <gsl/util> // for at
#include <gsl/gsl_util> // for at
#include <array> // for array
#include <cstddef> // for size_t
#include <exception> // for terminate
#include <initializer_list> // for initializer_list
#include <vector> // for vector
#if defined(__cplusplus) && __cplusplus >= 202002L
#include <span>
#endif // __cplusplus >= 202002L
#include "deathTestCommon.h"
namespace
{
static constexpr char deathstring[] = "Expected Death";
}
TEST(at_tests, static_array)
{
int a[4] = {1, 2, 3, 4};
const int(&c_a)[4] = a;
for (int i = 0; i < 4; ++i)
{
for (int i = 0; i < 4; ++i) {
EXPECT_TRUE(&gsl::at(a, i) == &a[i]);
EXPECT_TRUE(&gsl::at(c_a, i) == &a[i]);
}
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. static_array";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
EXPECT_DEATH(gsl::at(a, -1), expected);
EXPECT_DEATH(gsl::at(a, 4), expected);
EXPECT_DEATH(gsl::at(c_a, -1), expected);
EXPECT_DEATH(gsl::at(c_a, 4), expected);
EXPECT_DEATH(gsl::at(a, -1), deathstring);
EXPECT_DEATH(gsl::at(a, 4), deathstring);
EXPECT_DEATH(gsl::at(c_a, -1), deathstring);
EXPECT_DEATH(gsl::at(c_a, 4), deathstring);
}
TEST(at_tests, std_array)
@ -57,22 +54,20 @@ TEST(at_tests, std_array)
std::array<int, 4> a = {1, 2, 3, 4};
const std::array<int, 4>& c_a = a;
for (int i = 0; i < 4; ++i)
{
for (int i = 0; i < 4; ++i) {
EXPECT_TRUE(&gsl::at(a, i) == &a[static_cast<std::size_t>(i)]);
EXPECT_TRUE(&gsl::at(c_a, i) == &a[static_cast<std::size_t>(i)]);
}
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. std_array";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
EXPECT_DEATH(gsl::at(a, -1), expected);
EXPECT_DEATH(gsl::at(a, 4), expected);
EXPECT_DEATH(gsl::at(c_a, -1), expected);
EXPECT_DEATH(gsl::at(c_a, 4), expected);
EXPECT_DEATH(gsl::at(a, -1), deathstring);
EXPECT_DEATH(gsl::at(a, 4), deathstring);
EXPECT_DEATH(gsl::at(c_a, -1), deathstring);
EXPECT_DEATH(gsl::at(c_a, 4), deathstring);
}
TEST(at_tests, std_vector)
@ -80,74 +75,42 @@ TEST(at_tests, std_vector)
std::vector<int> a = {1, 2, 3, 4};
const std::vector<int>& c_a = a;
for (int i = 0; i < 4; ++i)
{
for (int i = 0; i < 4; ++i) {
EXPECT_TRUE(&gsl::at(a, i) == &a[static_cast<std::size_t>(i)]);
EXPECT_TRUE(&gsl::at(c_a, i) == &a[static_cast<std::size_t>(i)]);
}
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. std_vector";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
EXPECT_DEATH(gsl::at(a, -1), expected);
EXPECT_DEATH(gsl::at(a, 4), expected);
EXPECT_DEATH(gsl::at(c_a, -1), expected);
EXPECT_DEATH(gsl::at(c_a, 4), expected);
EXPECT_DEATH(gsl::at(a, -1), deathstring);
EXPECT_DEATH(gsl::at(a, 4), deathstring);
EXPECT_DEATH(gsl::at(c_a, -1), deathstring);
EXPECT_DEATH(gsl::at(c_a, 4), deathstring);
}
TEST(at_tests, InitializerList)
{
const std::initializer_list<int> a = {1, 2, 3, 4};
for (int i = 0; i < 4; ++i)
{
for (int i = 0; i < 4; ++i) {
EXPECT_TRUE(gsl::at(a, i) == i + 1);
EXPECT_TRUE(gsl::at({1, 2, 3, 4}, i) == i + 1);
}
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. InitializerList";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
EXPECT_DEATH(gsl::at(a, -1), expected);
EXPECT_DEATH(gsl::at(a, 4), expected);
EXPECT_DEATH(gsl::at({1, 2, 3, 4}, -1), expected);
EXPECT_DEATH(gsl::at({1, 2, 3, 4}, 4), expected);
EXPECT_DEATH(gsl::at(a, -1), deathstring);
EXPECT_DEATH(gsl::at(a, 4), deathstring);
EXPECT_DEATH(gsl::at({1, 2, 3, 4}, -1), deathstring);
EXPECT_DEATH(gsl::at({1, 2, 3, 4}, 4), deathstring);
}
#if defined(FORCE_STD_SPAN_TESTS) || defined(__cpp_lib_span) && __cpp_lib_span >= 202002L
TEST(at_tests, std_span)
{
std::vector<int> vec{1, 2, 3, 4, 5};
std::span sp{vec};
std::vector<int> cvec{1, 2, 3, 4, 5};
std::span csp{cvec};
for (gsl::index i = 0; i < gsl::narrow_cast<gsl::index>(vec.size()); ++i)
{
EXPECT_TRUE(&gsl::at(sp, i) == &vec[gsl::narrow_cast<size_t>(i)]);
EXPECT_TRUE(&gsl::at(csp, i) == &cvec[gsl::narrow_cast<size_t>(i)]);
}
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. std_span";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
EXPECT_DEATH(gsl::at(sp, -1), expected);
EXPECT_DEATH(gsl::at(sp, gsl::narrow_cast<gsl::index>(sp.size())), expected);
EXPECT_DEATH(gsl::at(csp, -1), expected);
EXPECT_DEATH(gsl::at(csp, gsl::narrow_cast<gsl::index>(sp.size())), expected);
}
#endif // defined(FORCE_STD_SPAN_TESTS) || defined(__cpp_lib_span) && __cpp_lib_span >= 202002L
#if !defined(_MSC_VER) || defined(__clang__) || _MSC_VER >= 1910
static constexpr bool test_constexpr()
{
@ -156,8 +119,7 @@ static constexpr bool test_constexpr()
std::array<int, 4> a2 = {1, 2, 3, 4};
const std::array<int, 4>& c_a2 = a2;
for (int i = 0; i < 4; ++i)
{
for (int i = 0; i < 4; ++i) {
if (&gsl::at(a1, i) != &a1[i]) return false;
if (&gsl::at(c_a1, i) != &a1[i]) return false;
// requires C++17:

102
tests/bounds_tests.cpp Normal file
View File

@ -0,0 +1,102 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <gtest/gtest.h>
#include <gsl/multi_span> // for static_bounds, static_bounds_dynamic_range_t
#include <cstddef> // for ptrdiff_t, size_t
using namespace std;
using namespace gsl;
namespace
{
void use(std::ptrdiff_t&) {}
}
TEST(bounds_tests, basic_bounds)
{
for (auto point : static_bounds<dynamic_range, 3, 4>{2}) {
for (decltype(point)::size_type j = 0;
j < static_cast<decltype(point)::size_type>(decltype(point)::rank); j++)
{
use(j);
use(point[static_cast<std::size_t>(j)]);
}
}
}
TEST(bounds_tests, bounds_basic)
{
static_bounds<3, 4, 5> b;
const auto a = b.slice();
(void) a;
static_bounds<4, dynamic_range, 2> x{4};
x.slice().slice();
}
TEST(bounds_tests, arrayview_iterator)
{
static_bounds<4, dynamic_range, 2> bounds{3};
const auto itr = bounds.begin();
(void) itr;
#ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 4, dynamic_range, 2> av(nullptr, bounds);
auto itr2 = av.cbegin();
for (auto& v : av) {
v = 4;
}
fill(av.begin(), av.end(), 0);
#endif
}
TEST(bounds_tests, bounds_convertible)
{
static_bounds<7, 4, 2> b1;
static_bounds<7, dynamic_range, 2> b2 = b1;
(void) b2;
#ifdef CONFIRM_COMPILATION_ERRORS
static_bounds<7, dynamic_range, 1> b4 = b2;
#endif
static_bounds<dynamic_range, dynamic_range, dynamic_range> b3 = b1;
static_bounds<7, 4, 2> b4 = b3;
(void) b4;
static_bounds<dynamic_range> b5;
static_bounds<34> b6;
std::set_terminate([] {
std::cerr << "Expected Death. bounds_convertible";
std::abort();
});
b5 = static_bounds<20>();
EXPECT_DEATH(b6 = b5, ".*");
b5 = static_bounds<34>();
b6 = b5;
EXPECT_TRUE(b5 == b6);
EXPECT_TRUE(b5.size() == b6.size());
}
#ifdef CONFIRM_COMPILATION_ERRORS
copy(src_span_static, dst_span_static);
#endif

View File

@ -16,11 +16,7 @@
#include <gtest/gtest.h>
#define GSL_USE_STD_BYTE 0
#include <gsl/byte> // for to_byte, to_integer, byte, operator&, ope...
#include <type_traits>
#include <utility>
#include <gsl/gsl_byte> // for to_byte, to_integer, byte, operator&, ope...
using namespace std;
using namespace gsl;
@ -37,46 +33,39 @@ int modify_both(gsl::byte& b, int& i)
TEST(byte_tests, construction)
{
{
const gsl::byte b = static_cast<gsl::byte>(4);
const byte b = static_cast<byte>(4);
EXPECT_TRUE(static_cast<unsigned char>(b) == 4);
}
GSL_SUPPRESS(es.49)
{
const gsl::byte b = gsl::byte(12);
const byte b = byte(12);
EXPECT_TRUE(static_cast<unsigned char>(b) == 12);
}
{
const gsl::byte b = to_byte<12>();
const byte b = to_byte<12>();
EXPECT_TRUE(static_cast<unsigned char>(b) == 12);
}
{
const unsigned char uc = 12;
const gsl::byte b = to_byte(uc);
const byte b = to_byte(uc);
EXPECT_TRUE(static_cast<unsigned char>(b) == 12);
}
#if defined(__cplusplus) && (__cplusplus >= 201703L)
{
const gsl::byte b{14};
const byte b { 14 };
EXPECT_TRUE(static_cast<unsigned char>(b) == 14);
}
#endif
#ifdef CONFIRM_COMPILATION_ERRORS
to_byte(char{});
to_byte(3);
to_byte(3u);
to_byte<-1>();
to_byte<256u>();
#endif
}
TEST(byte_tests, bitwise_operations)
{
const gsl::byte b = to_byte<0xFF>();
const byte b = to_byte<0xFF>();
gsl::byte a = to_byte<0x00>();
byte a = to_byte<0x00>();
EXPECT_TRUE((b | a) == to_byte<0xFF>());
EXPECT_TRUE(a == to_byte<0x00>());
@ -110,7 +99,7 @@ TEST(byte_tests, bitwise_operations)
TEST(byte_tests, to_integer)
{
const gsl::byte b = to_byte<0x12>();
const byte b = to_byte<0x12>();
EXPECT_TRUE(0x12 == gsl::to_integer<char>(b));
EXPECT_TRUE(0x12 == gsl::to_integer<short>(b));
@ -129,50 +118,12 @@ TEST(byte_tests, to_integer)
TEST(byte_tests, aliasing)
{
int i{0};
const int res = modify_both(reinterpret_cast<gsl::byte&>(i), i);
const int res = modify_both(reinterpret_cast<byte&>(i), i);
EXPECT_TRUE(res == i);
}
#if __cplusplus >= 201703l
using std::void_t;
#else // __cplusplus >= 201703l
template <class...>
using void_t = void;
#endif // __cplusplus < 201703l
}
template <typename U, typename = void>
static constexpr bool LShiftCompilesFor = false;
template <typename U>
static constexpr bool LShiftCompilesFor<
U, void_t<decltype(gsl::operator<< <float>(declval<gsl::byte>(), declval<U>()))>> = true;
static_assert(!LShiftCompilesFor<float>, "!LShiftCompilesFor<float>");
template <typename U, typename = void>
static constexpr bool RShiftCompilesFor = false;
template <typename U>
static constexpr bool RShiftCompilesFor<
U, void_t<decltype(gsl::operator>> <U>(declval<gsl::byte>(), declval<U>()))>> = true;
static_assert(!RShiftCompilesFor<float>, "!RShiftCompilesFor<float>");
template <typename U, typename = void>
static constexpr bool LShiftAssignCompilesFor = false;
template <typename U>
static constexpr bool LShiftAssignCompilesFor<
U, void_t<decltype(gsl::operator<<= <U>(declval<gsl::byte&>(), declval<U>()))>> = true;
static_assert(!LShiftAssignCompilesFor<float>, "!LShiftAssignCompilesFor<float>");
template <typename U, typename = void>
static constexpr bool RShiftAssignCompilesFor = false;
template <typename U>
static constexpr bool RShiftAssignCompilesFor<
U, void_t<decltype(gsl::operator>>= <U>(declval<gsl::byte&>(), declval<U>()))>> = true;
static_assert(!RShiftAssignCompilesFor<float>, "!RShiftAssignCompilesFor<float>");
template <typename U, typename = void>
static constexpr bool ToIntegerCompilesFor = false;
template <typename U>
static constexpr bool
ToIntegerCompilesFor<U, void_t<decltype(gsl::to_integer<U>(gsl::byte{}))>> = true;
static_assert(!ToIntegerCompilesFor<float>, "!ToIntegerCompilesFor<float>");
} // namespace
#ifdef CONFIRM_COMPILATION_ERRORS
copy(src_span_static, dst_span_static);
#endif

View File

@ -1,11 +0,0 @@
#pragma once
#include <gsl/assert>
constexpr char deathstring[] = "Expected Death";
constexpr char failed_set_terminate_deathstring[] = ".*";
// This prevents a failed call to set_terminate from failing the test suite.
constexpr const char* GetExpectedDeathString(std::terminate_handler handle)
{
return handle ? deathstring : failed_set_terminate_deathstring;
}

1866
tests/multi_span_tests.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -14,11 +14,8 @@
//
///////////////////////////////////////////////////////////////////////////////
#include <chrono>
#include <cstdlib> // for std::exit
#include <gsl/span> // for span
#include <iostream>
#include <thread>
int operator_subscript_no_throw() noexcept
{
@ -45,10 +42,6 @@ void setup_termination_handler() noexcept
int main() noexcept
{
std::cout << "Running main() from " __FILE__ "\n";
#if defined(IOS_PROCESS_DELAY_WORKAROUND)
std::this_thread::sleep_for(std::chrono::seconds(1));
#endif
setup_termination_handler();
operator_subscript_no_throw();
return -1;

View File

@ -18,24 +18,19 @@
#include <gsl/pointers> // for not_null, operator<, operator<=, operator>
#include <algorithm> // for addressof
#include <cstdint> // for uint16_t
#include <memory> // for shared_ptr, make_shared, operator<, opera...
#include <sstream> // for operator<<, ostringstream, basic_ostream:...
#include <string> // for basic_string, operator==, string, operator<<
#include <type_traits> // for declval
#include <typeinfo> // for type_info
#include <variant> // for variant, monostate, get
#include <algorithm> // for addressof
#include <memory> // for shared_ptr, make_shared, operator<, opera...
#include <sstream> // for operator<<, ostringstream, basic_ostream:...
#include <stdint.h> // for uint16_t
#include <string> // for basic_string, operator==, string, operator<<
#include <typeinfo> // for type_info
#include "deathTestCommon.h"
using namespace gsl;
#if __cplusplus >= 201703l
using std::void_t;
#else // __cplusplus >= 201703l
template <class...>
using void_t = void;
#endif // __cplusplus < 201703l
namespace
{
static constexpr char deathstring[] = "Expected Death";
} //namespace
struct MyBase
{
@ -61,7 +56,7 @@ template <typename T>
struct CustomPtr
{
CustomPtr(T* p) : p_(p) {}
operator T*() const { return p_; }
operator T*() { return p_; }
bool operator!=(std::nullptr_t) const { return p_ != nullptr; }
T* p_ = nullptr;
};
@ -69,9 +64,7 @@ struct CustomPtr
template <typename T, typename U>
std::string operator==(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return reinterpret_cast<const void*>(lhs.p_) == reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
@ -79,9 +72,7 @@ std::string operator==(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
template <typename T, typename U>
std::string operator!=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return reinterpret_cast<const void*>(lhs.p_) != reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
@ -89,9 +80,7 @@ std::string operator!=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
template <typename T, typename U>
std::string operator<(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return reinterpret_cast<const void*>(lhs.p_) < reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
@ -99,9 +88,7 @@ std::string operator<(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
template <typename T, typename U>
std::string operator>(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return reinterpret_cast<const void*>(lhs.p_) > reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
@ -109,9 +96,7 @@ std::string operator>(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
template <typename T, typename U>
std::string operator<=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return reinterpret_cast<const void*>(lhs.p_) <= reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
@ -119,9 +104,7 @@ std::string operator<=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
template <typename T, typename U>
std::string operator>=(CustomPtr<T> const& lhs, CustomPtr<U> const& rhs)
{
// clang-format off
GSL_SUPPRESS(type.1) // NO-FORMAT: attribute
// clang-format on
return reinterpret_cast<const void*>(lhs.p_) >= reinterpret_cast<const void*>(rhs.p_) ? "true"
: "false";
}
@ -135,53 +118,23 @@ struct NonCopyableNonMovable
NonCopyableNonMovable& operator=(NonCopyableNonMovable&&) = delete;
};
namespace
{
// clang-format off
GSL_SUPPRESS(f .4) // NO-FORMAT: attribute
// clang-format on
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
bool helper(not_null<int*> p) { return *p == 12; }
// clang-format off
GSL_SUPPRESS(f .4) // NO-FORMAT: attribute
// clang-format on
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
bool helper_const(not_null<const int*> p) { return *p == 12; }
int* return_pointer() { return nullptr; }
} // namespace
template <typename U, typename = void>
static constexpr bool CtorCompilesFor_A = false;
template <typename U>
static constexpr bool
CtorCompilesFor_A<U, void_t<decltype(gsl::not_null<void*>{std::declval<U>()})>> = true;
template <typename U, int N, typename = void>
static constexpr bool CtorCompilesFor_B = false;
template <typename U, int N>
static constexpr bool CtorCompilesFor_B<U, N, void_t<decltype(gsl::not_null<U>{N})>> = true;
template <typename U, typename = void>
static constexpr bool DefaultCtorCompilesFor = false;
template <typename U>
static constexpr bool DefaultCtorCompilesFor<U, void_t<decltype(gsl::not_null<U>{})>> = true;
template <typename U, typename = void>
static constexpr bool CtorCompilesFor_C = false;
template <typename U>
static constexpr bool
CtorCompilesFor_C<U, void_t<decltype(gsl::not_null<U*>{std::declval<std::unique_ptr<U>>()})>> =
true;
TEST(notnull_tests, TestNotNullConstructors)
{
{
static_assert(CtorCompilesFor_A<void*>, "CtorCompilesFor_A<void*>");
static_assert(!CtorCompilesFor_A<std::nullptr_t>, "!CtorCompilesFor_A<std::nullptr_t>");
static_assert(!CtorCompilesFor_B<void*, 0>, "!CtorCompilesFor_B<void*, 0>");
static_assert(!DefaultCtorCompilesFor<void*>, "!DefaultCtorCompilesFor<void*>");
static_assert(!CtorCompilesFor_C<int>, "CtorCompilesFor_C<int>");
#ifdef CONFIRM_COMPILATION_ERRORS
not_null<int*> p = nullptr; // yay...does not compile!
not_null<std::vector<char>*> p1 = 0; // yay...does not compile!
not_null<int*> p2; // yay...does not compile!
std::unique_ptr<int> up = std::make_unique<int>(120);
not_null<int*> p3 = up;
// Forbid non-nullptr assignable types
not_null<std::vector<int>> f(std::vector<int>{1});
not_null<int> z(10);
@ -189,12 +142,10 @@ TEST(notnull_tests, TestNotNullConstructors)
#endif
}
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. TestNotNullConstructors";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
// from shared pointer
int i = 12;
@ -206,15 +157,7 @@ TEST(notnull_tests, TestNotNullConstructors)
std::make_shared<int>(10)); // shared_ptr<int> is nullptr assignable
int* pi = nullptr;
EXPECT_DEATH((not_null<decltype(pi)>(pi)), expected);
}
{
// from unique pointer
not_null<std::unique_ptr<int>> x(
std::make_unique<int>(10)); // unique_ptr<int> is nullptr assignable
EXPECT_DEATH((not_null<std::unique_ptr<int>>(std::unique_ptr<int>{})), expected);
EXPECT_DEATH((not_null<decltype(pi)>(pi)), deathstring);
}
{
@ -271,8 +214,8 @@ TEST(notnull_tests, TestNotNullConstructors)
{
// from returned pointer
EXPECT_DEATH(helper(return_pointer()), expected);
EXPECT_DEATH(helper_const(return_pointer()), expected);
EXPECT_DEATH(helper(return_pointer()), deathstring);
EXPECT_DEATH(helper_const(return_pointer()), deathstring);
}
}
@ -307,27 +250,6 @@ TEST(notnull_tests, TestNotNullostream)
ostream_helper<std::string>("string");
}
template <typename U, typename V, typename = void>
static constexpr bool AssignmentCompilesFor = false;
template <typename U, typename V>
static constexpr bool
AssignmentCompilesFor<U, V,
void_t<decltype(std::declval<gsl::not_null<U*>&>().operator=(
std::declval<gsl::not_null<V*>&>()))>> = true;
template <typename U, typename V, typename = void>
static constexpr bool SCastCompilesFor = false;
template <typename U, typename V>
static constexpr bool
SCastCompilesFor<U, V, void_t<decltype(static_cast<U*>(std::declval<gsl::not_null<V*>&>()))>> =
true;
template <typename U, typename V, typename = void>
static constexpr bool RCastCompilesFor = false;
template <typename U, typename V>
static constexpr bool RCastCompilesFor<
U, V, void_t<decltype(reinterpret_cast<U*>(std::declval<gsl::not_null<V*>&>()))>> = true;
TEST(notnull_tests, TestNotNullCasting)
{
MyBase base;
@ -340,46 +262,30 @@ TEST(notnull_tests, TestNotNullCasting)
q = p; // allowed with heterogeneous copy ctor
EXPECT_TRUE(q == p);
static_assert(AssignmentCompilesFor<MyBase, MyDerived>,
"AssignmentCompilesFor<MyBase, MyDerived>");
static_assert(!AssignmentCompilesFor<MyBase, Unrelated>,
"!AssignmentCompilesFor<MyBase, Unrelated>");
static_assert(!AssignmentCompilesFor<Unrelated, MyDerived>,
"!AssignmentCompilesFor<Unrelated, MyDerived>");
static_assert(!AssignmentCompilesFor<MyDerived, MyBase>,
"!AssignmentCompilesFor<MyDerived, MyBase>");
static_assert(SCastCompilesFor<MyDerived, MyDerived>, "SCastCompilesFor<MyDerived, MyDerived>");
static_assert(SCastCompilesFor<MyBase, MyDerived>, "SCastCompilesFor<MyBase, MyDerived>");
static_assert(!SCastCompilesFor<MyDerived, MyBase>, "!SCastCompilesFor<MyDerived, MyBase>");
static_assert(!SCastCompilesFor<Unrelated, MyDerived>,
"!SCastCompilesFor<Unrelated, MyDerived>");
static_assert(!RCastCompilesFor<MyDerived, MyDerived>,
"!SCastCompilesFor<MyDerived, MyDerived>");
static_assert(!RCastCompilesFor<Unrelated, MyDerived>,
"!SCastCompilesFor<Unrelated, MyDerived>");
#ifdef CONFIRM_COMPILATION_ERRORS
q = u; // no viable conversion possible between MyBase* and Unrelated*
p = q; // not possible to implicitly convert MyBase* to MyDerived*
not_null<Unrelated*> r = p;
not_null<Unrelated*> s = reinterpret_cast<Unrelated*>(p);
#endif
not_null<Unrelated*> t(reinterpret_cast<Unrelated*>(p.get()));
EXPECT_TRUE(reinterpret_cast<void*>(p.get()) == reinterpret_cast<void*>(t.get()));
(void) static_cast<MyDerived*>(p);
(void) static_cast<MyBase*>(p);
}
TEST(notnull_tests, TestNotNullAssignment)
{
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. TestNotNullAssignmentd";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int i = 12;
not_null<int*> p(&i);
EXPECT_TRUE(helper(p));
int* q = nullptr;
EXPECT_DEATH(p = not_null<int*>(q), expected);
EXPECT_DEATH(p = not_null<int*>(q), deathstring);
}
TEST(notnull_tests, TestNotNullRawPointerComparison)
@ -505,18 +411,6 @@ TEST(notnull_tests, TestNotNullCustomPtrComparison)
#if defined(__cplusplus) && (__cplusplus >= 201703L)
template <typename U, typename = void>
static constexpr bool TypeDeductionCtorCompilesFor = false;
template <typename U>
static constexpr bool
TypeDeductionCtorCompilesFor<U, void_t<decltype(not_null{std::declval<U>()})>> = true;
template <typename U, typename = void>
static constexpr bool TypeDeductionHelperCompilesFor = false;
template <typename U>
static constexpr bool
TypeDeductionHelperCompilesFor<U, void_t<decltype(helper(not_null{std::declval<U>()}))>> = true;
TEST(notnull_tests, TestNotNullConstructorTypeDeduction)
{
{
@ -529,18 +423,6 @@ TEST(notnull_tests, TestNotNullConstructorTypeDeduction)
EXPECT_TRUE(*x == 42);
}
{
const int i = 42;
not_null x{&i};
static_assert(TypeDeductionHelperCompilesFor<int*>, "TypeDeductionHelperCompilesFor<int*>");
static_assert(!TypeDeductionHelperCompilesFor<const int*>,
"!TypeDeductionHelperCompilesFor<const int*>");
helper_const(not_null{&i});
EXPECT_TRUE(*x == 42);
}
{
int i = 42;
int* p = &i;
@ -552,28 +434,17 @@ TEST(notnull_tests, TestNotNullConstructorTypeDeduction)
EXPECT_TRUE(*x == 42);
}
{
const int i = 42;
const int* p = &i;
not_null x{p};
helper_const(not_null{p});
EXPECT_TRUE(*x == 42);
}
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. TestNotNullConstructorTypeDeduction";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
auto workaround_macro = []() {
int* p1 = nullptr;
const not_null x{p1};
};
EXPECT_DEATH(workaround_macro(), expected);
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
@ -581,45 +452,26 @@ TEST(notnull_tests, TestNotNullConstructorTypeDeduction)
const int* p1 = nullptr;
const not_null x{p1};
};
EXPECT_DEATH(workaround_macro(), expected);
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
int* p = nullptr;
EXPECT_DEATH(helper(not_null{p}), expected);
EXPECT_DEATH(helper_const(not_null{p}), expected);
EXPECT_DEATH(helper(not_null{p}), deathstring);
EXPECT_DEATH(helper_const(not_null{p}), deathstring);
}
static_assert(TypeDeductionCtorCompilesFor<void*>, "TypeDeductionCtorCompilesFor<void*>");
#if defined(_MSC_VER) && !defined(__clang__)
// Fails on gcc, clang, xcode, VS clang with
// "error : no type named 'type' in 'std::enable_if<false>'; 'enable_if' cannot be used to
// disable this declaration"
static_assert(!TypeDeductionCtorCompilesFor<std::nullptr_t>,
"!TypeDeductionCtorCompilesFor<std::nullptr_t>");
static_assert(!TypeDeductionHelperCompilesFor<std::nullptr_t>,
"!TypeDeductionHelperCompilesFor<std::nullptr_t>");
#ifdef CONFIRM_COMPILATION_ERRORS
{
not_null x{nullptr};
helper(not_null{nullptr});
helper_const(not_null{nullptr});
}
#endif
}
TEST(notnull_tests, TestVariantEmplace)
{
int i = 0;
std::variant<std::monostate, not_null<int*>> v;
v.emplace<not_null<int*>>(&i);
EXPECT_FALSE(v.valueless_by_exception());
EXPECT_TRUE(v.index() == 1);
EXPECT_TRUE(std::get<not_null<int*>>(v) == &i);
}
#endif // #if defined(__cplusplus) && (__cplusplus >= 201703L)
template <typename U, typename = void>
static constexpr bool HelperCompilesFor = false;
template <typename U>
static constexpr bool HelperCompilesFor<U, void_t<decltype(helper(std::declval<U>()))>> = true;
TEST(notnull_tests, TestMakeNotNull)
{
{
@ -632,17 +484,6 @@ TEST(notnull_tests, TestMakeNotNull)
EXPECT_TRUE(*x == 42);
}
{
const int i = 42;
const auto x = make_not_null(&i);
static_assert(HelperCompilesFor<gsl::not_null<int*>>,
"HelperCompilesFor<gsl::not_null<int*>>");
helper_const(make_not_null(&i));
EXPECT_TRUE(*x == 42);
}
{
int i = 42;
int* p = &i;
@ -654,23 +495,10 @@ TEST(notnull_tests, TestMakeNotNull)
EXPECT_TRUE(*x == 42);
}
{
const int i = 42;
const int* p = &i;
const auto x = make_not_null(p);
static_assert(!HelperCompilesFor<gsl::not_null<const int*>>,
"!HelperCompilesFor<gsl::not_null<const int*>>");
helper_const(make_not_null(p));
EXPECT_TRUE(*x == 42);
}
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. TestMakeNotNull";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
const auto workaround_macro = []() {
@ -678,7 +506,7 @@ TEST(notnull_tests, TestMakeNotNull)
const auto x = make_not_null(p1);
EXPECT_TRUE(*x == 42);
};
EXPECT_DEATH(workaround_macro(), expected);
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
@ -687,52 +515,21 @@ TEST(notnull_tests, TestMakeNotNull)
const auto x = make_not_null(p1);
EXPECT_TRUE(*x == 42);
};
EXPECT_DEATH(workaround_macro(), expected);
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
int* p = nullptr;
EXPECT_DEATH(helper(make_not_null(p)), expected);
EXPECT_DEATH(helper_const(make_not_null(p)), expected);
EXPECT_DEATH(helper(make_not_null(p)), deathstring);
EXPECT_DEATH(helper_const(make_not_null(p)), deathstring);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
EXPECT_DEATH(make_not_null(nullptr), expected);
EXPECT_DEATH(helper(make_not_null(nullptr)), expected);
EXPECT_DEATH(helper_const(make_not_null(nullptr)), expected);
EXPECT_DEATH(make_not_null(nullptr), deathstring);
EXPECT_DEATH(helper(make_not_null(nullptr)), deathstring);
EXPECT_DEATH(helper_const(make_not_null(nullptr)), deathstring);
}
#endif
}
TEST(notnull_tests, TestStdHash)
{
{
int x = 42;
int y = 99;
not_null<int*> nn{&x};
const not_null<int*> cnn{&x};
std::hash<not_null<int*>> hash_nn;
std::hash<int*> hash_intptr;
EXPECT_TRUE(hash_nn(nn) == hash_intptr(&x));
EXPECT_FALSE(hash_nn(nn) == hash_intptr(&y));
EXPECT_FALSE(hash_nn(nn) == hash_intptr(nullptr));
}
{
const int x = 42;
const int y = 99;
not_null<const int*> nn{&x};
const not_null<const int*> cnn{&x};
std::hash<not_null<const int*>> hash_nn;
std::hash<const int*> hash_intptr;
EXPECT_TRUE(hash_nn(nn) == hash_intptr(&x));
EXPECT_FALSE(hash_nn(nn) == hash_intptr(&y));
EXPECT_FALSE(hash_nn(nn) == hash_intptr(nullptr));
}
}

View File

@ -17,11 +17,10 @@
#include <gtest/gtest.h>
#include <gsl/pointers> // for owner
#include <type_traits> // for declval
using namespace gsl;
GSL_SUPPRESS(f .23) // NO-FORMAT: attribute
GSL_SUPPRESS(f.23) // NO-FORMAT: attribute
void f(int* i) { *i += 1; }
TEST(owner_tests, basic_test)
@ -33,18 +32,12 @@ TEST(owner_tests, basic_test)
delete p;
}
#if __cplusplus >= 201703l
using std::void_t;
#else // __cplusplus >= 201703l
template <class...>
using void_t = void;
#endif // __cplusplus < 201703l
template <typename U, typename = void>
static constexpr bool OwnerCompilesFor = false;
template <typename U>
static constexpr bool OwnerCompilesFor<U, void_t<decltype(gsl::owner<U>{})>> =
true;
static_assert(OwnerCompilesFor<int*>, "OwnerCompilesFor<int*>");
static_assert(!OwnerCompilesFor<int>, "!OwnerCompilesFor<int>");
static_assert(!OwnerCompilesFor<std::shared_ptr<int>>, "!OwnerCompilesFor<std::shared_ptr<int>>");
TEST(owner_tests, check_pointer_constraint)
{
#ifdef CONFIRM_COMPILATION_ERRORS
{
owner<int> integerTest = 10;
owner<std::shared_ptr<int>> sharedPtrTest(new int(10));
}
#endif
}

View File

@ -1,97 +0,0 @@
#include <gtest/gtest.h>
#include <gsl/pointers>
#include <memory>
#include <type_traits>
#include <utility>
#if __cplusplus >= 201703l
using std::void_t;
#else // __cplusplus >= 201703l
template <class...>
using void_t = void;
#endif // __cplusplus < 201703l
namespace
{
// Custom pointer type that can be used for gsl::not_null, but for which these cannot be swapped.
struct NotMoveAssignableCustomPtr
{
NotMoveAssignableCustomPtr() = default;
NotMoveAssignableCustomPtr(const NotMoveAssignableCustomPtr&) = default;
NotMoveAssignableCustomPtr& operator=(const NotMoveAssignableCustomPtr&) = default;
NotMoveAssignableCustomPtr(NotMoveAssignableCustomPtr&&) = default;
NotMoveAssignableCustomPtr& operator=(NotMoveAssignableCustomPtr&&) = delete;
bool operator!=(std::nullptr_t) const { return true; }
int dummy{}; // Without this clang warns, that NotMoveAssignableCustomPtr() is unneeded
};
template <typename U, typename = void>
static constexpr bool SwapCompilesFor = false;
template <typename U>
static constexpr bool
SwapCompilesFor<U, void_t<decltype(gsl::swap<U>(std::declval<gsl::not_null<U>&>(),
std::declval<gsl::not_null<U>&>()))>> = true;
TEST(pointers_test, swap)
{
// taken from gh-1129:
{
gsl::not_null<std::unique_ptr<int>> a(std::make_unique<int>(0));
gsl::not_null<std::unique_ptr<int>> b(std::make_unique<int>(1));
EXPECT_TRUE(*a == 0);
EXPECT_TRUE(*b == 1);
gsl::swap(a, b);
EXPECT_TRUE(*a == 1);
EXPECT_TRUE(*b == 0);
// Make sure our custom ptr can be used with not_null. The shared_pr is to prevent "unused"
// compiler warnings.
const auto shared_custom_ptr{std::make_shared<NotMoveAssignableCustomPtr>()};
gsl::not_null<NotMoveAssignableCustomPtr> c{*shared_custom_ptr};
EXPECT_TRUE(c.get() != nullptr);
}
{
gsl::strict_not_null<std::unique_ptr<int>> a{std::make_unique<int>(0)};
gsl::strict_not_null<std::unique_ptr<int>> b{std::make_unique<int>(1)};
EXPECT_TRUE(*a == 0);
EXPECT_TRUE(*b == 1);
gsl::swap(a, b);
EXPECT_TRUE(*a == 1);
EXPECT_TRUE(*b == 0);
}
{
gsl::not_null<std::unique_ptr<int>> a{std::make_unique<int>(0)};
gsl::strict_not_null<std::unique_ptr<int>> b{std::make_unique<int>(1)};
EXPECT_TRUE(*a == 0);
EXPECT_TRUE(*b == 1);
gsl::swap(a, b);
EXPECT_TRUE(*a == 1);
EXPECT_TRUE(*b == 0);
}
static_assert(!SwapCompilesFor<NotMoveAssignableCustomPtr>,
"!SwapCompilesFor<NotMoveAssignableCustomPtr>");
}
TEST(pointers_test, member_types)
{
static_assert(std::is_same<gsl::not_null<int*>::element_type, int*>::value,
"check member type: element_type");
}
} // namespace

View File

@ -16,8 +16,8 @@
#include <gtest/gtest.h>
#include <gsl/byte> // for byte
#include <gsl/span> // for span, span_iterator, operator==, operator!=
#include <gsl/gsl_byte> // for byte
#include <gsl/span> // for span, span_iterator, operator==, operator!=
#include <array> // for array
#include <cstddef> // for ptrdiff_t
@ -55,14 +55,14 @@ void ArrayConvertibilityCheck()
EXPECT_TRUE(sp_const_nullptr_1.data() == stl_nullptr.data());
EXPECT_TRUE(sp_const_nullptr_1.size() == 3);
gsl::span<const T* const> sp_const_nullptr_2{std::as_const(stl_nullptr)};
span<const T* const> sp_const_nullptr_2{std::as_const(stl_nullptr)};
EXPECT_TRUE(sp_const_nullptr_2.data() == stl_nullptr.data());
EXPECT_TRUE(sp_const_nullptr_2.size() == 3);
static_assert(std::is_same<decltype(gsl::span{stl_nullptr}), gsl::span<T*, 3>>::value,
static_assert(std::is_same<decltype(span{stl_nullptr}), span<T*, 3>>::value,
"std::is_same< decltype(span{stl_nullptr}), span<T*, 3>>::value");
static_assert(
std::is_same<decltype(gsl::span{std::as_const(stl_nullptr)}), gsl::span<T* const, 3>>::value,
std::is_same<decltype(span{std::as_const(stl_nullptr)}), span<T* const, 3>>::value,
"std::is_same< decltype(span{std::as_const(stl_nullptr)}), span<T* const, "
"3>>::value");
}
@ -519,7 +519,7 @@ TEST(span_compatibility_tests, assertion_tests)
// assertions for span's definition
static_assert(std::is_same<decltype(gsl::dynamic_extent), const std::size_t>::value,
"gsl::dynamic_extent must be represented as std::size_t");
"gsl::dynamic_extent must be respresented as std::size_t");
static_assert(gsl::dynamic_extent == static_cast<std::size_t>(-1),
"gsl::dynamic_extent must be defined as the max value of std::size_t");
@ -1005,18 +1005,12 @@ static_assert(std::is_convertible<const std::array<int, 3>&, gsl::span<const int
"std::is_convertible<const std::array<int, 3>&, gsl::span<const int>>");
#if __cplusplus >= 201703l
using std::void_t;
#else // __cplusplus >= 201703l
template <class...>
using void_t = void;
#endif // __cplusplus < 201703l
template <typename U, typename = void>
static constexpr bool AsWritableBytesCompilesFor = false;
template <typename U>
static constexpr bool
AsWritableBytesCompilesFor<U, ::void_t<decltype(as_writable_bytes(declval<U>()))>> = true;
AsWritableBytesCompilesFor<U, void_t<decltype(as_writable_bytes(declval<U>()))>> = true;
static_assert(AsWritableBytesCompilesFor<gsl::span<int>>,
"AsWritableBytesCompilesFor<gsl::span<int>>");
@ -1026,3 +1020,4 @@ static_assert(!AsWritableBytesCompilesFor<gsl::span<const int>>,
"!AsWritableBytesCompilesFor<gsl::span<const int>>");
static_assert(!AsWritableBytesCompilesFor<gsl::span<const int, 9>>,
"!AsWritableBytesCompilesFor<gsl::span<const int, 9>>");
#endif // __cplusplus >= 201703l

View File

@ -16,27 +16,27 @@
#include <gtest/gtest.h>
#include <gsl/span> // for span and span_ext
#include <gsl/util> // for narrow_cast, at
#include <gsl/gsl_util> // for narrow_cast, at
#include <gsl/span_ext> // for operator==, operator!=, make_span
#include <array> // for array
#include <exception> // for terminate
#include <iostream> // for cerr
#include <vector> // for vector
#include <array> // for array
#include <iostream> // for cerr
#include <vector> // for vector
using namespace std;
using namespace gsl;
#include "deathTestCommon.h"
namespace
{
static constexpr char deathstring[] = "Expected Death";
} // namespace
TEST(span_ext_test, make_span_from_pointer_length_constructor)
{
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. from_pointer_length_constructor";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
int arr[4] = {1, 2, 3, 4};
{
@ -49,7 +49,7 @@ TEST(span_ext_test, make_span_from_pointer_length_constructor)
{
int* p = nullptr;
auto s = make_span(p, narrow_cast<gsl::span<int>::size_type>(0));
auto s = make_span(p, narrow_cast<span<int>::size_type>(0));
EXPECT_TRUE(s.size() == 0);
EXPECT_TRUE(s.data() == nullptr);
}
@ -57,7 +57,7 @@ TEST(span_ext_test, make_span_from_pointer_length_constructor)
{
int* p = nullptr;
auto workaround_macro = [=]() { make_span(p, 2); };
EXPECT_DEATH(workaround_macro(), expected);
EXPECT_DEATH(workaround_macro(), deathstring);
}
}
@ -88,293 +88,273 @@ TEST(span_ext_test, make_span_from_pointer_pointer_construction)
}
TEST(span_ext_test, make_span_from_array_constructor)
{
int arr[5] = {1, 2, 3, 4, 5};
int arr2d[2][3] = {1, 2, 3, 4, 5, 6};
int arr3d[2][3][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
{
int arr[5] = {1, 2, 3, 4, 5};
int arr2d[2][3] = {1, 2, 3, 4, 5, 6};
int arr3d[2][3][2] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
{
const auto s = make_span(arr);
EXPECT_TRUE(s.size() == 5);
EXPECT_TRUE(s.data() == std::addressof(arr[0]));
}
{
const auto s = make_span(arr);
EXPECT_TRUE(s.size() == 5);
EXPECT_TRUE(s.data() == std::addressof(arr[0]));
}
{
const auto s = make_span(std::addressof(arr2d[0]), 1);
EXPECT_TRUE(s.size() == 1);
EXPECT_TRUE(s.data() == std::addressof(arr2d[0]));
}
{
const auto s = make_span(std::addressof(arr2d[0]), 1);
EXPECT_TRUE(s.size() == 1);
EXPECT_TRUE(s.data() == std::addressof(arr2d[0]));
}
{
const auto s = make_span(std::addressof(arr3d[0]), 1);
EXPECT_TRUE(s.size() == 1);
EXPECT_TRUE(s.data() == std::addressof(arr3d[0]));
}
}
{
const auto s = make_span(std::addressof(arr3d[0]), 1);
EXPECT_TRUE(s.size() == 1);
EXPECT_TRUE(s.data() == std::addressof(arr3d[0]));
}
}
TEST(span_ext_test, make_span_from_dynamic_array_constructor)
{
double(*arr)[3][4] = new double[100][3][4];
TEST(span_ext_test, make_span_from_dynamic_array_constructor)
{
double(*arr)[3][4] = new double[100][3][4];
{
auto s = make_span(&arr[0][0][0], 10);
EXPECT_TRUE(s.size() == 10);
EXPECT_TRUE(s.data() == &arr[0][0][0]);
}
{
auto s = make_span(&arr[0][0][0], 10);
EXPECT_TRUE(s.size() == 10);
EXPECT_TRUE(s.data() == &arr[0][0][0]);
}
delete[] arr;
}
delete[] arr;
}
TEST(span_ext_test, make_span_from_std_array_constructor)
{
std::array<int, 4> arr = {1, 2, 3, 4};
TEST(span_ext_test, make_span_from_std_array_constructor)
{
std::array<int, 4> arr = {1, 2, 3, 4};
{
auto s = make_span(arr);
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
{
auto s = make_span(arr);
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
// This test checks for the bug found in gcc 6.1, 6.2, 6.3, 6.4, 6.5 7.1, 7.2, 7.3 - issue #590
{
gsl::span<int> s1 = make_span(arr);
// This test checks for the bug found in gcc 6.1, 6.2, 6.3, 6.4, 6.5 7.1, 7.2, 7.3 - issue #590
{
span<int> s1 = make_span(arr);
static gsl::span<int> s2;
s2 = s1;
static span<int> s2;
s2 = s1;
#if defined(__GNUC__) && __GNUC__ == 6 && (__GNUC_MINOR__ == 4 || __GNUC_MINOR__ == 5) && \
__GNUC_PATCHLEVEL__ == 0 && defined(__OPTIMIZE__)
// Known to be broken in gcc 6.4 and 6.5 with optimizations
// Issue in gcc: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83116
EXPECT_TRUE(s1.size() == 4);
EXPECT_TRUE(s2.size() == 0);
#else
EXPECT_TRUE(s1.size() == s2.size());
#endif
}
}
#if defined(__GNUC__) && __GNUC__ == 6 && (__GNUC_MINOR__ == 4 || __GNUC_MINOR__ == 5) && \
__GNUC_PATCHLEVEL__ == 0 && defined(__OPTIMIZE__)
// Known to be broken in gcc 6.4 and 6.5 with optimizations
// Issue in gcc: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83116
EXPECT_TRUE(s1.size() == 4);
EXPECT_TRUE(s2.size() == 0);
#else
EXPECT_TRUE(s1.size() == s2.size());
#endif
}
}
TEST(span_ext_test, make_span_from_const_std_array_constructor)
{
const std::array<int, 4> arr = {1, 2, 3, 4};
TEST(span_ext_test, make_span_from_const_std_array_constructor)
{
const std::array<int, 4> arr = {1, 2, 3, 4};
{
auto s = make_span(arr);
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
}
{
auto s = make_span(arr);
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
}
TEST(span_ext_test, make_span_from_std_array_const_constructor)
{
std::array<const int, 4> arr = {1, 2, 3, 4};
TEST(span_ext_test, make_span_from_std_array_const_constructor)
{
std::array<const int, 4> arr = {1, 2, 3, 4};
{
auto s = make_span(arr);
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
}
{
auto s = make_span(arr);
EXPECT_TRUE(s.size() == arr.size());
EXPECT_TRUE(s.data() == arr.data());
}
}
TEST(span_ext_test, make_span_from_container_constructor)
{
std::vector<int> v = {1, 2, 3};
const std::vector<int> cv = v;
TEST(span_ext_test, make_span_from_container_constructor)
{
std::vector<int> v = {1, 2, 3};
const std::vector<int> cv = v;
{
auto s = make_span(v);
EXPECT_TRUE(s.size() == v.size());
EXPECT_TRUE(s.data() == v.data());
{
auto s = make_span(v);
EXPECT_TRUE(s.size() == v.size());
EXPECT_TRUE(s.data() == v.data());
auto cs = make_span(cv);
EXPECT_TRUE(cs.size() == cv.size());
EXPECT_TRUE(cs.data() == cv.data());
}
}
auto cs = make_span(cv);
EXPECT_TRUE(cs.size() == cv.size());
EXPECT_TRUE(cs.data() == cv.data());
}
}
TEST(span_test, interop_with_gsl_at)
{
std::vector<int> vec{1, 2, 3, 4, 5};
gsl::span<int> sp{vec};
TEST(span_test, interop_with_gsl_at)
{
int arr[5] = {1, 2, 3, 4, 5};
span<int> s{arr};
EXPECT_TRUE(at(s, 0) == 1);
EXPECT_TRUE(at(s, 1) == 2);
}
std::vector<int> cvec{1, 2, 3, 4, 5};
gsl::span<int> csp{cvec};
TEST(span_ext_test, iterator_free_functions)
{
int a[] = {1, 2, 3, 4};
span<int> s{a};
for (gsl::index i = 0; i < gsl::narrow_cast<gsl::index>(vec.size()); ++i)
{
EXPECT_TRUE(&gsl::at(sp, i) == &vec[gsl::narrow_cast<size_t>(i)]);
EXPECT_TRUE(&gsl::at(csp, i) == &cvec[gsl::narrow_cast<size_t>(i)]);
}
EXPECT_TRUE((std::is_same<decltype(s.begin()), decltype(begin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(s.end()), decltype(end(s))>::value));
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. interop_with_gsl_at";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
EXPECT_TRUE((std::is_same<decltype(std::cbegin(s)), decltype(cbegin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(std::cend(s)), decltype(cend(s))>::value));
EXPECT_DEATH(gsl::at(sp, -1), expected);
EXPECT_DEATH(gsl::at(sp, gsl::narrow_cast<gsl::index>(sp.size())), expected);
EXPECT_DEATH(gsl::at(csp, -1), expected);
EXPECT_DEATH(gsl::at(csp, gsl::narrow_cast<gsl::index>(sp.size())), expected);
}
EXPECT_TRUE((std::is_same<decltype(s.rbegin()), decltype(rbegin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(s.rend()), decltype(rend(s))>::value));
TEST(span_ext_test, iterator_free_functions)
{
int a[] = {1, 2, 3, 4};
gsl::span<int> s{a};
EXPECT_TRUE((std::is_same<decltype(std::crbegin(s)), decltype(crbegin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(std::crend(s)), decltype(crend(s))>::value));
EXPECT_TRUE((std::is_same<decltype(s.begin()), decltype(begin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(s.end()), decltype(end(s))>::value));
EXPECT_TRUE(s.begin() == begin(s));
EXPECT_TRUE(s.end() == end(s));
EXPECT_TRUE((std::is_same<decltype(std::cbegin(s)), decltype(cbegin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(std::cend(s)), decltype(cend(s))>::value));
EXPECT_TRUE(s.rbegin() == rbegin(s));
EXPECT_TRUE(s.rend() == rend(s));
EXPECT_TRUE((std::is_same<decltype(s.rbegin()), decltype(rbegin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(s.rend()), decltype(rend(s))>::value));
EXPECT_TRUE(s.begin() == cbegin(s));
EXPECT_TRUE(s.end() == cend(s));
EXPECT_TRUE((std::is_same<decltype(std::crbegin(s)), decltype(crbegin(s))>::value));
EXPECT_TRUE((std::is_same<decltype(std::crend(s)), decltype(crend(s))>::value));
EXPECT_TRUE(s.rbegin() == crbegin(s));
EXPECT_TRUE(s.rend() == crend(s));
}
EXPECT_TRUE(s.begin() == begin(s));
EXPECT_TRUE(s.end() == end(s));
TEST(span_ext_test, ssize_free_function)
{
int a[] = {1, 2, 3, 4};
span<int> s{a};
EXPECT_TRUE(s.rbegin() == rbegin(s));
EXPECT_TRUE(s.rend() == rend(s));
EXPECT_FALSE((std::is_same<decltype(s.size()), decltype(ssize(s))>::value));
EXPECT_TRUE(s.size() == static_cast<std::size_t>(ssize(s)));
}
EXPECT_TRUE(s.begin() == cbegin(s));
EXPECT_TRUE(s.end() == cend(s));
TEST(span_ext_test, comparison_operators)
{
{
span<int> s1;
span<int> s2;
EXPECT_TRUE(s1 == s2);
EXPECT_FALSE(s1 != s2);
EXPECT_FALSE(s1 < s2);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s1 >= s2);
EXPECT_TRUE(s2 == s1);
EXPECT_FALSE(s2 != s1);
EXPECT_FALSE(s2 != s1);
EXPECT_TRUE(s2 <= s1);
EXPECT_FALSE(s2 > s1);
EXPECT_TRUE(s2 >= s1);
}
EXPECT_TRUE(s.rbegin() == crbegin(s));
EXPECT_TRUE(s.rend() == crend(s));
}
{
int arr[] = {2, 1};
span<int> s1 = arr;
span<int> s2 = arr;
TEST(span_ext_test, ssize_free_function)
{
int a[] = {1, 2, 3, 4};
gsl::span<int> s{a};
EXPECT_TRUE(s1 == s2);
EXPECT_FALSE(s1 != s2);
EXPECT_FALSE(s1 < s2);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s1 >= s2);
EXPECT_TRUE(s2 == s1);
EXPECT_FALSE(s2 != s1);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s2 <= s1);
EXPECT_FALSE(s2 > s1);
EXPECT_TRUE(s2 >= s1);
}
EXPECT_FALSE((std::is_same<decltype(s.size()), decltype(ssize(s))>::value));
EXPECT_TRUE(s.size() == static_cast<std::size_t>(ssize(s)));
}
{
int arr[] = {2, 1}; // bigger
#ifndef GSL_KERNEL_MODE
TEST(span_ext_test, comparison_operators)
{
{
gsl::span<int> s1;
gsl::span<int> s2;
EXPECT_TRUE(s1 == s2);
EXPECT_FALSE(s1 != s2);
EXPECT_FALSE(s1 < s2);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s1 >= s2);
EXPECT_TRUE(s2 == s1);
EXPECT_FALSE(s2 != s1);
EXPECT_FALSE(s2 != s1);
EXPECT_TRUE(s2 <= s1);
EXPECT_FALSE(s2 > s1);
EXPECT_TRUE(s2 >= s1);
}
span<int> s1;
span<int> s2 = arr;
{
int arr[] = {2, 1};
gsl::span<int> s1 = arr;
gsl::span<int> s2 = arr;
EXPECT_TRUE(s1 != s2);
EXPECT_TRUE(s2 != s1);
EXPECT_FALSE(s1 == s2);
EXPECT_FALSE(s2 == s1);
EXPECT_TRUE(s1 < s2);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s2 <= s1);
EXPECT_TRUE(s2 > s1);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s2 >= s1);
EXPECT_FALSE(s1 >= s2);
}
EXPECT_TRUE(s1 == s2);
EXPECT_FALSE(s1 != s2);
EXPECT_FALSE(s1 < s2);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s1 >= s2);
EXPECT_TRUE(s2 == s1);
EXPECT_FALSE(s2 != s1);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s2 <= s1);
EXPECT_FALSE(s2 > s1);
EXPECT_TRUE(s2 >= s1);
}
{
int arr1[] = {1, 2};
int arr2[] = {1, 2};
span<int> s1 = arr1;
span<int> s2 = arr2;
{
int arr[] = {2, 1}; // bigger
EXPECT_TRUE(s1 == s2);
EXPECT_FALSE(s1 != s2);
EXPECT_FALSE(s1 < s2);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s1 >= s2);
EXPECT_TRUE(s2 == s1);
EXPECT_FALSE(s2 != s1);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s2 <= s1);
EXPECT_FALSE(s2 > s1);
EXPECT_TRUE(s2 >= s1);
}
gsl::span<int> s1;
gsl::span<int> s2 = arr;
{
int arr[] = {1, 2, 3};
EXPECT_TRUE(s1 != s2);
EXPECT_TRUE(s2 != s1);
EXPECT_FALSE(s1 == s2);
EXPECT_FALSE(s2 == s1);
EXPECT_TRUE(s1 < s2);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s2 <= s1);
EXPECT_TRUE(s2 > s1);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s2 >= s1);
EXPECT_FALSE(s1 >= s2);
}
span<int> s1 = {&arr[0], 2}; // shorter
span<int> s2 = arr; // longer
{
int arr1[] = {1, 2};
int arr2[] = {1, 2};
gsl::span<int> s1 = arr1;
gsl::span<int> s2 = arr2;
EXPECT_TRUE(s1 != s2);
EXPECT_TRUE(s2 != s1);
EXPECT_FALSE(s1 == s2);
EXPECT_FALSE(s2 == s1);
EXPECT_TRUE(s1 < s2);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s2 <= s1);
EXPECT_TRUE(s2 > s1);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s2 >= s1);
EXPECT_FALSE(s1 >= s2);
}
EXPECT_TRUE(s1 == s2);
EXPECT_FALSE(s1 != s2);
EXPECT_FALSE(s1 < s2);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s1 >= s2);
EXPECT_TRUE(s2 == s1);
EXPECT_FALSE(s2 != s1);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s2 <= s1);
EXPECT_FALSE(s2 > s1);
EXPECT_TRUE(s2 >= s1);
}
{
int arr1[] = {1, 2}; // smaller
int arr2[] = {2, 1}; // bigger
{
int arr[] = {1, 2, 3};
span<int> s1 = arr1;
span<int> s2 = arr2;
gsl::span<int> s1 = {&arr[0], 2}; // shorter
gsl::span<int> s2 = arr; // longer
EXPECT_TRUE(s1 != s2);
EXPECT_TRUE(s2 != s1);
EXPECT_FALSE(s1 == s2);
EXPECT_FALSE(s2 == s1);
EXPECT_TRUE(s1 < s2);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s2 <= s1);
EXPECT_TRUE(s2 > s1);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s2 >= s1);
EXPECT_FALSE(s1 >= s2);
}
{
int arr1[] = {1, 2}; // smaller
int arr2[] = {2, 1}; // bigger
gsl::span<int> s1 = arr1;
gsl::span<int> s2 = arr2;
EXPECT_TRUE(s1 != s2);
EXPECT_TRUE(s2 != s1);
EXPECT_FALSE(s1 == s2);
EXPECT_FALSE(s2 == s1);
EXPECT_TRUE(s1 < s2);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s2 <= s1);
EXPECT_TRUE(s2 > s1);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s2 >= s1);
EXPECT_FALSE(s1 >= s2);
}
}
#endif // GSL_KERNEL_MODE
EXPECT_TRUE(s1 != s2);
EXPECT_TRUE(s2 != s1);
EXPECT_FALSE(s1 == s2);
EXPECT_FALSE(s2 == s1);
EXPECT_TRUE(s1 < s2);
EXPECT_FALSE(s2 < s1);
EXPECT_TRUE(s1 <= s2);
EXPECT_FALSE(s2 <= s1);
EXPECT_TRUE(s2 > s1);
EXPECT_FALSE(s1 > s2);
EXPECT_TRUE(s2 >= s1);
EXPECT_FALSE(s1 >= s2);
}
}

File diff suppressed because it is too large Load Diff

View File

@ -14,200 +14,30 @@
//
///////////////////////////////////////////////////////////////////////////////
#include <gsl/pointers> // for not_null, operator<, operator<=, operator>
#include <gtest/gtest.h>
#include <gsl/pointers> // for not_null, operator<, operator<=, operator>
#include <type_traits> // for declval
#include "deathTestCommon.h"
namespace gsl
{
struct fail_fast;
} // namespace gsl
using namespace gsl;
#if __cplusplus >= 201703l
using std::void_t;
#else // __cplusplus >= 201703l
template <class...>
using void_t = void;
#endif // __cplusplus < 201703l
// stand-in for a user-defined ref-counted class
template <typename T>
struct RefCounted
{
RefCounted(T* p) : p_(p) {}
operator T*() { return p_; }
T* p_;
};
namespace
{
// clang-format off
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
// clang-format on
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
bool helper(not_null<int*> p) { return *p == 12; }
// clang-format off
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
// clang-format on
bool helper_const(not_null<const int*> p) { return *p == 12; }
// clang-format off
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
// clang-format on
bool strict_helper(strict_not_null<int*> p) { return *p == 12; }
// clang-format off
GSL_SUPPRESS(f.4) // NO-FORMAT: attribute
// clang-format on
bool strict_helper_const(strict_not_null<const int*> p) { return *p == 12; }
int* return_pointer() { return nullptr; }
} // namespace
template <typename U, typename = void>
static constexpr bool CtorCompilesFor_A = false;
template <typename U>
static constexpr bool
CtorCompilesFor_A<U, void_t<decltype(gsl::strict_not_null<void*>{std::declval<U>()})>> = true;
template <typename U, int N, typename = void>
static constexpr bool CtorCompilesFor_B = false;
template <typename U, int N>
static constexpr bool CtorCompilesFor_B<U, N, void_t<decltype(gsl::strict_not_null<U>{N})>> = true;
template <typename U, typename = void>
static constexpr bool DefaultCtorCompilesFor = false;
template <typename U>
static constexpr bool DefaultCtorCompilesFor<U, void_t<decltype(gsl::strict_not_null<U>{})>> = true;
template <typename U, typename = void>
static constexpr bool CtorCompilesFor_C = false;
template <typename U>
static constexpr bool CtorCompilesFor_C<
U, void_t<decltype(gsl::strict_not_null<U*>{std::declval<std::unique_ptr<U>>()})>> = true;
TEST(strict_notnull_tests, TestStrictNotNullConstructors)
{
{
static_assert(CtorCompilesFor_A<void*>, "CtorCompilesFor_A<void*>");
static_assert(!CtorCompilesFor_A<std::nullptr_t>, "!CtorCompilesFor_A<std::nullptr_t>");
static_assert(!CtorCompilesFor_B<void*, 0>, "!CtorCompilesFor_B<void*, 0>");
static_assert(!DefaultCtorCompilesFor<void*>, "!DefaultCtorCompilesFor<void*>");
static_assert(!CtorCompilesFor_C<int>, "CtorCompilesFor_C<int>");
#ifdef CONFIRM_COMPILATION_ERRORS
// Forbid non-nullptr assignable types
strict_not_null<std::vector<int>> f(std::vector<int>{1});
strict_not_null<int> z(10);
strict_not_null<std::vector<int>> y({1, 2});
#endif
}
const auto terminateHandler = std::set_terminate([] {
std::cerr << "Expected Death. TestNotNullConstructors";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
// from shared pointer
int i = 12;
auto rp = RefCounted<int>(&i);
strict_not_null<int*> p(rp);
EXPECT_TRUE(p.get() == &i);
strict_not_null<std::shared_ptr<int>> x(
std::make_shared<int>(10)); // shared_ptr<int> is nullptr assignable
int* pi = nullptr;
EXPECT_DEATH((strict_not_null<decltype(pi)>(pi)), expected);
}
{
// from unique pointer
strict_not_null<std::unique_ptr<int>> x(
std::make_unique<int>(10)); // unique_ptr<int> is nullptr assignable
EXPECT_DEATH((strict_not_null<std::unique_ptr<int>>(std::unique_ptr<int>{})), expected);
}
{
// from pointer to local
int t = 42;
strict_not_null<int*> x{&t};
helper(&t);
helper_const(&t);
EXPECT_TRUE(*x == 42);
}
{
// from raw pointer
// from strict_not_null pointer
int t = 42;
int* p = &t;
strict_not_null<int*> x{p};
helper(p);
helper_const(p);
helper(x);
helper_const(x);
EXPECT_TRUE(*x == 42);
}
{
// from raw const pointer
// from strict_not_null const pointer
int t = 42;
const int* cp = &t;
strict_not_null<const int*> x{cp};
helper_const(cp);
helper_const(x);
EXPECT_TRUE(*x == 42);
}
{
// from strict_not_null const pointer, using auto
int t = 42;
const int* cp = &t;
auto x = strict_not_null<const int*>{cp};
EXPECT_TRUE(*x == 42);
}
{
// from returned pointer
EXPECT_DEATH(helper(return_pointer()), expected);
EXPECT_DEATH(helper_const(return_pointer()), expected);
}
}
template <typename U, typename = void>
static constexpr bool StrictHelperCompilesFor = false;
template <typename U>
static constexpr bool
StrictHelperCompilesFor<U, void_t<decltype(strict_helper(std::declval<U>()))>> = true;
template <typename U, typename = void>
static constexpr bool StrictHelperConstCompilesFor = false;
template <typename U>
static constexpr bool
StrictHelperConstCompilesFor<U, void_t<decltype(strict_helper_const(std::declval<U>()))>> =
true;
template <typename U, typename = void>
static constexpr bool HelperCompilesFor = false;
template <typename U>
static constexpr bool HelperCompilesFor<U, void_t<decltype(helper(std::declval<U>()))>> = true;
const int* return_pointer_const() { return nullptr; }
TEST(strict_notnull_tests, TestStrictNotNull)
{
@ -217,43 +47,20 @@ TEST(strict_notnull_tests, TestStrictNotNull)
#ifdef CONFIRM_COMPILATION_ERRORS
strict_not_null<int*> snn = &x;
strict_helper(&x);
strict_helper_const(&x);
strict_helper(return_pointer());
strict_helper_const(return_pointer_const());
#endif
static_assert(!StrictHelperCompilesFor<int*>, "!StrictHelperCompilesFor<int*>");
static_assert(!StrictHelperConstCompilesFor<int*>,
"!StrictHelperCompilesFor<int*>");
const strict_not_null<int*> snn1{&x};
static_assert(StrictHelperCompilesFor<const strict_not_null<int*>>,
"StrictHelperCompilesFor<const strict_not_null<int*>>");
helper(snn1);
helper_const(snn1);
EXPECT_TRUE(*snn1 == 42);
}
{
// raw ptr <-> strict_not_null
const int x = 42;
#ifdef CONFIRM_COMPILATION_ERRORS
strict_not_null<int*> snn = &x;
#endif
static_assert(!StrictHelperCompilesFor<const int*>, "!StrictHelperFor<const int*>");
static_assert(!StrictHelperConstCompilesFor<const int*>,
"!StrictHelperCompilesFor<const int*>");
const strict_not_null<const int*> snn1{&x};
static_assert(!HelperCompilesFor<const strict_not_null<const int*>>,
"!HelperCompilesFor<const strict_not_null<const int*>>");
static_assert(StrictHelperConstCompilesFor<const strict_not_null<const int*>>,
"StrictHelperCompilesFor<const strict_not_null<const int*>>");
helper_const(snn1);
EXPECT_TRUE(*snn1 == 42);
}
{
// strict_not_null -> strict_not_null
int x = 42;
@ -268,21 +75,6 @@ TEST(strict_notnull_tests, TestStrictNotNull)
EXPECT_TRUE(snn1 == snn2);
}
{
// strict_not_null -> strict_not_null
const int x = 42;
strict_not_null<const int*> snn1{&x};
const strict_not_null<const int*> snn2{&x};
static_assert(!StrictHelperCompilesFor<strict_not_null<const int*>>,
"!StrictHelperCompilesFor<strict_not_null<const int*>>");
strict_helper_const(snn1);
strict_helper_const(snn2);
EXPECT_TRUE(snn1 == snn2);
}
{
// strict_not_null -> not_null
int x = 42;
@ -299,23 +91,6 @@ TEST(strict_notnull_tests, TestStrictNotNull)
EXPECT_TRUE(snn == nn2);
}
{
// strict_not_null -> not_null
const int x = 42;
strict_not_null<const int*> snn{&x};
const not_null<const int*> nn1 = snn;
const not_null<const int*> nn2{snn};
static_assert(!HelperCompilesFor<strict_not_null<const int*>>,
"!HelperCompilesFor<strict_not_null<const int*>>");
helper_const(snn);
EXPECT_TRUE(snn == nn1);
EXPECT_TRUE(snn == nn2);
}
{
// not_null -> strict_not_null
int x = 42;
@ -340,48 +115,25 @@ TEST(strict_notnull_tests, TestStrictNotNull)
EXPECT_TRUE(hash_snn(snn1) == hash_snn(nn));
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
// not_null -> strict_not_null
const int x = 42;
not_null<const int*> nn{&x};
const strict_not_null<const int*> snn1{nn};
const strict_not_null<const int*> snn2{nn};
static_assert(!StrictHelperCompilesFor<not_null<const int*>>,
"!StrictHelperCompilesFor<not_null<const int*>>");
strict_helper_const(nn);
EXPECT_TRUE(snn1 == nn);
EXPECT_TRUE(snn2 == nn);
std::hash<strict_not_null<const int*>> hash_snn;
std::hash<not_null<const int*>> hash_nn;
EXPECT_TRUE(hash_nn(snn1) == hash_nn(nn));
EXPECT_TRUE(hash_snn(snn1) == hash_nn(nn));
EXPECT_TRUE(hash_nn(snn1) == hash_nn(snn2));
EXPECT_TRUE(hash_snn(snn1) == hash_snn(nn));
strict_not_null<int*> p{nullptr};
}
}
TEST(pointers_test, member_types)
{
// make sure `element_type` is inherited from `gsl::not_null`
static_assert(std::is_same<gsl::strict_not_null<int*>::element_type, int*>::value,
"check member type: element_type");
#endif
}
#if defined(__cplusplus) && (__cplusplus >= 201703L)
namespace
{
static constexpr char deathstring[] = "Expected Death";
}
TEST(strict_notnull_tests, TestStrictNotNullConstructorTypeDeduction)
{
const auto terminateHandler = std::set_terminate([] {
std::set_terminate([] {
std::cerr << "Expected Death. TestStrictNotNullConstructorTypeDeduction";
std::abort();
});
const auto expected = GetExpectedDeathString(terminateHandler);
{
int i = 42;
@ -393,17 +145,6 @@ TEST(strict_notnull_tests, TestStrictNotNullConstructorTypeDeduction)
EXPECT_TRUE(*x == 42);
}
{
const int i = 42;
strict_not_null x{&i};
static_assert(!HelperCompilesFor<strict_not_null<const int*>>,
"!HelperCompilesFor<strict_not_null<const int*>>");
helper_const(strict_not_null{&i});
EXPECT_TRUE(*x == 42);
}
{
int i = 42;
int* p = &i;
@ -415,24 +156,12 @@ TEST(strict_notnull_tests, TestStrictNotNullConstructorTypeDeduction)
EXPECT_TRUE(*x == 42);
}
{
const int i = 42;
const int* p = &i;
strict_not_null x{p};
static_assert(!HelperCompilesFor<strict_not_null<const int*>>,
"!HelperCompilesFor<strict_not_null<const int*>>");
helper_const(strict_not_null{p});
EXPECT_TRUE(*x == 42);
}
{
auto workaround_macro = []() {
int* p1 = nullptr;
const strict_not_null x{p1};
};
EXPECT_DEATH(workaround_macro(), expected);
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
@ -440,14 +169,14 @@ TEST(strict_notnull_tests, TestStrictNotNullConstructorTypeDeduction)
const int* p1 = nullptr;
const strict_not_null x{p1};
};
EXPECT_DEATH(workaround_macro(), expected);
EXPECT_DEATH(workaround_macro(), deathstring);
}
{
int* p = nullptr;
EXPECT_DEATH(helper(strict_not_null{p}), expected);
EXPECT_DEATH(helper_const(strict_not_null{p}), expected);
EXPECT_DEATH(helper(strict_not_null{p}), deathstring);
EXPECT_DEATH(helper_const(strict_not_null{p}), deathstring);
}
#ifdef CONFIRM_COMPILATION_ERRORS

View File

@ -0,0 +1,790 @@
///////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015 Microsoft Corporation. All rights reserved.
//
// This code is licensed under the MIT License (MIT).
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
///////////////////////////////////////////////////////////////////////////////
#include <gtest/gtest.h>
#include <gsl/gsl_byte> // for byte
#include <gsl/gsl_util> // for narrow_cast
#include <gsl/multi_span> // for strided_span, index, multi_span, strided_...
#include <iostream> // for size_t
#include <iterator> // for begin, end
#include <numeric> // for iota
#include <type_traits> // for integral_constant<>::value, is_convertible
#include <vector> // for vector
using namespace std;
using namespace gsl;
namespace
{
static constexpr char deathstring[] = "Expected Death";
struct BaseClass
{
};
struct DerivedClass : BaseClass
{
};
GSL_SUPPRESS(con.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.1) // NO-FORMAT: attribute
void iterate_every_other_element(multi_span<int, dynamic_range> av)
{
// pick every other element
auto length = av.size() / 2;
#if defined(_MSC_VER) && _MSC_VER > 1800
auto bounds = strided_bounds<1>({length}, {2});
#else
auto bounds = strided_bounds<1>(multi_span_index<1>{length}, multi_span_index<1>{2});
#endif
strided_span<int, 1> strided(&av.data()[1], av.size() - 1, bounds);
EXPECT_TRUE(strided.size() == length);
EXPECT_TRUE(strided.bounds().index_bounds()[0] == length);
for (auto i = 0; i < strided.size(); ++i) {
EXPECT_TRUE(strided[i] == av[2 * i + 1]);
}
int idx = 0;
for (auto num : strided) {
EXPECT_TRUE(num == av[2 * idx + 1]);
idx++;
}
}
GSL_SUPPRESS(con.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.4) // NO-FORMAT: attribute
GSL_SUPPRESS(bounds.2) // NO-FORMAT: attribute // TODO: does not work
void iterate_second_slice(multi_span<int, dynamic_range, dynamic_range, dynamic_range> av)
{
const int expected[6] = {2, 3, 10, 11, 18, 19};
auto section = av.section({0, 1, 0}, {3, 1, 2});
for (auto i = 0; i < section.extent<0>(); ++i) {
for (auto j = 0; j < section.extent<1>(); ++j)
for (auto k = 0; k < section.extent<2>(); ++k) {
auto idx = multi_span_index<3>{i, j, k}; // avoid braces in the EXPECT_TRUE macro
EXPECT_TRUE(section[idx] == expected[2 * i + 2 * j + k]);
}
}
for (auto i = 0; i < section.extent<0>(); ++i) {
for (auto j = 0; j < section.extent<1>(); ++j)
for (auto k = 0; k < section.extent<2>(); ++k)
EXPECT_TRUE(section[i][j][k] == expected[2 * i + 2 * j + k]);
}
int i = 0;
for (const auto num : section) {
EXPECT_TRUE(num == expected[i]);
i++;
}
}
}
TEST(strided_span_tests, span_section_test)
{
int a[30][4][5];
const auto av = as_multi_span(a);
const auto sub = av.section({15, 0, 0}, gsl::multi_span_index<3>{2, 2, 2});
const auto subsub = sub.section({1, 0, 0}, gsl::multi_span_index<3>{1, 1, 1});
(void) subsub;
}
TEST(strided_span_tests, span_section)
{
std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0);
const multi_span<int, 5, 10> av = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
const strided_span<int, 2> av_section_1 = av.section({1, 2}, {3, 4});
EXPECT_TRUE(!av_section_1.empty());
EXPECT_TRUE((av_section_1[{0, 0}] == 12));
EXPECT_TRUE((av_section_1[{0, 1}] == 13));
EXPECT_TRUE((av_section_1[{1, 0}] == 22));
EXPECT_TRUE((av_section_1[{2, 3}] == 35));
const strided_span<int, 2> av_section_2 = av_section_1.section({1, 2}, {2, 2});
EXPECT_TRUE(!av_section_2.empty());
EXPECT_TRUE((av_section_2[{0, 0}] == 24));
EXPECT_TRUE((av_section_2[{0, 1}] == 25));
EXPECT_TRUE((av_section_2[{1, 0}] == 34));
}
TEST(strided_span_tests, strided_span_constructors)
{
// EXPECT_TRUE stride constructor
{
int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
const int carr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
strided_span<int, 1> sav1{arr, {{9}, {1}}}; // T -> T
EXPECT_TRUE(sav1.bounds().index_bounds() == multi_span_index<1>{9});
EXPECT_TRUE(sav1.bounds().stride() == 1);
EXPECT_TRUE(sav1[0] == 1);
EXPECT_TRUE(sav1[8] == 9);
strided_span<const int, 1> sav2{carr, {{4}, {2}}}; // const T -> const T
EXPECT_TRUE(sav2.bounds().index_bounds() == multi_span_index<1>{4});
EXPECT_TRUE(sav2.bounds().strides() == multi_span_index<1>{2});
EXPECT_TRUE(sav2[0] == 1);
EXPECT_TRUE(sav2[3] == 7);
strided_span<int, 2> sav3{arr, {{2, 2}, {6, 2}}}; // T -> const T
EXPECT_TRUE((sav3.bounds().index_bounds() == multi_span_index<2>{2, 2}));
EXPECT_TRUE((sav3.bounds().strides() == multi_span_index<2>{6, 2}));
EXPECT_TRUE((sav3[{0, 0}]) == 1);
EXPECT_TRUE((sav3[{0, 1}]) == 3);
EXPECT_TRUE((sav3[{1, 0}]) == 7);
}
// EXPECT_TRUE multi_span constructor
{
int arr[] = {1, 2};
// From non-cv-qualified source
{
const multi_span<int> src = arr;
strided_span<int, 1> sav{src, {2, 1}};
EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav[1] == 2);
#if defined(_MSC_VER) && _MSC_VER > 1800
// strided_span<const int, 1> sav_c{ {src}, {2, 1} };
strided_span<const int, 1> sav_c{multi_span<const int>{src},
strided_bounds<1>{2, 1}};
#else
strided_span<const int, 1> sav_c{multi_span<const int>{src},
strided_bounds<1>{2, 1}};
#endif
EXPECT_TRUE(sav_c.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_c.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_c[1] == 2);
#if defined(_MSC_VER) && _MSC_VER > 1800
strided_span<volatile int, 1> sav_v{src, {2, 1}};
#else
strided_span<volatile int, 1> sav_v{multi_span<volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
EXPECT_TRUE(sav_v.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_v.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_v[1] == 2);
#if defined(_MSC_VER) && _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
#else
strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_cv[1] == 2);
}
// From const-qualified source
{
const multi_span<const int> src{arr};
strided_span<const int, 1> sav_c{src, {2, 1}};
EXPECT_TRUE(sav_c.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_c.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_c[1] == 2);
#if defined(_MSC_VER) && _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
#else
strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_cv[1] == 2);
}
// From volatile-qualified source
{
const multi_span<volatile int> src{arr};
strided_span<volatile int, 1> sav_v{src, {2, 1}};
EXPECT_TRUE(sav_v.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_v.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_v[1] == 2);
#if defined(_MSC_VER) && _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
#else
strided_span<const volatile int, 1> sav_cv{multi_span<const volatile int>{src},
strided_bounds<1>{2, 1}};
#endif
EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_cv[1] == 2);
}
// From cv-qualified source
{
const multi_span<const volatile int> src{arr};
strided_span<const volatile int, 1> sav_cv{src, {2, 1}};
EXPECT_TRUE(sav_cv.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav_cv.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav_cv[1] == 2);
}
}
// EXPECT_TRUE const-casting constructor
{
int arr[2] = {4, 5};
const multi_span<int, 2> av(arr, 2);
multi_span<const int, 2> av2{av};
EXPECT_TRUE(av2[1] == 5);
static_assert(
std::is_convertible<const multi_span<int, 2>, multi_span<const int, 2>>::value,
"ctor is not implicit!");
const strided_span<int, 1> src{arr, {2, 1}};
strided_span<const int, 1> sav{src};
EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav.bounds().stride() == 1);
EXPECT_TRUE(sav[1] == 5);
static_assert(
std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value,
"ctor is not implicit!");
}
// EXPECT_TRUE copy constructor
{
int arr1[2] = {3, 4};
const strided_span<int, 1> src1{arr1, {2, 1}};
strided_span<int, 1> sav1{src1};
EXPECT_TRUE(sav1.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav1.bounds().stride() == 1);
EXPECT_TRUE(sav1[0] == 3);
int arr2[6] = {1, 2, 3, 4, 5, 6};
const strided_span<const int, 2> src2{arr2, {{3, 2}, {2, 1}}};
strided_span<const int, 2> sav2{src2};
EXPECT_TRUE((sav2.bounds().index_bounds() == multi_span_index<2>{3, 2}));
EXPECT_TRUE((sav2.bounds().strides() == multi_span_index<2>{2, 1}));
EXPECT_TRUE((sav2[{0, 0}]) == 1);
EXPECT_TRUE((sav2[{2, 0}]) == 5);
}
// EXPECT_TRUE const-casting assignment operator
{
int arr1[2] = {1, 2};
int arr2[6] = {3, 4, 5, 6, 7, 8};
const strided_span<int, 1> src{arr1, {{2}, {1}}};
strided_span<const int, 1> sav{arr2, {{3}, {2}}};
strided_span<const int, 1>& sav_ref = (sav = src);
EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav[0] == 1);
EXPECT_TRUE(&sav_ref == &sav);
}
// EXPECT_TRUE copy assignment operator
{
int arr1[2] = {3, 4};
int arr1b[1] = {0};
const strided_span<int, 1> src1{arr1, {2, 1}};
strided_span<int, 1> sav1{arr1b, {1, 1}};
strided_span<int, 1>& sav1_ref = (sav1 = src1);
EXPECT_TRUE(sav1.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav1.bounds().strides() == multi_span_index<1>{1});
EXPECT_TRUE(sav1[0] == 3);
EXPECT_TRUE(&sav1_ref == &sav1);
const int arr2[6] = {1, 2, 3, 4, 5, 6};
const int arr2b[1] = {0};
const strided_span<const int, 2> src2{arr2, {{3, 2}, {2, 1}}};
strided_span<const int, 2> sav2{arr2b, {{1, 1}, {1, 1}}};
strided_span<const int, 2>& sav2_ref = (sav2 = src2);
EXPECT_TRUE((sav2.bounds().index_bounds() == multi_span_index<2>{3, 2}));
EXPECT_TRUE((sav2.bounds().strides() == multi_span_index<2>{2, 1}));
EXPECT_TRUE((sav2[{0, 0}] == 1));
EXPECT_TRUE((sav2[{2, 0}] == 5));
EXPECT_TRUE(&sav2_ref == &sav2);
}
}
TEST(strided_span_tests, strided_span_slice)
{
std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0);
const multi_span<int, 5, 10> src =
as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
const strided_span<int, 2> sav{src, {{5, 10}, {10, 1}}};
#ifdef CONFIRM_COMPILATION_ERRORS
const strided_span<const int, 2> csav{{src}, {{5, 10}, {10, 1}}};
#endif
const strided_span<const int, 2> csav{multi_span<const int, 5, 10>{src},
{{5, 10}, {10, 1}}};
strided_span<int, 1> sav_sl = sav[2];
EXPECT_TRUE(sav_sl[0] == 20);
EXPECT_TRUE(sav_sl[9] == 29);
strided_span<const int, 1> csav_sl = sav[3];
EXPECT_TRUE(csav_sl[0] == 30);
EXPECT_TRUE(csav_sl[9] == 39);
EXPECT_TRUE(sav[4][0] == 40);
EXPECT_TRUE(sav[4][9] == 49);
}
TEST(strided_span_tests, strided_span_column_major)
{
// strided_span may be used to accommodate more peculiar
// use cases, such as column-major multidimensional array
// (aka. "FORTRAN" layout).
int cm_array[3 * 5] = {1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15};
strided_span<int, 2> cm_sav{cm_array, {{5, 3}, {1, 5}}};
// Accessing elements
EXPECT_TRUE((cm_sav[{0, 0}] == 1));
EXPECT_TRUE((cm_sav[{0, 1}] == 2));
EXPECT_TRUE((cm_sav[{1, 0}] == 4));
EXPECT_TRUE((cm_sav[{4, 2}] == 15));
// Slice
strided_span<int, 1> cm_sl = cm_sav[3];
EXPECT_TRUE(cm_sl[0] == 10);
EXPECT_TRUE(cm_sl[1] == 11);
EXPECT_TRUE(cm_sl[2] == 12);
// Section
strided_span<int, 2> cm_sec = cm_sav.section({2, 1}, {3, 2});
EXPECT_TRUE((cm_sec.bounds().index_bounds() == multi_span_index<2>{3, 2}));
EXPECT_TRUE((cm_sec[{0, 0}] == 8));
EXPECT_TRUE((cm_sec[{0, 1}] == 9));
EXPECT_TRUE((cm_sec[{1, 0}] == 11));
EXPECT_TRUE((cm_sec[{2, 1}] == 15));
}
TEST(strided_span_tests, strided_span_bounds)
{
int arr[] = {0, 1, 2, 3};
multi_span<int> av(arr);
std::set_terminate([] {
std::cerr << "Expected Death. strided_span_bounds";
std::abort();
});
{
// incorrect sections
EXPECT_DEATH(av.section(0, 0)[0], deathstring);
EXPECT_DEATH(av.section(1, 0)[0], deathstring);
EXPECT_DEATH(av.section(1, 1)[1], deathstring);
EXPECT_DEATH(av.section(2, 5), deathstring);
EXPECT_DEATH(av.section(5, 2), deathstring);
EXPECT_DEATH(av.section(5, 0), deathstring);
EXPECT_DEATH(av.section(0, 5), deathstring);
EXPECT_DEATH(av.section(5, 5), deathstring);
}
{
// zero stride
strided_span<int, 1> sav{av, {{4}, {}}};
EXPECT_TRUE(sav[0] == 0);
EXPECT_TRUE(sav[3] == 0);
EXPECT_DEATH(sav[4], deathstring);
}
{
// zero extent
strided_span<int, 1> sav{av, {{}, {1}}};
EXPECT_DEATH(sav[0], deathstring);
}
{
// zero extent and stride
strided_span<int, 1> sav{av, {{}, {}}};
EXPECT_DEATH(sav[0], deathstring);
}
{
// strided array ctor with matching strided bounds
strided_span<int, 1> sav{arr, {4, 1}};
EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{4});
EXPECT_TRUE(sav[3] == 3);
EXPECT_DEATH(sav[4], deathstring);
}
{
// strided array ctor with smaller strided bounds
strided_span<int, 1> sav{arr, {2, 1}};
EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav[1] == 1);
EXPECT_DEATH(sav[2], deathstring);
}
{
// strided array ctor with fitting irregular bounds
strided_span<int, 1> sav{arr, {2, 3}};
EXPECT_TRUE(sav.bounds().index_bounds() == multi_span_index<1>{2});
EXPECT_TRUE(sav[0] == 0);
EXPECT_TRUE(sav[1] == 3);
EXPECT_DEATH(sav[2], deathstring);
}
{
// bounds cross data boundaries - from static arrays
EXPECT_DEATH((strided_span<int, 1>{arr, {3, 2}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{arr, {3, 3}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{arr, {4, 5}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{arr, {5, 1}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{arr, {5, 5}}), deathstring);
}
{
// bounds cross data boundaries - from array view
EXPECT_DEATH((strided_span<int, 1>{av, {3, 2}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av, {3, 3}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av, {4, 5}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av, {5, 1}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av, {5, 5}}), deathstring);
}
{
// bounds cross data boundaries - from dynamic arrays
EXPECT_DEATH((strided_span<int, 1>{av.data(), 4, {3, 2}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av.data(), 4, {3, 3}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av.data(), 4, {4, 5}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av.data(), 4, {5, 1}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av.data(), 4, {5, 5}}), deathstring);
EXPECT_DEATH((strided_span<int, 1>{av.data(), 2, {2, 2}}), deathstring);
}
#ifdef CONFIRM_COMPILATION_ERRORS
{
strided_span<int, 1> sav0{av.data(), {3, 2}};
strided_span<int, 1> sav1{arr, {1}};
strided_span<int, 1> sav2{arr, {1, 1, 1}};
strided_span<int, 1> sav3{av, {1}};
strided_span<int, 1> sav4{av, {1, 1, 1}};
strided_span<int, 2> sav5{av.as_multi_span(dim<2>(), dim<2>()), {1}};
strided_span<int, 2> sav6{av.as_multi_span(dim<2>(), dim<2>()), {1, 1, 1}};
strided_span<int, 2> sav7{av.as_multi_span(dim<2>(), dim<2>()),
{{1, 1}, {1, 1}, {1, 1}}};
multi_span_index<1> index{0, 1};
strided_span<int, 1> sav8{arr, {1, {1, 1}}};
strided_span<int, 1> sav9{arr, {{1, 1}, {1, 1}}};
strided_span<int, 1> sav10{av, {1, {1, 1}}};
strided_span<int, 1> sav11{av, {{1, 1}, {1, 1}}};
strided_span<int, 2> sav12{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1}}};
strided_span<int, 2> sav13{av.as_multi_span(dim<2>(), dim<2>()), {{1}, {1, 1, 1}}};
strided_span<int, 2> sav14{av.as_multi_span(dim<2>(), dim<2>()), {{1, 1, 1}, {1}}};
}
#endif
}
TEST(strided_span_tests, strided_span_type_conversion)
{
int arr[] = {0, 1, 2, 3};
multi_span<int> av(arr);
std::set_terminate([] {
std::cerr << "Expected Death. strided_span_type_conversion";
std::abort();
});
{
strided_span<int, 1> sav{av.data(), av.size(), {av.size() / 2, 2}};
#ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif
}
{
strided_span<int, 1> sav{av, {av.size() / 2, 2}};
#ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif
}
multi_span<const byte, dynamic_range> bytes = as_bytes(av);
// retype strided array with regular strides - from raw data
{
strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}};
strided_span<const byte, 2> sav2{bytes.data(), bytes.size(), bounds};
strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>();
EXPECT_TRUE(sav3[0][0] == 0);
EXPECT_TRUE(sav3[1][0] == 2);
EXPECT_DEATH(sav3[1][1], deathstring);
EXPECT_DEATH(sav3[0][1], deathstring);
}
// retype strided array with regular strides - from multi_span
{
strided_bounds<2> bounds{{2, bytes.size() / 4}, {bytes.size() / 2, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
strided_span<int, 2> sav3 = sav2.as_strided_span<int>();
EXPECT_TRUE(sav3[0][0] == 0);
EXPECT_TRUE(sav3[1][0] == 2);
EXPECT_DEATH(sav3[1][1], deathstring);
EXPECT_DEATH(sav3[0][1], deathstring);
}
// retype strided array with not enough elements - last dimension of the array is too small
{
strided_bounds<2> bounds{{4, 2}, {4, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
EXPECT_DEATH(sav2.as_strided_span<int>(), deathstring);
}
// retype strided array with not enough elements - strides are too small
{
strided_bounds<2> bounds{{4, 2}, {2, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
EXPECT_DEATH(sav2.as_strided_span<int>(), deathstring);
}
// retype strided array with not enough elements - last dimension does not divide by the new
// typesize
{
strided_bounds<2> bounds{{2, 6}, {4, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
EXPECT_DEATH(sav2.as_strided_span<int>(), deathstring);
}
// retype strided array with not enough elements - strides does not divide by the new
// typesize
{
strided_bounds<2> bounds{{2, 1}, {6, 1}};
multi_span<const byte, 2, dynamic_range> bytes2 =
as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{bytes2, bounds};
EXPECT_DEATH(sav2.as_strided_span<int>(), deathstring);
}
// retype strided array with irregular strides - from raw data
{
strided_bounds<1> bounds{bytes.size() / 2, 2};
strided_span<const byte, 1> sav2{bytes.data(), bytes.size(), bounds};
EXPECT_DEATH(sav2.as_strided_span<int>(), deathstring);
}
// retype strided array with irregular strides - from multi_span
{
strided_bounds<1> bounds{bytes.size() / 2, 2};
strided_span<const byte, 1> sav2{bytes, bounds};
EXPECT_DEATH(sav2.as_strided_span<int>(), deathstring);
}
}
TEST(strided_span_tests, empty_strided_spans)
{
std::set_terminate([] {
std::cerr << "Expected Death. empty_strided_spans";
std::abort();
});
{
multi_span<int, 0> empty_av(nullptr);
strided_span<int, 1> empty_sav{empty_av, {0, 1}};
EXPECT_TRUE(empty_sav.bounds().index_bounds() == multi_span_index<1>{0});
EXPECT_TRUE(empty_sav.empty());
EXPECT_DEATH(empty_sav[0], deathstring);
EXPECT_DEATH(empty_sav.begin()[0], deathstring);
EXPECT_DEATH(empty_sav.cbegin()[0], deathstring);
for (const auto& v : empty_sav) {
(void) v;
EXPECT_TRUE(false);
}
}
{
strided_span<int, 1> empty_sav{nullptr, 0, {0, 1}};
EXPECT_TRUE(empty_sav.bounds().index_bounds() == multi_span_index<1>{0});
EXPECT_DEATH(empty_sav[0], deathstring);
EXPECT_DEATH(empty_sav.begin()[0], deathstring);
EXPECT_DEATH(empty_sav.cbegin()[0], deathstring);
for (const auto& v : empty_sav) {
(void) v;
EXPECT_TRUE(false);
}
}
}
TEST(strided_span_tests, strided_span_section_iteration)
{
int arr[8] = {4, 0, 5, 1, 6, 2, 7, 3};
// static bounds
{
multi_span<int, 8> av(arr, 8);
iterate_every_other_element(av);
}
// dynamic bounds
{
multi_span<int, dynamic_range> av(arr, 8);
iterate_every_other_element(av);
}
}
TEST(strided_span_tests, dynamic_strided_span_section_iteration)
{
auto arr = new int[8];
for (int i = 0; i < 4; ++i) {
arr[2 * i] = 4 + i;
arr[2 * i + 1] = i;
}
auto av = as_multi_span(arr, 8);
iterate_every_other_element(av);
delete[] arr;
}
TEST(strided_span_tests, strided_span_section_iteration_3d)
{
int arr[3][4][2]{};
for (auto i = 0; i < 3; ++i) {
for (auto j = 0; j < 4; ++j)
for (auto k = 0; k < 2; ++k) arr[i][j][k] = 8 * i + 2 * j + k;
}
{
multi_span<int, 3, 4, 2> av = arr;
iterate_second_slice(av);
}
}
TEST(strided_span_tests, dynamic_strided_span_section_iteration_3d)
{
const auto height = 12, width = 2;
const auto size = height * width;
auto arr = new int[static_cast<std::size_t>(size)];
for (auto i = 0; i < size; ++i) {
arr[i] = i;
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim(3), dim<4>(), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim(4), dim<2>());
iterate_second_slice(av);
}
{
auto av = as_multi_span(as_multi_span(arr, 24), dim<3>(), dim<4>(), dim(2));
iterate_second_slice(av);
}
delete[] arr;
}
TEST(strided_span_tests, strided_span_conversion)
{
std::set_terminate([] {
std::cerr << "Expected Death. strided_span_conversion";
std::abort();
});
// get an multi_span of 'c' values from the list of X's
struct X
{
int a;
int b;
int c;
};
X arr[4] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}, {9, 10, 11}};
int s = sizeof(int) / sizeof(byte);
auto d2 = 3 * s;
auto d1 = narrow_cast<int>(sizeof(int)) * 12 / d2;
// convert to 4x12 array of bytes
auto av = as_multi_span(as_bytes(as_multi_span(&arr[0], 4)), dim(d1), dim(d2));
EXPECT_TRUE(av.bounds().index_bounds()[0] == 4);
EXPECT_TRUE(av.bounds().index_bounds()[1] == 12);
// get the last 4 columns
auto section = av.section({0, 2 * s}, {4, s}); // { { arr[0].c[0], arr[0].c[1], arr[0].c[2],
// arr[0].c[3] } , { arr[1].c[0], ... } , ...
// }
// convert to array 4x1 array of integers
auto cs = section.as_strided_span<int>(); // { { arr[0].c }, {arr[1].c } , ... }
EXPECT_TRUE(cs.bounds().index_bounds()[0] == 4);
EXPECT_TRUE(cs.bounds().index_bounds()[1] == 1);
// transpose to 1x4 array
strided_bounds<2> reverse_bounds{
{cs.bounds().index_bounds()[1], cs.bounds().index_bounds()[0]},
{cs.bounds().strides()[1], cs.bounds().strides()[0]}};
strided_span<int, 2> transposed{cs.data(), cs.bounds().total_size(), reverse_bounds};
// slice to get a one-dimensional array of c's
strided_span<int, 1> result = transposed[0];
EXPECT_TRUE(result.bounds().index_bounds()[0] == 4);
EXPECT_DEATH(result.bounds().index_bounds()[1], deathstring);
int i = 0;
for (auto& num : result) {
EXPECT_TRUE(num == arr[i].c);
i++;
}
}

1217
tests/string_span_tests.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -16,15 +16,14 @@
#include <gtest/gtest.h>
#include <gsl/gsl_util> // for narrow, finally, narrow_cast, narrowing_e...
#include <algorithm> // for move
#include <complex>
#include <cstddef> // for std::ptrdiff_t
#include <cstdint> // for uint32_t, int32_t
#include <functional> // for reference_wrapper, _Bind_helper<>::type
#include <gsl/narrow> // for narrow, narrowing_error
#include <gsl/util> // finally, narrow_cast
#include <limits> // for numeric_limits
#include <stdint.h> // for uint32_t, int32_t
#include <type_traits> // for is_same
#include <cstddef> // for std::ptrdiff_t
using namespace gsl;
@ -33,7 +32,8 @@ namespace
void f(int& i) { i += 1; }
static int j = 0;
void g() { j += 1; }
} // namespace
}
TEST(utils_tests, sanity_check_for_gsl_index_typedef)
{
@ -70,33 +70,11 @@ TEST(utils_tests, finally_lambda_move)
EXPECT_TRUE(i == 1);
}
TEST(utils_tests, finally_const_lvalue_lambda)
{
int i = 0;
{
const auto const_lvalue_lambda = [&]() { f(i); };
auto _ = finally(const_lvalue_lambda);
EXPECT_TRUE(i == 0);
}
EXPECT_TRUE(i == 1);
}
TEST(utils_tests, finally_mutable_lvalue_lambda)
{
int i = 0;
{
auto mutable_lvalue_lambda = [&]() { f(i); };
auto _ = finally(mutable_lvalue_lambda);
EXPECT_TRUE(i == 0);
}
EXPECT_TRUE(i == 1);
}
TEST(utils_tests, finally_function_with_bind)
{
int i = 0;
{
auto _ = finally([&i] { return f(i); });
auto _ = finally(std::bind(&f, std::ref(i)));
EXPECT_TRUE(i == 0);
}
EXPECT_TRUE(i == 1);
@ -112,16 +90,6 @@ TEST(utils_tests, finally_function_ptr)
EXPECT_TRUE(j == 1);
}
TEST(utils_tests, finally_function)
{
j = 0;
{
auto _ = finally(g);
EXPECT_TRUE(j == 0);
}
EXPECT_TRUE(j == 1);
}
TEST(utils_tests, narrow_cast)
{
int n = 120;
@ -133,7 +101,6 @@ TEST(utils_tests, narrow_cast)
EXPECT_TRUE(uc == 44);
}
#ifndef GSL_KERNEL_MODE
TEST(utils_tests, narrow)
{
int n = 120;
@ -155,11 +122,4 @@ TEST(utils_tests, narrow)
n = -42;
EXPECT_THROW(narrow<unsigned>(n), narrowing_error);
EXPECT_TRUE(
narrow<std::complex<float>>(std::complex<double>(4, 2)) == std::complex<float>(4, 2));
EXPECT_THROW(narrow<std::complex<float>>(std::complex<double>(4.2)), narrowing_error);
EXPECT_TRUE(narrow<int>(float(1)) == 1);
}
#endif // GSL_KERNEL_MODE