Merge remote-tracking branch 'origin/master' into thread_utils

This commit is contained in:
Galik 2017-04-04 04:31:30 +01:00
commit 37efbb626a
11 changed files with 520 additions and 472 deletions

View File

@ -93,7 +93,7 @@ install:
- | - |
if [[ "${TRAVIS_OS_NAME}" == "linux" ]]; then if [[ "${TRAVIS_OS_NAME}" == "linux" ]]; then
if [[ -z "$(ls -A ${DEPS_DIR}/cmake/bin)" ]]; then if [[ -z "$(ls -A ${DEPS_DIR}/cmake/bin)" ]]; then
CMAKE_URL="https://cmake.org/files/v3.6/cmake-3.6.2-Linux-x86_64.tar.gz" CMAKE_URL="https://cmake.org/files/v3.7/cmake-3.7.2-Linux-x86_64.tar.gz"
mkdir -p cmake && travis_retry wget --no-check-certificate --quiet -O - "${CMAKE_URL}" | tar --strip-components=1 -xz -C cmake mkdir -p cmake && travis_retry wget --no-check-certificate --quiet -O - "${CMAKE_URL}" | tar --strip-components=1 -xz -C cmake
fi fi
export PATH="${DEPS_DIR}/cmake/bin:${PATH}" export PATH="${DEPS_DIR}/cmake/bin:${PATH}"

View File

@ -21,7 +21,6 @@ This project has adopted the [Microsoft Open Source Code of Conduct](https://ope
## Supported Platforms ## Supported Platforms
The test suite that exercises GSL has been built and passes successfully on the following platforms:<sup>1)</sup> The test suite that exercises GSL has been built and passes successfully on the following platforms:<sup>1)</sup>
* Windows using Visual Studio 2013
* Windows using Visual Studio 2015 * Windows using Visual Studio 2015
* Windows using Visual Studio 2017 * Windows using Visual Studio 2017
* Windows using Clang/LLVM 3.6 * Windows using Clang/LLVM 3.6

48
appveyor.yml Normal file
View File

@ -0,0 +1,48 @@
shallow_clone: true
platform:
- x86
- x64
configuration:
- Debug
- Release
image:
- Visual Studio 2015
- Visual Studio 2017
cache:
- C:\cmake-3.7.2-win32-x86
install:
- git clone --quiet --depth=1 https://github.com/Microsoft/unittest-cpp.git tests/unittest-cpp
- ps: |
if (![IO.File]::Exists("C:\cmake-3.7.2-win32-x86\bin\cmake.exe")) {
Start-FileDownload 'https://cmake.org/files/v3.7/cmake-3.7.2-win32-x86.zip'
7z x -y cmake-3.7.2-win32-x86.zip -oC:\
}
$env:PATH="C:\cmake-3.7.2-win32-x86\bin;$env:PATH"
before_build:
- ps: |
mkdir build
cd build
if ("$env:APPVEYOR_JOB_NAME" -match "Image: Visual Studio 2015") {
$env:generator="Visual Studio 14 2015"
} else {
$env:generator="Visual Studio 15 2017"
}
if ($env:PLATFORM -eq "x64") {
$env:generator="$env:generator Win64"
}
echo generator="$env:generator"
cmake .. -G "$env:generator"
build_script:
- cmake --build . --config %CONFIGURATION% -- /m /v:minimal
test_script:
- ctest -j2
deploy: off

View File

@ -68,9 +68,9 @@
namespace gsl namespace gsl
{ {
struct fail_fast : public std::runtime_error struct fail_fast : public std::logic_error
{ {
explicit fail_fast(char const* const message) : std::runtime_error(message) {} explicit fail_fast(char const* const message) : std::logic_error(message) {}
}; };
} }

View File

@ -577,7 +577,7 @@ template <class CharT, std::ptrdiff_t Extent, class T,
std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>> std::is_convertible<T, gsl::basic_string_span<std::add_const_t<CharT>>>::value>>
bool operator==(const gsl::basic_string_span<CharT, Extent>& one, const T& other) GSL_NOEXCEPT bool operator==(const gsl::basic_string_span<CharT, Extent>& one, const T& other) GSL_NOEXCEPT
{ {
gsl::basic_string_span<std::add_const_t<CharT>> tmp(other); const gsl::basic_string_span<std::add_const_t<CharT>> tmp(other);
#ifdef GSL_MSVC_NO_CPP14_STD_EQUAL #ifdef GSL_MSVC_NO_CPP14_STD_EQUAL
return (one.size() == tmp.size()) && std::equal(one.begin(), one.end(), tmp.begin()); return (one.size() == tmp.size()) && std::equal(one.begin(), one.end(), tmp.begin());
#else #else
@ -624,7 +624,7 @@ template <typename CharT, std::ptrdiff_t Extent = gsl::dynamic_extent, typename
T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>> T, gsl::basic_string_span<std::add_const_t<CharT>, Extent>>::value>>
bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT bool operator<(gsl::basic_string_span<CharT, Extent> one, const T& other) GSL_NOEXCEPT
{ {
gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other); const gsl::basic_string_span<std::add_const_t<CharT>, Extent> tmp(other);
return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end()); return std::lexicographical_compare(one.begin(), one.end(), tmp.begin(), tmp.end());
} }

View File

@ -45,7 +45,7 @@ SUITE(bounds_test)
TEST(bounds_basic) TEST(bounds_basic)
{ {
static_bounds<3, 4, 5> b; static_bounds<3, 4, 5> b;
auto a = b.slice(); const auto a = b.slice();
(void)a; (void)a;
static_bounds<4, dynamic_range, 2> x{ 4 }; static_bounds<4, dynamic_range, 2> x{ 4 };
x.slice().slice(); x.slice().slice();
@ -55,7 +55,7 @@ SUITE(bounds_test)
{ {
static_bounds<4, dynamic_range, 2> bounds{ 3 }; static_bounds<4, dynamic_range, 2> bounds{ 3 };
auto itr = bounds.begin(); const auto itr = bounds.begin();
(void)itr; (void)itr;
#ifdef CONFIRM_COMPILATION_ERRORS #ifdef CONFIRM_COMPILATION_ERRORS
multi_span<int, 4, dynamic_range, 2> av(nullptr, bounds); multi_span<int, 4, dynamic_range, 2> av(nullptr, bounds);

View File

@ -35,22 +35,22 @@ SUITE(byte_tests)
TEST(construction) TEST(construction)
{ {
{ {
byte b = static_cast<byte>(4); const byte b = static_cast<byte>(4);
CHECK(static_cast<unsigned char>(b) == 4); CHECK(static_cast<unsigned char>(b) == 4);
} }
{ {
byte b = byte(12); const byte b = byte(12);
CHECK(static_cast<unsigned char>(b) == 12); CHECK(static_cast<unsigned char>(b) == 12);
} }
{ {
byte b = to_byte<12>(); const byte b = to_byte<12>();
CHECK(static_cast<unsigned char>(b) == 12); CHECK(static_cast<unsigned char>(b) == 12);
} }
{ {
unsigned char uc = 12; const unsigned char uc = 12;
byte b = to_byte(uc); const byte b = to_byte(uc);
CHECK(static_cast<unsigned char>(b) == 12); CHECK(static_cast<unsigned char>(b) == 12);
} }
@ -63,7 +63,7 @@ SUITE(byte_tests)
TEST(bitwise_operations) TEST(bitwise_operations)
{ {
byte b = to_byte<0xFF>(); const byte b = to_byte<0xFF>();
byte a = to_byte<0x00>(); byte a = to_byte<0x00>();
CHECK((b | a) == to_byte<0xFF>()); CHECK((b | a) == to_byte<0xFF>());
@ -79,7 +79,7 @@ SUITE(byte_tests)
CHECK(a == to_byte<0x01>()); CHECK(a == to_byte<0x01>());
CHECK((b ^ a) == to_byte<0xFE>()); CHECK((b ^ a) == to_byte<0xFE>());
CHECK(a == to_byte<0x01>()); CHECK(a == to_byte<0x01>());
a ^= b; a ^= b;
CHECK(a == to_byte<0xFE>()); CHECK(a == to_byte<0xFE>());
@ -99,7 +99,7 @@ SUITE(byte_tests)
TEST(to_integer) TEST(to_integer)
{ {
byte b = to_byte<0x12>(); const byte b = to_byte<0x12>();
CHECK(0x12 == gsl::to_integer<char>(b)); CHECK(0x12 == gsl::to_integer<char>(b));
CHECK(0x12 == gsl::to_integer<short>(b)); CHECK(0x12 == gsl::to_integer<short>(b));
@ -125,7 +125,7 @@ SUITE(byte_tests)
TEST(aliasing) TEST(aliasing)
{ {
int i{ 0 }; int i{ 0 };
int res = modify_both(reinterpret_cast<byte&>(i), i); const int res = modify_both(reinterpret_cast<byte&>(i), i);
CHECK(res == i); CHECK(res == i);
} }
} }

View File

@ -930,7 +930,7 @@ SUITE(span_tests)
CHECK(av.subspan(4).length() == 1); CHECK(av.subspan(4).length() == 1);
CHECK(av.subspan(5).length() == 0); CHECK(av.subspan(5).length() == 0);
CHECK_THROW(av.subspan(6).length(), fail_fast); CHECK_THROW(av.subspan(6).length(), fail_fast);
auto av2 = av.subspan(1); const auto av2 = av.subspan(1);
for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2); for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2);
} }
@ -941,7 +941,7 @@ SUITE(span_tests)
CHECK(av.subspan(4).length() == 1); CHECK(av.subspan(4).length() == 1);
CHECK(av.subspan(5).length() == 0); CHECK(av.subspan(5).length() == 0);
CHECK_THROW(av.subspan(6).length(), fail_fast); CHECK_THROW(av.subspan(6).length(), fail_fast);
auto av2 = av.subspan(1); const auto av2 = av.subspan(1);
for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2); for (int i = 0; i < 4; ++i) CHECK(av2[i] == i + 2);
} }
} }
@ -1117,7 +1117,7 @@ SUITE(span_tests)
CHECK(it == beyond); CHECK(it == beyond);
CHECK(it - beyond == 0); CHECK(it - beyond == 0);
for (auto& n : s) for (const auto& n : s)
{ {
CHECK(n == 5); CHECK(n == 5);
} }
@ -1214,7 +1214,7 @@ SUITE(span_tests)
CHECK(it == beyond); CHECK(it == beyond);
CHECK(it - beyond == 0); CHECK(it - beyond == 0);
for (auto& n : s) for (const auto& n : s)
{ {
CHECK(n == 5); CHECK(n == 5);
} }
@ -1386,16 +1386,16 @@ SUITE(span_tests)
int a[] = {1, 2, 3, 4}; int a[] = {1, 2, 3, 4};
{ {
span<const int> s = a; const span<const int> s = a;
CHECK(s.length() == 4); CHECK(s.length() == 4);
span<const byte> bs = as_bytes(s); const span<const byte> bs = as_bytes(s);
CHECK(static_cast<const void*>(bs.data()) == static_cast<const void*>(s.data())); CHECK(static_cast<const void*>(bs.data()) == static_cast<const void*>(s.data()));
CHECK(bs.length() == s.length_bytes()); CHECK(bs.length() == s.length_bytes());
} }
{ {
span<int> s; span<int> s;
auto bs = as_bytes(s); const auto bs = as_bytes(s);
CHECK(bs.length() == s.length()); CHECK(bs.length() == s.length());
CHECK(bs.length() == 0); CHECK(bs.length() == 0);
CHECK(bs.size_bytes() == 0); CHECK(bs.size_bytes() == 0);
@ -1405,7 +1405,7 @@ SUITE(span_tests)
{ {
span<int> s = a; span<int> s = a;
auto bs = as_bytes(s); const auto bs = as_bytes(s);
CHECK(static_cast<const void*>(bs.data()) == static_cast<const void*>(s.data())); CHECK(static_cast<const void*>(bs.data()) == static_cast<const void*>(s.data()));
CHECK(bs.length() == s.length_bytes()); CHECK(bs.length() == s.length_bytes());
} }
@ -1428,7 +1428,7 @@ SUITE(span_tests)
{ {
span<int> s; span<int> s;
auto bs = as_writeable_bytes(s); const auto bs = as_writeable_bytes(s);
CHECK(bs.length() == s.length()); CHECK(bs.length() == s.length());
CHECK(bs.length() == 0); CHECK(bs.length() == 0);
CHECK(bs.size_bytes() == 0); CHECK(bs.size_bytes() == 0);
@ -1438,7 +1438,7 @@ SUITE(span_tests)
{ {
span<int> s = a; span<int> s = a;
auto bs = as_writeable_bytes(s); const auto bs = as_writeable_bytes(s);
CHECK(static_cast<void*>(bs.data()) == static_cast<void*>(s.data())); CHECK(static_cast<void*>(bs.data()) == static_cast<void*>(s.data()));
CHECK(bs.length() == s.length_bytes()); CHECK(bs.length() == s.length_bytes());
} }
@ -1484,11 +1484,11 @@ SUITE(span_tests)
// you can convert statically // you can convert statically
{ {
span<int, 2> s2 = {arr, 2}; const span<int, 2> s2 = {arr, 2};
static_cast<void>(s2); static_cast<void>(s2);
} }
{ {
span<int, 1> s1 = s4.first<1>(); const span<int, 1> s1 = s4.first<1>();
static_cast<void>(s1); static_cast<void>(s1);
} }
@ -1532,7 +1532,7 @@ SUITE(span_tests)
{ {
char lat[] = { '1', '2', '3', '4', '5', '6', 'E', 'F', 'G' }; char lat[] = { '1', '2', '3', '4', '5', '6', 'E', 'F', 'G' };
span<char> s = lat; span<char> s = lat;
auto f_it = s.begin() + 7; const auto f_it = s.begin() + 7;
std::match_results<span<char>::iterator> match; std::match_results<span<char>::iterator> match;

View File

@ -29,529 +29,529 @@ using namespace gsl;
namespace namespace
{ {
struct BaseClass {}; struct BaseClass {};
struct DerivedClass : BaseClass {}; struct DerivedClass : BaseClass {};
} }
SUITE(strided_span_tests) SUITE(strided_span_tests)
{ {
TEST (span_section_test) TEST (span_section_test)
{ {
int a[30][4][5]; int a[30][4][5];
auto av = as_multi_span(a); const auto av = as_multi_span(a);
auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2}); const auto sub = av.section({15, 0, 0}, gsl::index<3>{2, 2, 2});
auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1}); const auto subsub = sub.section({1, 0, 0}, gsl::index<3>{1, 1, 1});
(void)subsub; (void)subsub;
} }
TEST(span_section) TEST(span_section)
{ {
std::vector<int> data(5 * 10); std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0); std::iota(begin(data), end(data), 0);
const multi_span<int, 5, 10> av = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>()); const multi_span<int, 5, 10> av = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
strided_span<int, 2> av_section_1 = av.section({ 1, 2 }, { 3, 4 }); const strided_span<int, 2> av_section_1 = av.section({ 1, 2 }, { 3, 4 });
CHECK((av_section_1[{0, 0}] == 12)); CHECK((av_section_1[{0, 0}] == 12));
CHECK((av_section_1[{0, 1}] == 13)); CHECK((av_section_1[{0, 1}] == 13));
CHECK((av_section_1[{1, 0}] == 22)); CHECK((av_section_1[{1, 0}] == 22));
CHECK((av_section_1[{2, 3}] == 35)); CHECK((av_section_1[{2, 3}] == 35));
strided_span<int, 2> av_section_2 = av_section_1.section({ 1, 2 }, { 2,2 }); const strided_span<int, 2> av_section_2 = av_section_1.section({ 1, 2 }, { 2,2 });
CHECK((av_section_2[{0, 0}] == 24)); CHECK((av_section_2[{0, 0}] == 24));
CHECK((av_section_2[{0, 1}] == 25)); CHECK((av_section_2[{0, 1}] == 25));
CHECK((av_section_2[{1, 0}] == 34)); CHECK((av_section_2[{1, 0}] == 34));
} }
TEST(strided_span_constructors) TEST(strided_span_constructors)
{ {
// Check stride constructor // Check stride constructor
{ {
int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
const int carr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; const int carr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
strided_span<int, 1> sav1{ arr, {{9}, {1}} }; // T -> T strided_span<int, 1> sav1{ arr, {{9}, {1}} }; // T -> T
CHECK(sav1.bounds().index_bounds() == index<1>{ 9 }); CHECK(sav1.bounds().index_bounds() == index<1>{ 9 });
CHECK(sav1.bounds().stride() == 1); CHECK(sav1.bounds().stride() == 1);
CHECK(sav1[0] == 1 && sav1[8] == 9); CHECK(sav1[0] == 1 && sav1[8] == 9);
strided_span<const int, 1> sav2{ carr, {{ 4 }, { 2 }} }; // const T -> const T strided_span<const int, 1> sav2{ carr, {{ 4 }, { 2 }} }; // const T -> const T
CHECK(sav2.bounds().index_bounds() == index<1>{ 4 }); CHECK(sav2.bounds().index_bounds() == index<1>{ 4 });
CHECK(sav2.bounds().strides() == index<1>{2}); CHECK(sav2.bounds().strides() == index<1>{2});
CHECK(sav2[0] == 1 && sav2[3] == 7); CHECK(sav2[0] == 1 && sav2[3] == 7);
strided_span<int, 2> sav3{ arr, {{ 2, 2 },{ 6, 2 }} }; // T -> const T strided_span<int, 2> sav3{ arr, {{ 2, 2 },{ 6, 2 }} }; // T -> const T
CHECK((sav3.bounds().index_bounds() == index<2>{ 2, 2 })); CHECK((sav3.bounds().index_bounds() == index<2>{ 2, 2 }));
CHECK((sav3.bounds().strides() == index<2>{ 6, 2 })); CHECK((sav3.bounds().strides() == index<2>{ 6, 2 }));
CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7)); CHECK((sav3[{0, 0}] == 1 && sav3[{0, 1}] == 3 && sav3[{1, 0}] == 7));
} }
// Check multi_span constructor // Check multi_span constructor
{ {
int arr[] = { 1, 2 }; int arr[] = { 1, 2 };
// From non-cv-qualified source // From non-cv-qualified source
{ {
const multi_span<int> src = arr; const multi_span<int> src = arr;
strided_span<int, 1> sav{ src, {2, 1} }; strided_span<int, 1> sav{ src, {2, 1} };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav.bounds().strides() == index<1>{ 1 }); CHECK(sav.bounds().strides() == index<1>{ 1 });
CHECK(sav[1] == 2); CHECK(sav[1] == 2);
#if _MSC_VER > 1800 #if _MSC_VER > 1800
//strided_span<const int, 1> sav_c{ {src}, {2, 1} }; //strided_span<const int, 1> sav_c{ {src}, {2, 1} };
strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} }; strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} };
#else #else
strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} }; strided_span<const int, 1> sav_c{ multi_span<const int>{src}, strided_bounds<1>{2, 1} };
#endif #endif
CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_c.bounds().strides() == index<1>{ 1 }); CHECK(sav_c.bounds().strides() == index<1>{ 1 });
CHECK(sav_c[1] == 2); CHECK(sav_c[1] == 2);
#if _MSC_VER > 1800 #if _MSC_VER > 1800
strided_span<volatile int, 1> sav_v{ src, {2, 1} }; strided_span<volatile int, 1> sav_v{ src, {2, 1} };
#else #else
strided_span<volatile int, 1> sav_v{ multi_span<volatile int>{src}, strided_bounds<1>{2, 1} }; strided_span<volatile int, 1> sav_v{ multi_span<volatile int>{src}, strided_bounds<1>{2, 1} };
#endif #endif
CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_v.bounds().strides() == index<1>{ 1 }); CHECK(sav_v.bounds().strides() == index<1>{ 1 });
CHECK(sav_v[1] == 2); CHECK(sav_v[1] == 2);
#if _MSC_VER > 1800 #if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
#else #else
strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} }; strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} };
#endif #endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2); CHECK(sav_cv[1] == 2);
} }
// From const-qualified source // From const-qualified source
{ {
const multi_span<const int> src{ arr }; const multi_span<const int> src{ arr };
strided_span<const int, 1> sav_c{ src, {2, 1} }; strided_span<const int, 1> sav_c{ src, {2, 1} };
CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_c.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_c.bounds().strides() == index<1>{ 1 }); CHECK(sav_c.bounds().strides() == index<1>{ 1 });
CHECK(sav_c[1] == 2); CHECK(sav_c[1] == 2);
#if _MSC_VER > 1800 #if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
#else #else
strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} }; strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} };
#endif #endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2); CHECK(sav_cv[1] == 2);
} }
// From volatile-qualified source // From volatile-qualified source
{ {
const multi_span<volatile int> src{ arr }; const multi_span<volatile int> src{ arr };
strided_span<volatile int, 1> sav_v{ src, {2, 1} }; strided_span<volatile int, 1> sav_v{ src, {2, 1} };
CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_v.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_v.bounds().strides() == index<1>{ 1 }); CHECK(sav_v.bounds().strides() == index<1>{ 1 });
CHECK(sav_v[1] == 2); CHECK(sav_v[1] == 2);
#if _MSC_VER > 1800 #if _MSC_VER > 1800
strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
#else #else
strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} }; strided_span<const volatile int, 1> sav_cv{ multi_span<const volatile int>{src}, strided_bounds<1>{2, 1} };
#endif #endif
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2); CHECK(sav_cv[1] == 2);
} }
// From cv-qualified source // From cv-qualified source
{ {
const multi_span<const volatile int> src{ arr }; const multi_span<const volatile int> src{ arr };
strided_span<const volatile int, 1> sav_cv{ src, {2, 1} }; strided_span<const volatile int, 1> sav_cv{ src, {2, 1} };
CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav_cv.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav_cv.bounds().strides() == index<1>{ 1 }); CHECK(sav_cv.bounds().strides() == index<1>{ 1 });
CHECK(sav_cv[1] == 2); CHECK(sav_cv[1] == 2);
} }
} }
// Check const-casting constructor // Check const-casting constructor
{ {
int arr[2] = { 4, 5 }; int arr[2] = { 4, 5 };
const multi_span<int, 2> av(arr, 2); const multi_span<int, 2> av(arr, 2);
multi_span<const int, 2> av2{ av }; multi_span<const int, 2> av2{ av };
CHECK(av2[1] == 5); CHECK(av2[1] == 5);
static_assert(std::is_convertible<const multi_span<int, 2>, multi_span<const int, 2>>::value, "ctor is not implicit!"); static_assert(std::is_convertible<const multi_span<int, 2>, multi_span<const int, 2>>::value, "ctor is not implicit!");
const strided_span<int, 1> src{ arr, {2, 1} }; const strided_span<int, 1> src{ arr, {2, 1} };
strided_span<const int, 1> sav{ src }; strided_span<const int, 1> sav{ src };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav.bounds().stride() == 1); CHECK(sav.bounds().stride() == 1);
CHECK(sav[1] == 5); CHECK(sav[1] == 5);
static_assert(std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value, "ctor is not implicit!"); static_assert(std::is_convertible<const strided_span<int, 1>, strided_span<const int, 1>>::value, "ctor is not implicit!");
} }
// Check copy constructor // Check copy constructor
{ {
int arr1[2] = { 3, 4 }; int arr1[2] = { 3, 4 };
const strided_span<int, 1> src1{ arr1, {2, 1} }; const strided_span<int, 1> src1{ arr1, {2, 1} };
strided_span<int, 1> sav1{ src1 }; strided_span<int, 1> sav1{ src1 };
CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav1.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav1.bounds().stride() == 1); CHECK(sav1.bounds().stride() == 1);
CHECK(sav1[0] == 3); CHECK(sav1[0] == 3);
int arr2[6] = { 1, 2, 3, 4, 5, 6 }; int arr2[6] = { 1, 2, 3, 4, 5, 6 };
const strided_span<const int, 2> src2{ arr2, {{ 3, 2 }, { 2, 1 }} }; const strided_span<const int, 2> src2{ arr2, {{ 3, 2 }, { 2, 1 }} };
strided_span<const int, 2> sav2{ src2 }; strided_span<const int, 2> sav2{ src2 };
CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 }));
CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); CHECK((sav2.bounds().strides() == index<2>{ 2, 1 }));
CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
} }
// Check const-casting assignment operator // Check const-casting assignment operator
{ {
int arr1[2] = { 1, 2 }; int arr1[2] = { 1, 2 };
int arr2[6] = { 3, 4, 5, 6, 7, 8 }; int arr2[6] = { 3, 4, 5, 6, 7, 8 };
const strided_span<int, 1> src{ arr1, {{2}, {1}} }; const strided_span<int, 1> src{ arr1, {{2}, {1}} };
strided_span<const int, 1> sav{ arr2, {{3}, {2}} }; strided_span<const int, 1> sav{ arr2, {{3}, {2}} };
strided_span<const int, 1>& sav_ref = (sav = src); strided_span<const int, 1>& sav_ref = (sav = src);
CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav.bounds().strides() == index<1>{ 1 }); CHECK(sav.bounds().strides() == index<1>{ 1 });
CHECK(sav[0] == 1); CHECK(sav[0] == 1);
CHECK(&sav_ref == &sav); CHECK(&sav_ref == &sav);
} }
// Check copy assignment operator // Check copy assignment operator
{ {
int arr1[2] = { 3, 4 }; int arr1[2] = { 3, 4 };
int arr1b[1] = { 0 }; int arr1b[1] = { 0 };
const strided_span<int, 1> src1{ arr1, {2, 1} }; const strided_span<int, 1> src1{ arr1, {2, 1} };
strided_span<int, 1> sav1{ arr1b, {1, 1} }; strided_span<int, 1> sav1{ arr1b, {1, 1} };
strided_span<int, 1>& sav1_ref = (sav1 = src1); strided_span<int, 1>& sav1_ref = (sav1 = src1);
CHECK(sav1.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav1.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav1.bounds().strides() == index<1>{ 1 }); CHECK(sav1.bounds().strides() == index<1>{ 1 });
CHECK(sav1[0] == 3); CHECK(sav1[0] == 3);
CHECK(&sav1_ref == &sav1); CHECK(&sav1_ref == &sav1);
const int arr2[6] = { 1, 2, 3, 4, 5, 6 }; const int arr2[6] = { 1, 2, 3, 4, 5, 6 };
const int arr2b[1] = { 0 }; const int arr2b[1] = { 0 };
const strided_span<const int, 2> src2{ arr2, {{ 3, 2 },{ 2, 1 }} }; const strided_span<const int, 2> src2{ arr2, {{ 3, 2 },{ 2, 1 }} };
strided_span<const int, 2> sav2{ arr2b, {{ 1, 1 },{ 1, 1 }} }; strided_span<const int, 2> sav2{ arr2b, {{ 1, 1 },{ 1, 1 }} };
strided_span<const int, 2>& sav2_ref = (sav2 = src2); strided_span<const int, 2>& sav2_ref = (sav2 = src2);
CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 })); CHECK((sav2.bounds().index_bounds() == index<2>{ 3, 2 }));
CHECK((sav2.bounds().strides() == index<2>{ 2, 1 })); CHECK((sav2.bounds().strides() == index<2>{ 2, 1 }));
CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5)); CHECK((sav2[{0, 0}] == 1 && sav2[{2, 0}] == 5));
CHECK(&sav2_ref == &sav2); CHECK(&sav2_ref == &sav2);
} }
} }
TEST(strided_span_slice) TEST(strided_span_slice)
{ {
std::vector<int> data(5 * 10); std::vector<int> data(5 * 10);
std::iota(begin(data), end(data), 0); std::iota(begin(data), end(data), 0);
const multi_span<int, 5, 10> src = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>()); const multi_span<int, 5, 10> src = as_multi_span(multi_span<int>{data}, dim<5>(), dim<10>());
const strided_span<int, 2> sav{ src, {{5, 10}, {10, 1}} }; const strided_span<int, 2> sav{ src, {{5, 10}, {10, 1}} };
#ifdef CONFIRM_COMPILATION_ERRORS #ifdef CONFIRM_COMPILATION_ERRORS
const strided_span<const int, 2> csav{ {src},{ { 5, 10 },{ 10, 1 } } }; const strided_span<const int, 2> csav{ {src},{ { 5, 10 },{ 10, 1 } } };
#endif #endif
const strided_span<const int, 2> csav{ multi_span<const int, 5, 10>{ src }, { { 5, 10 },{ 10, 1 } } }; const strided_span<const int, 2> csav{ multi_span<const int, 5, 10>{ src }, { { 5, 10 },{ 10, 1 } } };
strided_span<int, 1> sav_sl = sav[2]; strided_span<int, 1> sav_sl = sav[2];
CHECK(sav_sl[0] == 20); CHECK(sav_sl[0] == 20);
CHECK(sav_sl[9] == 29); CHECK(sav_sl[9] == 29);
strided_span<const int, 1> csav_sl = sav[3]; strided_span<const int, 1> csav_sl = sav[3];
CHECK(csav_sl[0] == 30); CHECK(csav_sl[0] == 30);
CHECK(csav_sl[9] == 39); CHECK(csav_sl[9] == 39);
CHECK(sav[4][0] == 40); CHECK(sav[4][0] == 40);
CHECK(sav[4][9] == 49); CHECK(sav[4][9] == 49);
} }
TEST(strided_span_column_major) TEST(strided_span_column_major)
{ {
// strided_span may be used to accomodate more peculiar // strided_span may be used to accomodate more peculiar
// use cases, such as column-major multidimensional array // use cases, such as column-major multidimensional array
// (aka. "FORTRAN" layout). // (aka. "FORTRAN" layout).
int cm_array[3 * 5] = { int cm_array[3 * 5] = {
1, 4, 7, 10, 13, 1, 4, 7, 10, 13,
2, 5, 8, 11, 14, 2, 5, 8, 11, 14,
3, 6, 9, 12, 15 3, 6, 9, 12, 15
}; };
strided_span<int, 2> cm_sav{ cm_array, {{ 5, 3 },{ 1, 5 }} }; strided_span<int, 2> cm_sav{ cm_array, {{ 5, 3 },{ 1, 5 }} };
// Accessing elements // Accessing elements
CHECK((cm_sav[{0, 0}] == 1)); CHECK((cm_sav[{0, 0}] == 1));
CHECK((cm_sav[{0, 1}] == 2)); CHECK((cm_sav[{0, 1}] == 2));
CHECK((cm_sav[{1, 0}] == 4)); CHECK((cm_sav[{1, 0}] == 4));
CHECK((cm_sav[{4, 2}] == 15)); CHECK((cm_sav[{4, 2}] == 15));
// Slice // Slice
strided_span<int, 1> cm_sl = cm_sav[3]; strided_span<int, 1> cm_sl = cm_sav[3];
CHECK(cm_sl[0] == 10); CHECK(cm_sl[0] == 10);
CHECK(cm_sl[1] == 11); CHECK(cm_sl[1] == 11);
CHECK(cm_sl[2] == 12); CHECK(cm_sl[2] == 12);
// Section // Section
strided_span<int, 2> cm_sec = cm_sav.section( { 2, 1 }, { 3, 2 }); strided_span<int, 2> cm_sec = cm_sav.section( { 2, 1 }, { 3, 2 });
CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2})); CHECK((cm_sec.bounds().index_bounds() == index<2>{3, 2}));
CHECK((cm_sec[{0, 0}] == 8)); CHECK((cm_sec[{0, 0}] == 8));
CHECK((cm_sec[{0, 1}] == 9)); CHECK((cm_sec[{0, 1}] == 9));
CHECK((cm_sec[{1, 0}] == 11)); CHECK((cm_sec[{1, 0}] == 11));
CHECK((cm_sec[{2, 1}] == 15)); CHECK((cm_sec[{2, 1}] == 15));
} }
TEST(strided_span_bounds) TEST(strided_span_bounds)
{ {
int arr[] = { 0, 1, 2, 3 }; int arr[] = { 0, 1, 2, 3 };
multi_span<int> av(arr); multi_span<int> av(arr);
{ {
// incorrect sections // incorrect sections
CHECK_THROW(av.section(0, 0)[0], fail_fast); CHECK_THROW(av.section(0, 0)[0], fail_fast);
CHECK_THROW(av.section(1, 0)[0], fail_fast); CHECK_THROW(av.section(1, 0)[0], fail_fast);
CHECK_THROW(av.section(1, 1)[1], fail_fast); CHECK_THROW(av.section(1, 1)[1], fail_fast);
CHECK_THROW(av.section(2, 5), fail_fast); CHECK_THROW(av.section(2, 5), fail_fast);
CHECK_THROW(av.section(5, 2), fail_fast); CHECK_THROW(av.section(5, 2), fail_fast);
CHECK_THROW(av.section(5, 0), fail_fast); CHECK_THROW(av.section(5, 0), fail_fast);
CHECK_THROW(av.section(0, 5), fail_fast); CHECK_THROW(av.section(0, 5), fail_fast);
CHECK_THROW(av.section(5, 5), fail_fast); CHECK_THROW(av.section(5, 5), fail_fast);
} }
{ {
// zero stride // zero stride
strided_span<int, 1> sav{ av,{ { 4 },{} } }; strided_span<int, 1> sav{ av,{ { 4 },{} } };
CHECK(sav[0] == 0); CHECK(sav[0] == 0);
CHECK(sav[3] == 0); CHECK(sav[3] == 0);
CHECK_THROW(sav[4], fail_fast); CHECK_THROW(sav[4], fail_fast);
} }
{ {
// zero extent // zero extent
strided_span<int, 1> sav{ av,{ {},{ 1 } } }; strided_span<int, 1> sav{ av,{ {},{ 1 } } };
CHECK_THROW(sav[0], fail_fast); CHECK_THROW(sav[0], fail_fast);
} }
{ {
// zero extent and stride // zero extent and stride
strided_span<int, 1> sav{ av,{ {},{} } }; strided_span<int, 1> sav{ av,{ {},{} } };
CHECK_THROW(sav[0], fail_fast); CHECK_THROW(sav[0], fail_fast);
} }
{ {
// strided array ctor with matching strided bounds // strided array ctor with matching strided bounds
strided_span<int, 1> sav{ arr,{ 4, 1 } }; strided_span<int, 1> sav{ arr,{ 4, 1 } };
CHECK(sav.bounds().index_bounds() == index<1>{ 4 }); CHECK(sav.bounds().index_bounds() == index<1>{ 4 });
CHECK(sav[3] == 3); CHECK(sav[3] == 3);
CHECK_THROW(sav[4], fail_fast); CHECK_THROW(sav[4], fail_fast);
} }
{ {
// strided array ctor with smaller strided bounds // strided array ctor with smaller strided bounds
strided_span<int, 1> sav{ arr,{ 2, 1 } }; strided_span<int, 1> sav{ arr,{ 2, 1 } };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav[1] == 1); CHECK(sav[1] == 1);
CHECK_THROW(sav[2], fail_fast); CHECK_THROW(sav[2], fail_fast);
} }
{ {
// strided array ctor with fitting irregular bounds // strided array ctor with fitting irregular bounds
strided_span<int, 1> sav{ arr,{ 2, 3 } }; strided_span<int, 1> sav{ arr,{ 2, 3 } };
CHECK(sav.bounds().index_bounds() == index<1>{ 2 }); CHECK(sav.bounds().index_bounds() == index<1>{ 2 });
CHECK(sav[0] == 0); CHECK(sav[0] == 0);
CHECK(sav[1] == 3); CHECK(sav[1] == 3);
CHECK_THROW(sav[2], fail_fast); CHECK_THROW(sav[2], fail_fast);
} }
{ {
// bounds cross data boundaries - from static arrays // bounds cross data boundaries - from static arrays
CHECK_THROW((strided_span<int, 1> { arr, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { arr, { 3, 2 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { arr, { 3, 3 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { arr, { 4, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { arr, { 5, 1 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { arr, { 5, 5 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { arr, { 5, 5 } }), fail_fast);
} }
{ {
// bounds cross data boundaries - from array view // bounds cross data boundaries - from array view
CHECK_THROW((strided_span<int, 1> { av, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av, { 3, 2 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av, { 3, 3 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av, { 4, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av, { 5, 1 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av, { 5, 5 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av, { 5, 5 } }), fail_fast);
} }
{ {
// bounds cross data boundaries - from dynamic arrays // bounds cross data boundaries - from dynamic arrays
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 2 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 2 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 3 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 3, 3 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 4, 5 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 4, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 1 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 1 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 5 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av.data(), 4, { 5, 5 } }), fail_fast);
CHECK_THROW((strided_span<int, 1> { av.data(), 2, { 2, 2 } }), fail_fast); CHECK_THROW((strided_span<int, 1> { av.data(), 2, { 2, 2 } }), fail_fast);
} }
#ifdef CONFIRM_COMPILATION_ERRORS #ifdef CONFIRM_COMPILATION_ERRORS
{ {
strided_span<int, 1> sav0{ av.data(), { 3, 2 } }; strided_span<int, 1> sav0{ av.data(), { 3, 2 } };
strided_span<int, 1> sav1{ arr, { 1 } }; strided_span<int, 1> sav1{ arr, { 1 } };
strided_span<int, 1> sav2{ arr, { 1,1,1 } }; strided_span<int, 1> sav2{ arr, { 1,1,1 } };
strided_span<int, 1> sav3{ av, { 1 } }; strided_span<int, 1> sav3{ av, { 1 } };
strided_span<int, 1> sav4{ av, { 1,1,1 } }; strided_span<int, 1> sav4{ av, { 1,1,1 } };
strided_span<int, 2> sav5{ av.as_multi_span(dim<2>(), dim<2>()), { 1 } }; strided_span<int, 2> sav5{ av.as_multi_span(dim<2>(), dim<2>()), { 1 } };
strided_span<int, 2> sav6{ av.as_multi_span(dim<2>(), dim<2>()), { 1,1,1 } }; strided_span<int, 2> sav6{ av.as_multi_span(dim<2>(), dim<2>()), { 1,1,1 } };
strided_span<int, 2> sav7{ av.as_multi_span(dim<2>(), dim<2>()), { { 1,1 },{ 1,1 },{ 1,1 } } }; strided_span<int, 2> sav7{ av.as_multi_span(dim<2>(), dim<2>()), { { 1,1 },{ 1,1 },{ 1,1 } } };
index<1> index{ 0, 1 }; index<1> index{ 0, 1 };
strided_span<int, 1> sav8{ arr,{ 1,{ 1,1 } } }; strided_span<int, 1> sav8{ arr,{ 1,{ 1,1 } } };
strided_span<int, 1> sav9{ arr,{ { 1,1 },{ 1,1 } } }; strided_span<int, 1> sav9{ arr,{ { 1,1 },{ 1,1 } } };
strided_span<int, 1> sav10{ av,{ 1,{ 1,1 } } }; strided_span<int, 1> sav10{ av,{ 1,{ 1,1 } } };
strided_span<int, 1> sav11{ av,{ { 1,1 },{ 1,1 } } }; strided_span<int, 1> sav11{ av,{ { 1,1 },{ 1,1 } } };
strided_span<int, 2> sav12{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1 } } }; strided_span<int, 2> sav12{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1 } } };
strided_span<int, 2> sav13{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1,1,1 } } }; strided_span<int, 2> sav13{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1 },{ 1,1,1 } } };
strided_span<int, 2> sav14{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1,1,1 },{ 1 } } }; strided_span<int, 2> sav14{ av.as_multi_span(dim<2>(), dim<2>()),{ { 1,1,1 },{ 1 } } };
} }
#endif #endif
} }
TEST(strided_span_type_conversion) TEST(strided_span_type_conversion)
{ {
int arr[] = { 0, 1, 2, 3 }; int arr[] = { 0, 1, 2, 3 };
multi_span<int> av(arr); multi_span<int> av(arr);
{ {
strided_span<int, 1> sav{ av.data(), av.size(), { av.size() / 2, 2 } }; strided_span<int, 1> sav{ av.data(), av.size(), { av.size() / 2, 2 } };
#ifdef CONFIRM_COMPILATION_ERRORS #ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>(); strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif #endif
} }
{ {
strided_span<int, 1> sav{ av, { av.size() / 2, 2 } }; strided_span<int, 1> sav{ av, { av.size() / 2, 2 } };
#ifdef CONFIRM_COMPILATION_ERRORS #ifdef CONFIRM_COMPILATION_ERRORS
strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>(); strided_span<long, 1> lsav1 = sav.as_strided_span<long, 1>();
#endif #endif
} }
multi_span<const byte, dynamic_range> bytes = as_bytes(av); multi_span<const byte, dynamic_range> bytes = as_bytes(av);
// retype strided array with regular strides - from raw data // retype strided array with regular strides - from raw data
{ {
strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } };
strided_span<const byte, 2> sav2{ bytes.data(), bytes.size(), bounds }; strided_span<const byte, 2> sav2{ bytes.data(), bytes.size(), bounds };
strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>(); strided_span<const int, 2> sav3 = sav2.as_strided_span<const int>();
CHECK(sav3[0][0] == 0); CHECK(sav3[0][0] == 0);
CHECK(sav3[1][0] == 2); CHECK(sav3[1][0] == 2);
CHECK_THROW(sav3[1][1], fail_fast); CHECK_THROW(sav3[1][1], fail_fast);
CHECK_THROW(sav3[0][1], fail_fast); CHECK_THROW(sav3[0][1], fail_fast);
} }
// retype strided array with regular strides - from multi_span // retype strided array with regular strides - from multi_span
{ {
strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } }; strided_bounds<2> bounds{ { 2, bytes.size() / 4 }, { bytes.size() / 2, 1 } };
multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds }; strided_span<const byte, 2> sav2{ bytes2, bounds };
strided_span<int, 2> sav3 = sav2.as_strided_span<int>(); strided_span<int, 2> sav3 = sav2.as_strided_span<int>();
CHECK(sav3[0][0] == 0); CHECK(sav3[0][0] == 0);
CHECK(sav3[1][0] == 2); CHECK(sav3[1][0] == 2);
CHECK_THROW(sav3[1][1], fail_fast); CHECK_THROW(sav3[1][1], fail_fast);
CHECK_THROW(sav3[0][1], fail_fast); CHECK_THROW(sav3[0][1], fail_fast);
} }
// retype strided array with not enough elements - last dimension of the array is too small // retype strided array with not enough elements - last dimension of the array is too small
{ {
strided_bounds<2> bounds{ { 4,2 },{ 4, 1 } }; strided_bounds<2> bounds{ { 4,2 },{ 4, 1 } };
multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds }; strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
} }
// retype strided array with not enough elements - strides are too small // retype strided array with not enough elements - strides are too small
{ {
strided_bounds<2> bounds{ { 4,2 },{ 2, 1 } }; strided_bounds<2> bounds{ { 4,2 },{ 2, 1 } };
multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds }; strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
} }
// retype strided array with not enough elements - last dimension does not divide by the new typesize // retype strided array with not enough elements - last dimension does not divide by the new typesize
{ {
strided_bounds<2> bounds{ { 2,6 },{ 4, 1 } }; strided_bounds<2> bounds{ { 2,6 },{ 4, 1 } };
multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds }; strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
} }
// retype strided array with not enough elements - strides does not divide by the new typesize // retype strided array with not enough elements - strides does not divide by the new typesize
{ {
strided_bounds<2> bounds{ { 2, 1 },{ 6, 1 } }; strided_bounds<2> bounds{ { 2, 1 },{ 6, 1 } };
multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2)); multi_span<const byte, 2, dynamic_range> bytes2 = as_multi_span(bytes, dim<2>(), dim(bytes.size() / 2));
strided_span<const byte, 2> sav2{ bytes2, bounds }; strided_span<const byte, 2> sav2{ bytes2, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
} }
// retype strided array with irregular strides - from raw data // retype strided array with irregular strides - from raw data
{ {
strided_bounds<1> bounds{ bytes.size() / 2, 2 }; strided_bounds<1> bounds{ bytes.size() / 2, 2 };
strided_span<const byte, 1> sav2{ bytes.data(), bytes.size(), bounds }; strided_span<const byte, 1> sav2{ bytes.data(), bytes.size(), bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
} }
// retype strided array with irregular strides - from multi_span // retype strided array with irregular strides - from multi_span
{ {
strided_bounds<1> bounds{ bytes.size() / 2, 2 }; strided_bounds<1> bounds{ bytes.size() / 2, 2 };
strided_span<const byte, 1> sav2{ bytes, bounds }; strided_span<const byte, 1> sav2{ bytes, bounds };
CHECK_THROW(sav2.as_strided_span<int>(), fail_fast); CHECK_THROW(sav2.as_strided_span<int>(), fail_fast);
} }
} }
TEST(empty_strided_spans) TEST(empty_strided_spans)
{ {
{ {
multi_span<int, 0> empty_av(nullptr); multi_span<int, 0> empty_av(nullptr);
strided_span<int, 1> empty_sav{ empty_av, { 0, 1 } }; strided_span<int, 1> empty_sav{ empty_av, { 0, 1 } };
CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 });
CHECK_THROW(empty_sav[0], fail_fast); CHECK_THROW(empty_sav[0], fail_fast);
CHECK_THROW(empty_sav.begin()[0], fail_fast); CHECK_THROW(empty_sav.begin()[0], fail_fast);
CHECK_THROW(empty_sav.cbegin()[0], fail_fast); CHECK_THROW(empty_sav.cbegin()[0], fail_fast);
for (auto& v : empty_sav) for (const auto& v : empty_sav)
{ {
(void)v; (void)v;
CHECK(false); CHECK(false);
} }
} }
{ {
strided_span<int, 1> empty_sav{ nullptr, 0, { 0, 1 } }; strided_span<int, 1> empty_sav{ nullptr, 0, { 0, 1 } };
CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 }); CHECK(empty_sav.bounds().index_bounds() == index<1>{ 0 });
CHECK_THROW(empty_sav[0], fail_fast); CHECK_THROW(empty_sav[0], fail_fast);
CHECK_THROW(empty_sav.begin()[0], fail_fast); CHECK_THROW(empty_sav.begin()[0], fail_fast);
CHECK_THROW(empty_sav.cbegin()[0], fail_fast); CHECK_THROW(empty_sav.cbegin()[0], fail_fast);
for (auto& v : empty_sav) for (const auto& v : empty_sav)
{ {
(void)v; (void)v;
CHECK(false); CHECK(false);
} }
} }
} }
void iterate_every_other_element(multi_span<int, dynamic_range> av) void iterate_every_other_element(multi_span<int, dynamic_range> av)
{ {
@ -614,7 +614,7 @@ SUITE(strided_span_tests)
void iterate_second_slice(multi_span<int, dynamic_range, dynamic_range, dynamic_range> av) void iterate_second_slice(multi_span<int, dynamic_range, dynamic_range, dynamic_range> av)
{ {
int expected[6] = {2,3,10,11,18,19}; const int expected[6] = {2,3,10,11,18,19};
auto section = av.section({0,1,0}, {3,1,2}); auto section = av.section({0,1,0}, {3,1,2});
for (auto i = 0; i < section.extent<0>(); ++i) for (auto i = 0; i < section.extent<0>(); ++i)
@ -635,7 +635,7 @@ SUITE(strided_span_tests)
} }
int i = 0; int i = 0;
for (auto num : section) for (const auto num : section)
{ {
CHECK(num == expected[i]); CHECK(num == expected[i]);
i++; i++;
@ -644,7 +644,7 @@ SUITE(strided_span_tests)
TEST(strided_span_section_iteration_3d) TEST(strided_span_section_iteration_3d)
{ {
int arr[3][4][2]; int arr[3][4][2]{};
for (auto i = 0; i < 3; ++i) for (auto i = 0; i < 3; ++i)
{ {
for (auto j = 0; j < 4; ++j) for (auto j = 0; j < 4; ++j)
@ -660,8 +660,8 @@ SUITE(strided_span_tests)
TEST(dynamic_strided_span_section_iteration_3d) TEST(dynamic_strided_span_section_iteration_3d)
{ {
auto height = 12, width = 2; const auto height = 12, width = 2;
auto size = height * width; const auto size = height * width;
auto arr = new int[static_cast<std::size_t>(size)]; auto arr = new int[static_cast<std::size_t>(size)];
for (auto i = 0; i < size; ++i) for (auto i = 0; i < size; ++i)
@ -744,5 +744,5 @@ SUITE(strided_span_tests)
int main(int, const char *[]) int main(int, const char *[])
{ {
return UnitTest::RunAllTests(); return UnitTest::RunAllTests();
} }

View File

@ -17,6 +17,7 @@
#include <UnitTest++/UnitTest++.h> #include <UnitTest++/UnitTest++.h>
#include <cstdlib> #include <cstdlib>
#include <gsl/string_span> #include <gsl/string_span>
#include <gsl/gsl> //owner
#include <vector> #include <vector>
#include <map> #include <map>
@ -229,7 +230,7 @@ SUITE(string_span_tests)
const char ar2[10] = "Hello"; const char ar2[10] = "Hello";
const std::string str = "Hello"; const std::string str = "Hello";
const std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; const std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
gsl::span<const char> sp = ensure_z("Hello"); const gsl::span<const char> sp = ensure_z("Hello");
cstring_span<> span = "Hello"; cstring_span<> span = "Hello";
@ -441,7 +442,7 @@ SUITE(string_span_tests)
// ensure z on c strings // ensure z on c strings
{ {
char* ptr = new char[3]; gsl::owner<char*> ptr = new char[3];
ptr[0] = 'a'; ptr[0] = 'a';
ptr[1] = 'b'; ptr[1] = 'b';
@ -553,52 +554,52 @@ SUITE(string_span_tests)
// from const string // from const string
{ {
const std::string str = "Hello"; const std::string str = "Hello";
cstring_span<> span = str; const cstring_span<> span = str;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
// from non-const string // from non-const string
{ {
std::string str = "Hello"; std::string str = "Hello";
cstring_span<> span = str; const cstring_span<> span = str;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
// from const vector // from const vector
{ {
const std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; const std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
cstring_span<> span = vec; const cstring_span<> span = vec;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
// from non-const vector // from non-const vector
{ {
std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
cstring_span<> span = vec; const cstring_span<> span = vec;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
// from const span // from const span
{ {
std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; const std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
const span<const char> inner = vec; const span<const char> inner = vec;
cstring_span<> span = inner; const cstring_span<> span = inner;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
// from non-const span // from non-const span
{ {
std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
span<char> inner = vec; const span<char> inner = vec;
cstring_span<> span = inner; const cstring_span<> span = inner;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
// from const string_span // from const string_span
{ {
std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; const std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
cstring_span<> tmp = vec; const cstring_span<> tmp = vec;
cstring_span<> span = tmp; const cstring_span<> span = tmp;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
@ -725,8 +726,8 @@ SUITE(string_span_tests)
// from non-const string_span // from non-const string_span
{ {
std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
string_span<> tmp = vec; const string_span<> tmp = vec;
string_span<> span = tmp; const string_span<> span = tmp;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
@ -744,7 +745,7 @@ SUITE(string_span_tests)
{ {
std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' }; std::vector<char> vec = { 'H', 'e', 'l', 'l', 'o' };
const string_span<> tmp = vec; const string_span<> tmp = vec;
string_span<> span = tmp; const string_span<> span = tmp;
CHECK(span.length() == 5); CHECK(span.length() == 5);
} }
} }
@ -766,29 +767,29 @@ SUITE(string_span_tests)
// move string_span // move string_span
{ {
cstring_span<> span = "Hello"; cstring_span<> span = "Hello";
auto span1 = std::move(span); const auto span1 = std::move(span);
CHECK(span1.length() == 5); CHECK(span1.length() == 5);
} }
{ {
cstring_span<> span = "Hello"; cstring_span<> span = "Hello";
auto span1 = move_wrapper(std::move(span)); const auto span1 = move_wrapper(std::move(span));
CHECK(span1.length() == 5); CHECK(span1.length() == 5);
} }
{ {
cstring_span<> span = "Hello"; cstring_span<> span = "Hello";
auto span1 = move_wrapper(std::move(span)); const auto span1 = move_wrapper(std::move(span));
CHECK(span1.length() == 5); CHECK(span1.length() == 5);
} }
// move span // move span
{ {
span<const char> span = ensure_z("Hello"); span<const char> span = ensure_z("Hello");
cstring_span<> span1 = std::move(span); const cstring_span<> span1 = std::move(span);
CHECK(span1.length() == 5); CHECK(span1.length() == 5);
} }
{ {
span<const char> span = ensure_z("Hello"); span<const char> span = ensure_z("Hello");
cstring_span<> span2 = move_wrapper(std::move(span)); const cstring_span<> span2 = move_wrapper(std::move(span));
CHECK(span2.length() == 5); CHECK(span2.length() == 5);
} }
@ -939,7 +940,7 @@ SUITE(string_span_tests)
wchar_t buf[1]; wchar_t buf[1];
buf[0] = L'a'; buf[0] = L'a';
auto workaround_macro = [&]() { wzstring_span<> zspan({ buf, 1 }); }; const auto workaround_macro = [&]() { wzstring_span<> zspan({ buf, 1 }); };
CHECK_THROW(workaround_macro(), fail_fast); CHECK_THROW(workaround_macro(), fail_fast);
} }
@ -947,7 +948,7 @@ SUITE(string_span_tests)
{ {
wchar_t buf[10]; wchar_t buf[10];
auto name = CreateTempNameW({ buf, 10 }); const auto name = CreateTempNameW({ buf, 10 });
if (!name.empty()) if (!name.empty())
{ {
cwzstring<> str = name.assume_z(); cwzstring<> str = name.assume_z();

View File

@ -92,7 +92,7 @@ SUITE(utils_tests)
TEST(narrow) TEST(narrow)
{ {
int n = 120; int n = 120;
char c = narrow<char>(n); const char c = narrow<char>(n);
CHECK(c == 120); CHECK(c == 120);
n = 300; n = 300;