2821 lines
83 KiB
C
2821 lines
83 KiB
C
|
/***************************************************************************
|
||
|
* _ _ ____ _
|
||
|
* Project ___| | | | _ \| |
|
||
|
* / __| | | | |_) | |
|
||
|
* | (__| |_| | _ <| |___
|
||
|
* \___|\___/|_| \_\_____|
|
||
|
*
|
||
|
* Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al.
|
||
|
*
|
||
|
* This software is licensed as described in the file COPYING, which
|
||
|
* you should have received as part of this distribution. The terms
|
||
|
* are also available at https://curl.se/docs/copyright.html.
|
||
|
*
|
||
|
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
|
||
|
* copies of the Software, and permit persons to whom the Software is
|
||
|
* furnished to do so, under the terms of the COPYING file.
|
||
|
*
|
||
|
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
|
||
|
* KIND, either express or implied.
|
||
|
*
|
||
|
* SPDX-License-Identifier: curl
|
||
|
*
|
||
|
***************************************************************************/
|
||
|
|
||
|
#include "curl_setup.h"
|
||
|
|
||
|
#if defined(USE_NGTCP2) && defined(USE_NGHTTP3)
|
||
|
#include <ngtcp2/ngtcp2.h>
|
||
|
#include <nghttp3/nghttp3.h>
|
||
|
|
||
|
#ifdef USE_OPENSSL
|
||
|
#include <openssl/err.h>
|
||
|
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
|
||
|
#include <ngtcp2/ngtcp2_crypto_boringssl.h>
|
||
|
#else
|
||
|
#include <ngtcp2/ngtcp2_crypto_quictls.h>
|
||
|
#endif
|
||
|
#include "vtls/openssl.h"
|
||
|
#elif defined(USE_GNUTLS)
|
||
|
#include <ngtcp2/ngtcp2_crypto_gnutls.h>
|
||
|
#include "vtls/gtls.h"
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
#include <ngtcp2/ngtcp2_crypto_wolfssl.h>
|
||
|
#include "vtls/wolfssl.h"
|
||
|
#endif
|
||
|
|
||
|
#include "urldata.h"
|
||
|
#include "sendf.h"
|
||
|
#include "strdup.h"
|
||
|
#include "rand.h"
|
||
|
#include "multiif.h"
|
||
|
#include "strcase.h"
|
||
|
#include "cfilters.h"
|
||
|
#include "cf-socket.h"
|
||
|
#include "connect.h"
|
||
|
#include "progress.h"
|
||
|
#include "strerror.h"
|
||
|
#include "dynbuf.h"
|
||
|
#include "http1.h"
|
||
|
#include "select.h"
|
||
|
#include "inet_pton.h"
|
||
|
#include "vquic.h"
|
||
|
#include "vquic_int.h"
|
||
|
#include "vtls/keylog.h"
|
||
|
#include "vtls/vtls.h"
|
||
|
#include "curl_ngtcp2.h"
|
||
|
|
||
|
#include "warnless.h"
|
||
|
|
||
|
/* The last 3 #include files should be in this order */
|
||
|
#include "curl_printf.h"
|
||
|
#include "curl_memory.h"
|
||
|
#include "memdebug.h"
|
||
|
|
||
|
|
||
|
#define H3_ALPN_H3_29 "\x5h3-29"
|
||
|
#define H3_ALPN_H3 "\x2h3"
|
||
|
|
||
|
#define QUIC_MAX_STREAMS (256*1024)
|
||
|
#define QUIC_MAX_DATA (1*1024*1024)
|
||
|
#define QUIC_HANDSHAKE_TIMEOUT (10*NGTCP2_SECONDS)
|
||
|
|
||
|
/* A stream window is the maximum amount we need to buffer for
|
||
|
* each active transfer. We use HTTP/3 flow control and only ACK
|
||
|
* when we take things out of the buffer.
|
||
|
* Chunk size is large enough to take a full DATA frame */
|
||
|
#define H3_STREAM_WINDOW_SIZE (128 * 1024)
|
||
|
#define H3_STREAM_CHUNK_SIZE (16 * 1024)
|
||
|
/* The pool keeps spares around and half of a full stream windows
|
||
|
* seems good. More does not seem to improve performance.
|
||
|
* The benefit of the pool is that stream buffer to not keep
|
||
|
* spares. So memory consumption goes down when streams run empty,
|
||
|
* have a large upload done, etc. */
|
||
|
#define H3_STREAM_POOL_SPARES \
|
||
|
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE ) / 2
|
||
|
/* Receive and Send max number of chunks just follows from the
|
||
|
* chunk size and window size */
|
||
|
#define H3_STREAM_RECV_CHUNKS \
|
||
|
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE)
|
||
|
#define H3_STREAM_SEND_CHUNKS \
|
||
|
(H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE)
|
||
|
|
||
|
|
||
|
#ifdef USE_OPENSSL
|
||
|
#define QUIC_CIPHERS \
|
||
|
"TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_" \
|
||
|
"POLY1305_SHA256:TLS_AES_128_CCM_SHA256"
|
||
|
#define QUIC_GROUPS "P-256:X25519:P-384:P-521"
|
||
|
#elif defined(USE_GNUTLS)
|
||
|
#define QUIC_PRIORITY \
|
||
|
"NORMAL:-VERS-ALL:+VERS-TLS1.3:-CIPHER-ALL:+AES-128-GCM:+AES-256-GCM:" \
|
||
|
"+CHACHA20-POLY1305:+AES-128-CCM:-GROUP-ALL:+GROUP-SECP256R1:" \
|
||
|
"+GROUP-X25519:+GROUP-SECP384R1:+GROUP-SECP521R1:" \
|
||
|
"%DISABLE_TLS13_COMPAT_MODE"
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
#define QUIC_CIPHERS \
|
||
|
"TLS_AES_128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_" \
|
||
|
"POLY1305_SHA256:TLS_AES_128_CCM_SHA256"
|
||
|
#define QUIC_GROUPS "P-256:P-384:P-521"
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Store ngtcp2 version info in this buffer.
|
||
|
*/
|
||
|
void Curl_ngtcp2_ver(char *p, size_t len)
|
||
|
{
|
||
|
const ngtcp2_info *ng2 = ngtcp2_version(0);
|
||
|
const nghttp3_info *ht3 = nghttp3_version(0);
|
||
|
(void)msnprintf(p, len, "ngtcp2/%s nghttp3/%s",
|
||
|
ng2->version_str, ht3->version_str);
|
||
|
}
|
||
|
|
||
|
struct cf_ngtcp2_ctx {
|
||
|
struct cf_quic_ctx q;
|
||
|
struct ssl_peer peer;
|
||
|
ngtcp2_path connected_path;
|
||
|
ngtcp2_conn *qconn;
|
||
|
ngtcp2_cid dcid;
|
||
|
ngtcp2_cid scid;
|
||
|
uint32_t version;
|
||
|
ngtcp2_settings settings;
|
||
|
ngtcp2_transport_params transport_params;
|
||
|
ngtcp2_ccerr last_error;
|
||
|
ngtcp2_crypto_conn_ref conn_ref;
|
||
|
#ifdef USE_OPENSSL
|
||
|
SSL_CTX *sslctx;
|
||
|
SSL *ssl;
|
||
|
#elif defined(USE_GNUTLS)
|
||
|
struct gtls_instance *gtls;
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
WOLFSSL_CTX *sslctx;
|
||
|
WOLFSSL *ssl;
|
||
|
#endif
|
||
|
struct cf_call_data call_data;
|
||
|
nghttp3_conn *h3conn;
|
||
|
nghttp3_settings h3settings;
|
||
|
struct curltime started_at; /* time the current attempt started */
|
||
|
struct curltime handshake_at; /* time connect handshake finished */
|
||
|
struct curltime first_byte_at; /* when first byte was recvd */
|
||
|
struct curltime reconnect_at; /* time the next attempt should start */
|
||
|
struct bufc_pool stream_bufcp; /* chunk pool for streams */
|
||
|
size_t max_stream_window; /* max flow window for one stream */
|
||
|
uint64_t max_idle_ms; /* max idle time for QUIC connection */
|
||
|
int qlogfd;
|
||
|
BIT(got_first_byte); /* if first byte was received */
|
||
|
#ifdef USE_OPENSSL
|
||
|
BIT(x509_store_setup); /* if x509 store has been set up */
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
/* How to access `call_data` from a cf_ngtcp2 filter */
|
||
|
#undef CF_CTX_CALL_DATA
|
||
|
#define CF_CTX_CALL_DATA(cf) \
|
||
|
((struct cf_ngtcp2_ctx *)(cf)->ctx)->call_data
|
||
|
|
||
|
/**
|
||
|
* All about the H3 internals of a stream
|
||
|
*/
|
||
|
struct h3_stream_ctx {
|
||
|
int64_t id; /* HTTP/3 protocol identifier */
|
||
|
struct bufq sendbuf; /* h3 request body */
|
||
|
struct bufq recvbuf; /* h3 response body */
|
||
|
struct h1_req_parser h1; /* h1 request parsing */
|
||
|
size_t sendbuf_len_in_flight; /* sendbuf amount "in flight" */
|
||
|
size_t upload_blocked_len; /* the amount written last and EGAINed */
|
||
|
size_t recv_buf_nonflow; /* buffered bytes, not counting for flow control */
|
||
|
uint64_t error3; /* HTTP/3 stream error code */
|
||
|
curl_off_t upload_left; /* number of request bytes left to upload */
|
||
|
int status_code; /* HTTP status code */
|
||
|
bool resp_hds_complete; /* we have a complete, final response */
|
||
|
bool closed; /* TRUE on stream close */
|
||
|
bool reset; /* TRUE on stream reset */
|
||
|
bool send_closed; /* stream is local closed */
|
||
|
BIT(quic_flow_blocked); /* stream is blocked by QUIC flow control */
|
||
|
};
|
||
|
|
||
|
#define H3_STREAM_CTX(d) ((struct h3_stream_ctx *)(((d) && (d)->req.p.http)? \
|
||
|
((struct HTTP *)(d)->req.p.http)->h3_ctx \
|
||
|
: NULL))
|
||
|
#define H3_STREAM_LCTX(d) ((struct HTTP *)(d)->req.p.http)->h3_ctx
|
||
|
#define H3_STREAM_ID(d) (H3_STREAM_CTX(d)? \
|
||
|
H3_STREAM_CTX(d)->id : -2)
|
||
|
|
||
|
static CURLcode h3_data_setup(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
|
||
|
if(!data || !data->req.p.http) {
|
||
|
failf(data, "initialization failure, transfer not http initialized");
|
||
|
return CURLE_FAILED_INIT;
|
||
|
}
|
||
|
|
||
|
if(stream)
|
||
|
return CURLE_OK;
|
||
|
|
||
|
stream = calloc(1, sizeof(*stream));
|
||
|
if(!stream)
|
||
|
return CURLE_OUT_OF_MEMORY;
|
||
|
|
||
|
stream->id = -1;
|
||
|
/* on send, we control how much we put into the buffer */
|
||
|
Curl_bufq_initp(&stream->sendbuf, &ctx->stream_bufcp,
|
||
|
H3_STREAM_SEND_CHUNKS, BUFQ_OPT_NONE);
|
||
|
stream->sendbuf_len_in_flight = 0;
|
||
|
/* on recv, we need a flexible buffer limit since we also write
|
||
|
* headers to it that are not counted against the nghttp3 flow limits. */
|
||
|
Curl_bufq_initp(&stream->recvbuf, &ctx->stream_bufcp,
|
||
|
H3_STREAM_RECV_CHUNKS, BUFQ_OPT_SOFT_LIMIT);
|
||
|
stream->recv_buf_nonflow = 0;
|
||
|
Curl_h1_req_parse_init(&stream->h1, H1_PARSE_DEFAULT_MAX_LINE_LEN);
|
||
|
|
||
|
H3_STREAM_LCTX(data) = stream;
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
static void h3_data_done(struct Curl_cfilter *cf, struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
|
||
|
(void)cf;
|
||
|
if(stream) {
|
||
|
CURL_TRC_CF(data, cf, "[%"PRId64"] easy handle is done", stream->id);
|
||
|
if(ctx->h3conn && !stream->closed) {
|
||
|
nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream->id);
|
||
|
nghttp3_conn_close_stream(ctx->h3conn, stream->id,
|
||
|
NGHTTP3_H3_REQUEST_CANCELLED);
|
||
|
nghttp3_conn_set_stream_user_data(ctx->h3conn, stream->id, NULL);
|
||
|
stream->closed = TRUE;
|
||
|
}
|
||
|
|
||
|
Curl_bufq_free(&stream->sendbuf);
|
||
|
Curl_bufq_free(&stream->recvbuf);
|
||
|
Curl_h1_req_parse_free(&stream->h1);
|
||
|
free(stream);
|
||
|
H3_STREAM_LCTX(data) = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static struct Curl_easy *get_stream_easy(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
int64_t stream_id)
|
||
|
{
|
||
|
struct Curl_easy *sdata;
|
||
|
|
||
|
(void)cf;
|
||
|
if(H3_STREAM_ID(data) == stream_id) {
|
||
|
return data;
|
||
|
}
|
||
|
else {
|
||
|
DEBUGASSERT(data->multi);
|
||
|
for(sdata = data->multi->easyp; sdata; sdata = sdata->next) {
|
||
|
if((sdata->conn == data->conn) && H3_STREAM_ID(sdata) == stream_id) {
|
||
|
return sdata;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static void h3_drain_stream(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
unsigned char bits;
|
||
|
|
||
|
(void)cf;
|
||
|
bits = CURL_CSELECT_IN;
|
||
|
if(stream && stream->upload_left && !stream->send_closed)
|
||
|
bits |= CURL_CSELECT_OUT;
|
||
|
if(data->state.dselect_bits != bits) {
|
||
|
data->state.dselect_bits = bits;
|
||
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* ngtcp2 default congestion controller does not perform pacing. Limit
|
||
|
the maximum packet burst to MAX_PKT_BURST packets. */
|
||
|
#define MAX_PKT_BURST 10
|
||
|
|
||
|
struct pkt_io_ctx {
|
||
|
struct Curl_cfilter *cf;
|
||
|
struct Curl_easy *data;
|
||
|
ngtcp2_tstamp ts;
|
||
|
size_t pkt_count;
|
||
|
ngtcp2_path_storage ps;
|
||
|
};
|
||
|
|
||
|
static void pktx_update_time(struct pkt_io_ctx *pktx,
|
||
|
struct Curl_cfilter *cf)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
|
||
|
vquic_ctx_update_time(&ctx->q);
|
||
|
pktx->ts = ctx->q.last_op.tv_sec * NGTCP2_SECONDS +
|
||
|
ctx->q.last_op.tv_usec * NGTCP2_MICROSECONDS;
|
||
|
}
|
||
|
|
||
|
static void pktx_init(struct pkt_io_ctx *pktx,
|
||
|
struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
pktx->cf = cf;
|
||
|
pktx->data = data;
|
||
|
pktx->pkt_count = 0;
|
||
|
ngtcp2_path_storage_zero(&pktx->ps);
|
||
|
pktx_update_time(pktx, cf);
|
||
|
}
|
||
|
|
||
|
static CURLcode cf_progress_ingress(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct pkt_io_ctx *pktx);
|
||
|
static CURLcode cf_progress_egress(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct pkt_io_ctx *pktx);
|
||
|
static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id,
|
||
|
uint64_t datalen, void *user_data,
|
||
|
void *stream_user_data);
|
||
|
|
||
|
static ngtcp2_conn *get_conn(ngtcp2_crypto_conn_ref *conn_ref)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = conn_ref->user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
return ctx->qconn;
|
||
|
}
|
||
|
|
||
|
#ifdef DEBUG_NGTCP2
|
||
|
static void quic_printf(void *user_data, const char *fmt, ...)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
|
||
|
(void)ctx; /* TODO: need an easy handle to infof() message */
|
||
|
va_list ap;
|
||
|
va_start(ap, fmt);
|
||
|
vfprintf(stderr, fmt, ap);
|
||
|
va_end(ap);
|
||
|
fprintf(stderr, "\n");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void qlog_callback(void *user_data, uint32_t flags,
|
||
|
const void *data, size_t datalen)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
(void)flags;
|
||
|
if(ctx->qlogfd != -1) {
|
||
|
ssize_t rc = write(ctx->qlogfd, data, datalen);
|
||
|
if(rc == -1) {
|
||
|
/* on write error, stop further write attempts */
|
||
|
close(ctx->qlogfd);
|
||
|
ctx->qlogfd = -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
static void quic_settings(struct cf_ngtcp2_ctx *ctx,
|
||
|
struct Curl_easy *data,
|
||
|
struct pkt_io_ctx *pktx)
|
||
|
{
|
||
|
ngtcp2_settings *s = &ctx->settings;
|
||
|
ngtcp2_transport_params *t = &ctx->transport_params;
|
||
|
|
||
|
ngtcp2_settings_default(s);
|
||
|
ngtcp2_transport_params_default(t);
|
||
|
#ifdef DEBUG_NGTCP2
|
||
|
s->log_printf = quic_printf;
|
||
|
#else
|
||
|
s->log_printf = NULL;
|
||
|
#endif
|
||
|
|
||
|
(void)data;
|
||
|
s->initial_ts = pktx->ts;
|
||
|
s->handshake_timeout = QUIC_HANDSHAKE_TIMEOUT;
|
||
|
s->max_window = 100 * ctx->max_stream_window;
|
||
|
s->max_stream_window = ctx->max_stream_window;
|
||
|
|
||
|
t->initial_max_data = 10 * ctx->max_stream_window;
|
||
|
t->initial_max_stream_data_bidi_local = ctx->max_stream_window;
|
||
|
t->initial_max_stream_data_bidi_remote = ctx->max_stream_window;
|
||
|
t->initial_max_stream_data_uni = ctx->max_stream_window;
|
||
|
t->initial_max_streams_bidi = QUIC_MAX_STREAMS;
|
||
|
t->initial_max_streams_uni = QUIC_MAX_STREAMS;
|
||
|
t->max_idle_timeout = (ctx->max_idle_ms * NGTCP2_MILLISECONDS);
|
||
|
if(ctx->qlogfd != -1) {
|
||
|
s->qlog_write = qlog_callback;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef USE_OPENSSL
|
||
|
static void keylog_callback(const SSL *ssl, const char *line)
|
||
|
{
|
||
|
(void)ssl;
|
||
|
Curl_tls_keylog_write_line(line);
|
||
|
}
|
||
|
#elif defined(USE_GNUTLS)
|
||
|
static int keylog_callback(gnutls_session_t session, const char *label,
|
||
|
const gnutls_datum_t *secret)
|
||
|
{
|
||
|
gnutls_datum_t crandom;
|
||
|
gnutls_datum_t srandom;
|
||
|
|
||
|
gnutls_session_get_random(session, &crandom, &srandom);
|
||
|
if(crandom.size != 32) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
Curl_tls_keylog_write(label, crandom.data, secret->data, secret->size);
|
||
|
return 0;
|
||
|
}
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
#if defined(HAVE_SECRET_CALLBACK)
|
||
|
static void keylog_callback(const WOLFSSL *ssl, const char *line)
|
||
|
{
|
||
|
(void)ssl;
|
||
|
Curl_tls_keylog_write_line(line);
|
||
|
}
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
static int init_ngh3_conn(struct Curl_cfilter *cf);
|
||
|
|
||
|
#ifdef USE_OPENSSL
|
||
|
static CURLcode quic_ssl_ctx(SSL_CTX **pssl_ctx,
|
||
|
struct Curl_cfilter *cf, struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct ssl_primary_config *conn_config;
|
||
|
CURLcode result = CURLE_FAILED_INIT;
|
||
|
|
||
|
SSL_CTX *ssl_ctx = SSL_CTX_new(TLS_method());
|
||
|
if(!ssl_ctx) {
|
||
|
result = CURLE_OUT_OF_MEMORY;
|
||
|
goto out;
|
||
|
}
|
||
|
conn_config = Curl_ssl_cf_get_primary_config(cf);
|
||
|
if(!conn_config) {
|
||
|
result = CURLE_FAILED_INIT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
#if defined(OPENSSL_IS_BORINGSSL) || defined(OPENSSL_IS_AWSLC)
|
||
|
if(ngtcp2_crypto_boringssl_configure_client_context(ssl_ctx) != 0) {
|
||
|
failf(data, "ngtcp2_crypto_boringssl_configure_client_context failed");
|
||
|
goto out;
|
||
|
}
|
||
|
#else
|
||
|
if(ngtcp2_crypto_quictls_configure_client_context(ssl_ctx) != 0) {
|
||
|
failf(data, "ngtcp2_crypto_quictls_configure_client_context failed");
|
||
|
goto out;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
SSL_CTX_set_default_verify_paths(ssl_ctx);
|
||
|
|
||
|
{
|
||
|
const char *curves = conn_config->curves ?
|
||
|
conn_config->curves : QUIC_GROUPS;
|
||
|
if(!SSL_CTX_set1_curves_list(ssl_ctx, curves)) {
|
||
|
failf(data, "failed setting curves list for QUIC: '%s'", curves);
|
||
|
return CURLE_SSL_CIPHER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef OPENSSL_IS_BORINGSSL
|
||
|
{
|
||
|
const char *ciphers13 = conn_config->cipher_list13 ?
|
||
|
conn_config->cipher_list13 : QUIC_CIPHERS;
|
||
|
if(SSL_CTX_set_ciphersuites(ssl_ctx, ciphers13) != 1) {
|
||
|
failf(data, "failed setting QUIC cipher suite: %s", ciphers13);
|
||
|
return CURLE_SSL_CIPHER;
|
||
|
}
|
||
|
infof(data, "QUIC cipher selection: %s", ciphers13);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Open the file if a TLS or QUIC backend has not done this before. */
|
||
|
Curl_tls_keylog_open();
|
||
|
if(Curl_tls_keylog_enabled()) {
|
||
|
SSL_CTX_set_keylog_callback(ssl_ctx, keylog_callback);
|
||
|
}
|
||
|
|
||
|
/* OpenSSL always tries to verify the peer, this only says whether it should
|
||
|
* fail to connect if the verification fails, or if it should continue
|
||
|
* anyway. In the latter case the result of the verification is checked with
|
||
|
* SSL_get_verify_result() below. */
|
||
|
SSL_CTX_set_verify(ssl_ctx, conn_config->verifypeer ?
|
||
|
SSL_VERIFY_PEER : SSL_VERIFY_NONE, NULL);
|
||
|
|
||
|
/* give application a chance to interfere with SSL set up. */
|
||
|
if(data->set.ssl.fsslctx) {
|
||
|
/* When a user callback is installed to modify the SSL_CTX,
|
||
|
* we need to do the full initialization before calling it.
|
||
|
* See: #11800 */
|
||
|
if(!ctx->x509_store_setup) {
|
||
|
result = Curl_ssl_setup_x509_store(cf, data, ssl_ctx);
|
||
|
if(result)
|
||
|
goto out;
|
||
|
ctx->x509_store_setup = TRUE;
|
||
|
}
|
||
|
Curl_set_in_callback(data, true);
|
||
|
result = (*data->set.ssl.fsslctx)(data, ssl_ctx,
|
||
|
data->set.ssl.fsslctxp);
|
||
|
Curl_set_in_callback(data, false);
|
||
|
if(result) {
|
||
|
failf(data, "error signaled by ssl ctx callback");
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
result = CURLE_OK;
|
||
|
|
||
|
out:
|
||
|
*pssl_ctx = result? NULL : ssl_ctx;
|
||
|
if(result && ssl_ctx)
|
||
|
SSL_CTX_free(ssl_ctx);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static CURLcode quic_set_client_cert(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
SSL_CTX *ssl_ctx = ctx->sslctx;
|
||
|
const struct ssl_config_data *ssl_config;
|
||
|
|
||
|
ssl_config = Curl_ssl_cf_get_config(cf, data);
|
||
|
DEBUGASSERT(ssl_config);
|
||
|
|
||
|
if(ssl_config->primary.clientcert || ssl_config->primary.cert_blob
|
||
|
|| ssl_config->cert_type) {
|
||
|
return Curl_ossl_set_client_cert(
|
||
|
data, ssl_ctx, ssl_config->primary.clientcert,
|
||
|
ssl_config->primary.cert_blob, ssl_config->cert_type,
|
||
|
ssl_config->key, ssl_config->key_blob,
|
||
|
ssl_config->key_type, ssl_config->key_passwd);
|
||
|
}
|
||
|
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
/** SSL callbacks ***/
|
||
|
|
||
|
static CURLcode quic_init_ssl(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
const uint8_t *alpn = NULL;
|
||
|
size_t alpnlen = 0;
|
||
|
|
||
|
DEBUGASSERT(!ctx->ssl);
|
||
|
ctx->ssl = SSL_new(ctx->sslctx);
|
||
|
|
||
|
SSL_set_app_data(ctx->ssl, &ctx->conn_ref);
|
||
|
SSL_set_connect_state(ctx->ssl);
|
||
|
SSL_set_quic_use_legacy_codepoint(ctx->ssl, 0);
|
||
|
|
||
|
alpn = (const uint8_t *)H3_ALPN_H3_29 H3_ALPN_H3;
|
||
|
alpnlen = sizeof(H3_ALPN_H3_29) - 1 + sizeof(H3_ALPN_H3) - 1;
|
||
|
if(alpn)
|
||
|
SSL_set_alpn_protos(ctx->ssl, alpn, (int)alpnlen);
|
||
|
|
||
|
/* set SNI */
|
||
|
if(ctx->peer.sni) {
|
||
|
if(!SSL_set_tlsext_host_name(ctx->ssl, ctx->peer.sni)) {
|
||
|
failf(data, "Failed set SNI");
|
||
|
SSL_free(ctx->ssl);
|
||
|
ctx->ssl = NULL;
|
||
|
return CURLE_QUIC_CONNECT_ERROR;
|
||
|
}
|
||
|
}
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
#elif defined(USE_GNUTLS)
|
||
|
static CURLcode quic_init_ssl(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct ssl_primary_config *conn_config;
|
||
|
CURLcode result;
|
||
|
gnutls_datum_t alpn[2];
|
||
|
/* this will need some attention when HTTPS proxy over QUIC get fixed */
|
||
|
long * const pverifyresult = &data->set.ssl.certverifyresult;
|
||
|
int rc;
|
||
|
|
||
|
conn_config = Curl_ssl_cf_get_primary_config(cf);
|
||
|
if(!conn_config)
|
||
|
return CURLE_FAILED_INIT;
|
||
|
|
||
|
DEBUGASSERT(ctx->gtls == NULL);
|
||
|
ctx->gtls = calloc(1, sizeof(*(ctx->gtls)));
|
||
|
if(!ctx->gtls)
|
||
|
return CURLE_OUT_OF_MEMORY;
|
||
|
|
||
|
result = gtls_client_init(data, conn_config, &data->set.ssl,
|
||
|
&ctx->peer, ctx->gtls, pverifyresult);
|
||
|
if(result)
|
||
|
return result;
|
||
|
|
||
|
gnutls_session_set_ptr(ctx->gtls->session, &ctx->conn_ref);
|
||
|
|
||
|
if(ngtcp2_crypto_gnutls_configure_client_session(ctx->gtls->session) != 0) {
|
||
|
CURL_TRC_CF(data, cf,
|
||
|
"ngtcp2_crypto_gnutls_configure_client_session failed\n");
|
||
|
return CURLE_QUIC_CONNECT_ERROR;
|
||
|
}
|
||
|
|
||
|
rc = gnutls_priority_set_direct(ctx->gtls->session, QUIC_PRIORITY, NULL);
|
||
|
if(rc < 0) {
|
||
|
CURL_TRC_CF(data, cf, "gnutls_priority_set_direct failed: %s\n",
|
||
|
gnutls_strerror(rc));
|
||
|
return CURLE_QUIC_CONNECT_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Open the file if a TLS or QUIC backend has not done this before. */
|
||
|
Curl_tls_keylog_open();
|
||
|
if(Curl_tls_keylog_enabled()) {
|
||
|
gnutls_session_set_keylog_function(ctx->gtls->session, keylog_callback);
|
||
|
}
|
||
|
|
||
|
/* strip the first byte (the length) from NGHTTP3_ALPN_H3 */
|
||
|
alpn[0].data = (unsigned char *)H3_ALPN_H3_29 + 1;
|
||
|
alpn[0].size = sizeof(H3_ALPN_H3_29) - 2;
|
||
|
alpn[1].data = (unsigned char *)H3_ALPN_H3 + 1;
|
||
|
alpn[1].size = sizeof(H3_ALPN_H3) - 2;
|
||
|
|
||
|
gnutls_alpn_set_protocols(ctx->gtls->session,
|
||
|
alpn, 2, GNUTLS_ALPN_MANDATORY);
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
|
||
|
static CURLcode quic_ssl_ctx(WOLFSSL_CTX **pssl_ctx,
|
||
|
struct Curl_cfilter *cf, struct Curl_easy *data)
|
||
|
{
|
||
|
CURLcode result = CURLE_FAILED_INIT;
|
||
|
struct ssl_primary_config *conn_config;
|
||
|
WOLFSSL_CTX *ssl_ctx = NULL;
|
||
|
|
||
|
conn_config = Curl_ssl_cf_get_primary_config(cf);
|
||
|
if(!conn_config) {
|
||
|
result = CURLE_FAILED_INIT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ssl_ctx = wolfSSL_CTX_new(wolfTLSv1_3_client_method());
|
||
|
if(!ssl_ctx) {
|
||
|
result = CURLE_OUT_OF_MEMORY;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if(ngtcp2_crypto_wolfssl_configure_client_context(ssl_ctx) != 0) {
|
||
|
failf(data, "ngtcp2_crypto_wolfssl_configure_client_context failed");
|
||
|
result = CURLE_FAILED_INIT;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
wolfSSL_CTX_set_default_verify_paths(ssl_ctx);
|
||
|
|
||
|
if(wolfSSL_CTX_set_cipher_list(ssl_ctx, conn_config->cipher_list13 ?
|
||
|
conn_config->cipher_list13 :
|
||
|
QUIC_CIPHERS) != 1) {
|
||
|
char error_buffer[256];
|
||
|
ERR_error_string_n(ERR_get_error(), error_buffer, sizeof(error_buffer));
|
||
|
failf(data, "wolfSSL failed to set ciphers: %s", error_buffer);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if(wolfSSL_CTX_set1_groups_list(ssl_ctx, conn_config->curves ?
|
||
|
conn_config->curves :
|
||
|
(char *)QUIC_GROUPS) != 1) {
|
||
|
failf(data, "wolfSSL failed to set curves");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Open the file if a TLS or QUIC backend has not done this before. */
|
||
|
Curl_tls_keylog_open();
|
||
|
if(Curl_tls_keylog_enabled()) {
|
||
|
#if defined(HAVE_SECRET_CALLBACK)
|
||
|
wolfSSL_CTX_set_keylog_callback(ssl_ctx, keylog_callback);
|
||
|
#else
|
||
|
failf(data, "wolfSSL was built without keylog callback");
|
||
|
goto out;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
if(conn_config->verifypeer) {
|
||
|
const char * const ssl_cafile = conn_config->CAfile;
|
||
|
const char * const ssl_capath = conn_config->CApath;
|
||
|
|
||
|
wolfSSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_PEER, NULL);
|
||
|
if(ssl_cafile || ssl_capath) {
|
||
|
/* tell wolfSSL where to find CA certificates that are used to verify
|
||
|
the server's certificate. */
|
||
|
int rc =
|
||
|
wolfSSL_CTX_load_verify_locations_ex(ssl_ctx, ssl_cafile, ssl_capath,
|
||
|
WOLFSSL_LOAD_FLAG_IGNORE_ERR);
|
||
|
if(SSL_SUCCESS != rc) {
|
||
|
/* Fail if we insist on successfully verifying the server. */
|
||
|
failf(data, "error setting certificate verify locations:"
|
||
|
" CAfile: %s CApath: %s",
|
||
|
ssl_cafile ? ssl_cafile : "none",
|
||
|
ssl_capath ? ssl_capath : "none");
|
||
|
goto out;
|
||
|
}
|
||
|
infof(data, " CAfile: %s", ssl_cafile ? ssl_cafile : "none");
|
||
|
infof(data, " CApath: %s", ssl_capath ? ssl_capath : "none");
|
||
|
}
|
||
|
#ifdef CURL_CA_FALLBACK
|
||
|
else {
|
||
|
/* verifying the peer without any CA certificates won't work so
|
||
|
use wolfssl's built-in default as fallback */
|
||
|
wolfSSL_CTX_set_default_verify_paths(ssl_ctx);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
else {
|
||
|
wolfSSL_CTX_set_verify(ssl_ctx, SSL_VERIFY_NONE, NULL);
|
||
|
}
|
||
|
|
||
|
/* give application a chance to interfere with SSL set up. */
|
||
|
if(data->set.ssl.fsslctx) {
|
||
|
Curl_set_in_callback(data, true);
|
||
|
result = (*data->set.ssl.fsslctx)(data, ssl_ctx,
|
||
|
data->set.ssl.fsslctxp);
|
||
|
Curl_set_in_callback(data, false);
|
||
|
if(result) {
|
||
|
failf(data, "error signaled by ssl ctx callback");
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
result = CURLE_OK;
|
||
|
|
||
|
out:
|
||
|
*pssl_ctx = result? NULL : ssl_ctx;
|
||
|
if(result && ssl_ctx)
|
||
|
SSL_CTX_free(ssl_ctx);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/** SSL callbacks ***/
|
||
|
|
||
|
static CURLcode quic_init_ssl(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
const uint8_t *alpn = NULL;
|
||
|
size_t alpnlen = 0;
|
||
|
/* this will need some attention when HTTPS proxy over QUIC get fixed */
|
||
|
const char * const hostname = cf->conn->host.name;
|
||
|
|
||
|
(void)data;
|
||
|
DEBUGASSERT(!ctx->ssl);
|
||
|
ctx->ssl = wolfSSL_new(ctx->sslctx);
|
||
|
|
||
|
wolfSSL_set_app_data(ctx->ssl, &ctx->conn_ref);
|
||
|
wolfSSL_set_connect_state(ctx->ssl);
|
||
|
wolfSSL_set_quic_use_legacy_codepoint(ctx->ssl, 0);
|
||
|
|
||
|
alpn = (const uint8_t *)H3_ALPN_H3_29 H3_ALPN_H3;
|
||
|
alpnlen = sizeof(H3_ALPN_H3_29) - 1 + sizeof(H3_ALPN_H3) - 1;
|
||
|
if(alpn)
|
||
|
wolfSSL_set_alpn_protos(ctx->ssl, alpn, (int)alpnlen);
|
||
|
|
||
|
/* set SNI */
|
||
|
wolfSSL_UseSNI(ctx->ssl, WOLFSSL_SNI_HOST_NAME,
|
||
|
hostname, (unsigned short)strlen(hostname));
|
||
|
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
#endif /* defined(USE_WOLFSSL) */
|
||
|
|
||
|
static int cb_handshake_completed(ngtcp2_conn *tconn, void *user_data)
|
||
|
{
|
||
|
(void)user_data;
|
||
|
(void)tconn;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void report_consumed_data(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
size_t consumed)
|
||
|
{
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
|
||
|
if(!stream)
|
||
|
return;
|
||
|
/* the HTTP/1.1 response headers are written to the buffer, but
|
||
|
* consuming those does not count against flow control. */
|
||
|
if(stream->recv_buf_nonflow) {
|
||
|
if(consumed >= stream->recv_buf_nonflow) {
|
||
|
consumed -= stream->recv_buf_nonflow;
|
||
|
stream->recv_buf_nonflow = 0;
|
||
|
}
|
||
|
else {
|
||
|
stream->recv_buf_nonflow -= consumed;
|
||
|
consumed = 0;
|
||
|
}
|
||
|
}
|
||
|
if(consumed > 0) {
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] ACK %zu bytes of DATA",
|
||
|
stream->id, consumed);
|
||
|
ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream->id,
|
||
|
consumed);
|
||
|
ngtcp2_conn_extend_max_offset(ctx->qconn, consumed);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int cb_recv_stream_data(ngtcp2_conn *tconn, uint32_t flags,
|
||
|
int64_t stream_id, uint64_t offset,
|
||
|
const uint8_t *buf, size_t buflen,
|
||
|
void *user_data, void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
nghttp3_ssize nconsumed;
|
||
|
int fin = (flags & NGTCP2_STREAM_DATA_FLAG_FIN) ? 1 : 0;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
(void)offset;
|
||
|
(void)data;
|
||
|
|
||
|
nconsumed =
|
||
|
nghttp3_conn_read_stream(ctx->h3conn, stream_id, buf, buflen, fin);
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] read_stream(len=%zu) -> %zd",
|
||
|
stream_id, buflen, nconsumed);
|
||
|
if(nconsumed < 0) {
|
||
|
ngtcp2_ccerr_set_application_error(
|
||
|
&ctx->last_error,
|
||
|
nghttp3_err_infer_quic_app_error_code((int)nconsumed), NULL, 0);
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
/* number of bytes inside buflen which consists of framing overhead
|
||
|
* including QPACK HEADERS. In other words, it does not consume payload of
|
||
|
* DATA frame. */
|
||
|
ngtcp2_conn_extend_max_stream_offset(tconn, stream_id, nconsumed);
|
||
|
ngtcp2_conn_extend_max_offset(tconn, nconsumed);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
cb_acked_stream_data_offset(ngtcp2_conn *tconn, int64_t stream_id,
|
||
|
uint64_t offset, uint64_t datalen, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
int rv;
|
||
|
(void)stream_id;
|
||
|
(void)tconn;
|
||
|
(void)offset;
|
||
|
(void)datalen;
|
||
|
(void)stream_user_data;
|
||
|
|
||
|
rv = nghttp3_conn_add_ack_offset(ctx->h3conn, stream_id, datalen);
|
||
|
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_stream_close(ngtcp2_conn *tconn, uint32_t flags,
|
||
|
int64_t stream3_id, uint64_t app_error_code,
|
||
|
void *user_data, void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
int rv;
|
||
|
|
||
|
(void)tconn;
|
||
|
(void)data;
|
||
|
/* stream is closed... */
|
||
|
|
||
|
if(!(flags & NGTCP2_STREAM_CLOSE_FLAG_APP_ERROR_CODE_SET)) {
|
||
|
app_error_code = NGHTTP3_H3_NO_ERROR;
|
||
|
}
|
||
|
|
||
|
rv = nghttp3_conn_close_stream(ctx->h3conn, stream3_id,
|
||
|
app_error_code);
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] quic close(err=%"
|
||
|
PRIu64 ") -> %d", stream3_id, app_error_code, rv);
|
||
|
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
|
||
|
ngtcp2_ccerr_set_application_error(
|
||
|
&ctx->last_error, nghttp3_err_infer_quic_app_error_code(rv), NULL, 0);
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_stream_reset(ngtcp2_conn *tconn, int64_t stream_id,
|
||
|
uint64_t final_size, uint64_t app_error_code,
|
||
|
void *user_data, void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
int rv;
|
||
|
(void)tconn;
|
||
|
(void)final_size;
|
||
|
(void)app_error_code;
|
||
|
(void)data;
|
||
|
|
||
|
rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id);
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] reset -> %d", stream_id, rv);
|
||
|
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_stream_stop_sending(ngtcp2_conn *tconn, int64_t stream_id,
|
||
|
uint64_t app_error_code, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
int rv;
|
||
|
(void)tconn;
|
||
|
(void)app_error_code;
|
||
|
(void)stream_user_data;
|
||
|
|
||
|
rv = nghttp3_conn_shutdown_stream_read(ctx->h3conn, stream_id);
|
||
|
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_extend_max_local_streams_bidi(ngtcp2_conn *tconn,
|
||
|
uint64_t max_streams,
|
||
|
void *user_data)
|
||
|
{
|
||
|
(void)tconn;
|
||
|
(void)max_streams;
|
||
|
(void)user_data;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_extend_max_stream_data(ngtcp2_conn *tconn, int64_t stream_id,
|
||
|
uint64_t max_data, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct Curl_easy *data = CF_DATA_CURRENT(cf);
|
||
|
struct Curl_easy *s_data;
|
||
|
struct h3_stream_ctx *stream;
|
||
|
int rv;
|
||
|
(void)tconn;
|
||
|
(void)max_data;
|
||
|
(void)stream_user_data;
|
||
|
|
||
|
rv = nghttp3_conn_unblock_stream(ctx->h3conn, stream_id);
|
||
|
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
s_data = get_stream_easy(cf, data, stream_id);
|
||
|
stream = H3_STREAM_CTX(s_data);
|
||
|
if(stream && stream->quic_flow_blocked) {
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] unblock quic flow", stream_id);
|
||
|
stream->quic_flow_blocked = FALSE;
|
||
|
h3_drain_stream(cf, data);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void cb_rand(uint8_t *dest, size_t destlen,
|
||
|
const ngtcp2_rand_ctx *rand_ctx)
|
||
|
{
|
||
|
CURLcode result;
|
||
|
(void)rand_ctx;
|
||
|
|
||
|
result = Curl_rand(NULL, dest, destlen);
|
||
|
if(result) {
|
||
|
/* cb_rand is only used for non-cryptographic context. If Curl_rand
|
||
|
failed, just fill 0 and call it *random*. */
|
||
|
memset(dest, 0, destlen);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int cb_get_new_connection_id(ngtcp2_conn *tconn, ngtcp2_cid *cid,
|
||
|
uint8_t *token, size_t cidlen,
|
||
|
void *user_data)
|
||
|
{
|
||
|
CURLcode result;
|
||
|
(void)tconn;
|
||
|
(void)user_data;
|
||
|
|
||
|
result = Curl_rand(NULL, cid->data, cidlen);
|
||
|
if(result)
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
cid->datalen = cidlen;
|
||
|
|
||
|
result = Curl_rand(NULL, token, NGTCP2_STATELESS_RESET_TOKENLEN);
|
||
|
if(result)
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_recv_rx_key(ngtcp2_conn *tconn, ngtcp2_encryption_level level,
|
||
|
void *user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
(void)tconn;
|
||
|
|
||
|
if(level != NGTCP2_ENCRYPTION_LEVEL_1RTT) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if(init_ngh3_conn(cf) != CURLE_OK) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static ngtcp2_callbacks ng_callbacks = {
|
||
|
ngtcp2_crypto_client_initial_cb,
|
||
|
NULL, /* recv_client_initial */
|
||
|
ngtcp2_crypto_recv_crypto_data_cb,
|
||
|
cb_handshake_completed,
|
||
|
NULL, /* recv_version_negotiation */
|
||
|
ngtcp2_crypto_encrypt_cb,
|
||
|
ngtcp2_crypto_decrypt_cb,
|
||
|
ngtcp2_crypto_hp_mask_cb,
|
||
|
cb_recv_stream_data,
|
||
|
cb_acked_stream_data_offset,
|
||
|
NULL, /* stream_open */
|
||
|
cb_stream_close,
|
||
|
NULL, /* recv_stateless_reset */
|
||
|
ngtcp2_crypto_recv_retry_cb,
|
||
|
cb_extend_max_local_streams_bidi,
|
||
|
NULL, /* extend_max_local_streams_uni */
|
||
|
cb_rand,
|
||
|
cb_get_new_connection_id,
|
||
|
NULL, /* remove_connection_id */
|
||
|
ngtcp2_crypto_update_key_cb, /* update_key */
|
||
|
NULL, /* path_validation */
|
||
|
NULL, /* select_preferred_addr */
|
||
|
cb_stream_reset,
|
||
|
NULL, /* extend_max_remote_streams_bidi */
|
||
|
NULL, /* extend_max_remote_streams_uni */
|
||
|
cb_extend_max_stream_data,
|
||
|
NULL, /* dcid_status */
|
||
|
NULL, /* handshake_confirmed */
|
||
|
NULL, /* recv_new_token */
|
||
|
ngtcp2_crypto_delete_crypto_aead_ctx_cb,
|
||
|
ngtcp2_crypto_delete_crypto_cipher_ctx_cb,
|
||
|
NULL, /* recv_datagram */
|
||
|
NULL, /* ack_datagram */
|
||
|
NULL, /* lost_datagram */
|
||
|
ngtcp2_crypto_get_path_challenge_data_cb,
|
||
|
cb_stream_stop_sending,
|
||
|
NULL, /* version_negotiation */
|
||
|
cb_recv_rx_key,
|
||
|
NULL, /* recv_tx_key */
|
||
|
NULL, /* early_data_rejected */
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Connection maintenance like timeouts on packet ACKs etc. are done by us, not
|
||
|
* the OS like for TCP. POLL events on the socket therefore are not
|
||
|
* sufficient.
|
||
|
* ngtcp2 tells us when it wants to be invoked again. We handle that via
|
||
|
* the `Curl_expire()` mechanisms.
|
||
|
*/
|
||
|
static CURLcode check_and_set_expiry(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct pkt_io_ctx *pktx)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct pkt_io_ctx local_pktx;
|
||
|
ngtcp2_tstamp expiry;
|
||
|
|
||
|
if(!pktx) {
|
||
|
pktx_init(&local_pktx, cf, data);
|
||
|
pktx = &local_pktx;
|
||
|
}
|
||
|
else {
|
||
|
pktx_update_time(pktx, cf);
|
||
|
}
|
||
|
|
||
|
expiry = ngtcp2_conn_get_expiry(ctx->qconn);
|
||
|
if(expiry != UINT64_MAX) {
|
||
|
if(expiry <= pktx->ts) {
|
||
|
CURLcode result;
|
||
|
int rv = ngtcp2_conn_handle_expiry(ctx->qconn, pktx->ts);
|
||
|
if(rv) {
|
||
|
failf(data, "ngtcp2_conn_handle_expiry returned error: %s",
|
||
|
ngtcp2_strerror(rv));
|
||
|
ngtcp2_ccerr_set_liberr(&ctx->last_error, rv, NULL, 0);
|
||
|
return CURLE_SEND_ERROR;
|
||
|
}
|
||
|
result = cf_progress_ingress(cf, data, pktx);
|
||
|
if(result)
|
||
|
return result;
|
||
|
result = cf_progress_egress(cf, data, pktx);
|
||
|
if(result)
|
||
|
return result;
|
||
|
/* ask again, things might have changed */
|
||
|
expiry = ngtcp2_conn_get_expiry(ctx->qconn);
|
||
|
}
|
||
|
|
||
|
if(expiry > pktx->ts) {
|
||
|
ngtcp2_duration timeout = expiry - pktx->ts;
|
||
|
if(timeout % NGTCP2_MILLISECONDS) {
|
||
|
timeout += NGTCP2_MILLISECONDS;
|
||
|
}
|
||
|
Curl_expire(data, timeout / NGTCP2_MILLISECONDS, EXPIRE_QUIC);
|
||
|
}
|
||
|
}
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
static void cf_ngtcp2_adjust_pollset(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct easy_pollset *ps)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
bool want_recv = CURL_WANT_RECV(data);
|
||
|
bool want_send = CURL_WANT_SEND(data);
|
||
|
|
||
|
if(ctx->qconn && (want_recv || want_send)) {
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
struct cf_call_data save;
|
||
|
bool c_exhaust, s_exhaust;
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
c_exhaust = !ngtcp2_conn_get_cwnd_left(ctx->qconn) ||
|
||
|
!ngtcp2_conn_get_max_data_left(ctx->qconn);
|
||
|
s_exhaust = stream && stream->id >= 0 && stream->quic_flow_blocked;
|
||
|
want_recv = (want_recv || c_exhaust || s_exhaust);
|
||
|
want_send = (!s_exhaust && want_send) ||
|
||
|
!Curl_bufq_is_empty(&ctx->q.sendbuf);
|
||
|
|
||
|
Curl_pollset_set(data, ps, ctx->q.sockfd, want_recv, want_send);
|
||
|
CF_DATA_RESTORE(cf, save);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int cb_h3_stream_close(nghttp3_conn *conn, int64_t stream_id,
|
||
|
uint64_t app_error_code, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
(void)conn;
|
||
|
(void)stream_id;
|
||
|
|
||
|
/* we might be called by nghttp3 after we already cleaned up */
|
||
|
if(!stream)
|
||
|
return 0;
|
||
|
|
||
|
stream->closed = TRUE;
|
||
|
stream->error3 = app_error_code;
|
||
|
if(stream->error3 != NGHTTP3_H3_NO_ERROR) {
|
||
|
stream->reset = TRUE;
|
||
|
stream->send_closed = TRUE;
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] RESET: error %" PRId64,
|
||
|
stream->id, stream->error3);
|
||
|
}
|
||
|
else {
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] CLOSED", stream->id);
|
||
|
}
|
||
|
h3_drain_stream(cf, data);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* write_resp_raw() copies response data in raw format to the `data`'s
|
||
|
* receive buffer. If not enough space is available, it appends to the
|
||
|
* `data`'s overflow buffer.
|
||
|
*/
|
||
|
static CURLcode write_resp_raw(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
const void *mem, size_t memlen,
|
||
|
bool flow)
|
||
|
{
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
CURLcode result = CURLE_OK;
|
||
|
ssize_t nwritten;
|
||
|
|
||
|
(void)cf;
|
||
|
if(!stream) {
|
||
|
return CURLE_RECV_ERROR;
|
||
|
}
|
||
|
nwritten = Curl_bufq_write(&stream->recvbuf, mem, memlen, &result);
|
||
|
if(nwritten < 0) {
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
if(!flow)
|
||
|
stream->recv_buf_nonflow += (size_t)nwritten;
|
||
|
|
||
|
if((size_t)nwritten < memlen) {
|
||
|
/* This MUST not happen. Our recbuf is dimensioned to hold the
|
||
|
* full max_stream_window and then some for this very reason. */
|
||
|
DEBUGASSERT(0);
|
||
|
return CURLE_RECV_ERROR;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static int cb_h3_recv_data(nghttp3_conn *conn, int64_t stream3_id,
|
||
|
const uint8_t *buf, size_t buflen,
|
||
|
void *user_data, void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
CURLcode result;
|
||
|
|
||
|
(void)conn;
|
||
|
(void)stream3_id;
|
||
|
|
||
|
if(!stream)
|
||
|
return NGHTTP3_ERR_CALLBACK_FAILURE;
|
||
|
|
||
|
result = write_resp_raw(cf, data, buf, buflen, TRUE);
|
||
|
if(result) {
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] DATA len=%zu, ERROR receiving %d",
|
||
|
stream->id, buflen, result);
|
||
|
return NGHTTP3_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] DATA len=%zu", stream->id, buflen);
|
||
|
h3_drain_stream(cf, data);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_h3_deferred_consume(nghttp3_conn *conn, int64_t stream3_id,
|
||
|
size_t consumed, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
(void)conn;
|
||
|
(void)stream_user_data;
|
||
|
|
||
|
/* nghttp3 has consumed bytes on the QUIC stream and we need to
|
||
|
* tell the QUIC connection to increase its flow control */
|
||
|
ngtcp2_conn_extend_max_stream_offset(ctx->qconn, stream3_id, consumed);
|
||
|
ngtcp2_conn_extend_max_offset(ctx->qconn, consumed);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_h3_end_headers(nghttp3_conn *conn, int64_t stream_id,
|
||
|
int fin, void *user_data, void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
CURLcode result = CURLE_OK;
|
||
|
(void)conn;
|
||
|
(void)stream_id;
|
||
|
(void)fin;
|
||
|
(void)cf;
|
||
|
|
||
|
if(!stream)
|
||
|
return 0;
|
||
|
/* add a CRLF only if we've received some headers */
|
||
|
result = write_resp_raw(cf, data, "\r\n", 2, FALSE);
|
||
|
if(result) {
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] end_headers, status=%d",
|
||
|
stream_id, stream->status_code);
|
||
|
if(stream->status_code / 100 != 1) {
|
||
|
stream->resp_hds_complete = TRUE;
|
||
|
}
|
||
|
h3_drain_stream(cf, data);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_h3_recv_header(nghttp3_conn *conn, int64_t stream_id,
|
||
|
int32_t token, nghttp3_rcbuf *name,
|
||
|
nghttp3_rcbuf *value, uint8_t flags,
|
||
|
void *user_data, void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
nghttp3_vec h3name = nghttp3_rcbuf_get_buf(name);
|
||
|
nghttp3_vec h3val = nghttp3_rcbuf_get_buf(value);
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
CURLcode result = CURLE_OK;
|
||
|
(void)conn;
|
||
|
(void)stream_id;
|
||
|
(void)token;
|
||
|
(void)flags;
|
||
|
(void)cf;
|
||
|
|
||
|
/* we might have cleaned up this transfer already */
|
||
|
if(!stream)
|
||
|
return 0;
|
||
|
|
||
|
if(token == NGHTTP3_QPACK_TOKEN__STATUS) {
|
||
|
char line[14]; /* status line is always 13 characters long */
|
||
|
size_t ncopy;
|
||
|
|
||
|
result = Curl_http_decode_status(&stream->status_code,
|
||
|
(const char *)h3val.base, h3val.len);
|
||
|
if(result)
|
||
|
return -1;
|
||
|
ncopy = msnprintf(line, sizeof(line), "HTTP/3 %03d \r\n",
|
||
|
stream->status_code);
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] status: %s", stream_id, line);
|
||
|
result = write_resp_raw(cf, data, line, ncopy, FALSE);
|
||
|
if(result) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* store as an HTTP1-style header */
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] header: %.*s: %.*s",
|
||
|
stream_id, (int)h3name.len, h3name.base,
|
||
|
(int)h3val.len, h3val.base);
|
||
|
result = write_resp_raw(cf, data, h3name.base, h3name.len, FALSE);
|
||
|
if(result) {
|
||
|
return -1;
|
||
|
}
|
||
|
result = write_resp_raw(cf, data, ": ", 2, FALSE);
|
||
|
if(result) {
|
||
|
return -1;
|
||
|
}
|
||
|
result = write_resp_raw(cf, data, h3val.base, h3val.len, FALSE);
|
||
|
if(result) {
|
||
|
return -1;
|
||
|
}
|
||
|
result = write_resp_raw(cf, data, "\r\n", 2, FALSE);
|
||
|
if(result) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_h3_stop_sending(nghttp3_conn *conn, int64_t stream_id,
|
||
|
uint64_t app_error_code, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
int rv;
|
||
|
(void)conn;
|
||
|
(void)stream_user_data;
|
||
|
|
||
|
rv = ngtcp2_conn_shutdown_stream_read(ctx->qconn, 0, stream_id,
|
||
|
app_error_code);
|
||
|
if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int cb_h3_reset_stream(nghttp3_conn *conn, int64_t stream_id,
|
||
|
uint64_t app_error_code, void *user_data,
|
||
|
void *stream_user_data) {
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
int rv;
|
||
|
(void)conn;
|
||
|
(void)data;
|
||
|
|
||
|
rv = ngtcp2_conn_shutdown_stream_write(ctx->qconn, 0, stream_id,
|
||
|
app_error_code);
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] reset -> %d", stream_id, rv);
|
||
|
if(rv && rv != NGTCP2_ERR_STREAM_NOT_FOUND) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static nghttp3_callbacks ngh3_callbacks = {
|
||
|
cb_h3_acked_req_body, /* acked_stream_data */
|
||
|
cb_h3_stream_close,
|
||
|
cb_h3_recv_data,
|
||
|
cb_h3_deferred_consume,
|
||
|
NULL, /* begin_headers */
|
||
|
cb_h3_recv_header,
|
||
|
cb_h3_end_headers,
|
||
|
NULL, /* begin_trailers */
|
||
|
cb_h3_recv_header,
|
||
|
NULL, /* end_trailers */
|
||
|
cb_h3_stop_sending,
|
||
|
NULL, /* end_stream */
|
||
|
cb_h3_reset_stream,
|
||
|
NULL, /* shutdown */
|
||
|
NULL /* recv_settings */
|
||
|
};
|
||
|
|
||
|
static int init_ngh3_conn(struct Curl_cfilter *cf)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
CURLcode result;
|
||
|
int rc;
|
||
|
int64_t ctrl_stream_id, qpack_enc_stream_id, qpack_dec_stream_id;
|
||
|
|
||
|
if(ngtcp2_conn_get_streams_uni_left(ctx->qconn) < 3) {
|
||
|
return CURLE_QUIC_CONNECT_ERROR;
|
||
|
}
|
||
|
|
||
|
nghttp3_settings_default(&ctx->h3settings);
|
||
|
|
||
|
rc = nghttp3_conn_client_new(&ctx->h3conn,
|
||
|
&ngh3_callbacks,
|
||
|
&ctx->h3settings,
|
||
|
nghttp3_mem_default(),
|
||
|
cf);
|
||
|
if(rc) {
|
||
|
result = CURLE_OUT_OF_MEMORY;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &ctrl_stream_id, NULL);
|
||
|
if(rc) {
|
||
|
result = CURLE_QUIC_CONNECT_ERROR;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
rc = nghttp3_conn_bind_control_stream(ctx->h3conn, ctrl_stream_id);
|
||
|
if(rc) {
|
||
|
result = CURLE_QUIC_CONNECT_ERROR;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_enc_stream_id, NULL);
|
||
|
if(rc) {
|
||
|
result = CURLE_QUIC_CONNECT_ERROR;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
rc = ngtcp2_conn_open_uni_stream(ctx->qconn, &qpack_dec_stream_id, NULL);
|
||
|
if(rc) {
|
||
|
result = CURLE_QUIC_CONNECT_ERROR;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
rc = nghttp3_conn_bind_qpack_streams(ctx->h3conn, qpack_enc_stream_id,
|
||
|
qpack_dec_stream_id);
|
||
|
if(rc) {
|
||
|
result = CURLE_QUIC_CONNECT_ERROR;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
return CURLE_OK;
|
||
|
fail:
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static ssize_t recv_closed_stream(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct h3_stream_ctx *stream,
|
||
|
CURLcode *err)
|
||
|
{
|
||
|
ssize_t nread = -1;
|
||
|
|
||
|
(void)cf;
|
||
|
if(stream->reset) {
|
||
|
failf(data,
|
||
|
"HTTP/3 stream %" PRId64 " reset by server", stream->id);
|
||
|
*err = stream->resp_hds_complete? CURLE_PARTIAL_FILE : CURLE_HTTP3;
|
||
|
goto out;
|
||
|
}
|
||
|
else if(!stream->resp_hds_complete) {
|
||
|
failf(data,
|
||
|
"HTTP/3 stream %" PRId64 " was closed cleanly, but before getting"
|
||
|
" all response header fields, treated as error",
|
||
|
stream->id);
|
||
|
*err = CURLE_HTTP3;
|
||
|
goto out;
|
||
|
}
|
||
|
*err = CURLE_OK;
|
||
|
nread = 0;
|
||
|
|
||
|
out:
|
||
|
return nread;
|
||
|
}
|
||
|
|
||
|
/* incoming data frames on the h3 stream */
|
||
|
static ssize_t cf_ngtcp2_recv(struct Curl_cfilter *cf, struct Curl_easy *data,
|
||
|
char *buf, size_t len, CURLcode *err)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
ssize_t nread = -1;
|
||
|
struct cf_call_data save;
|
||
|
struct pkt_io_ctx pktx;
|
||
|
|
||
|
(void)ctx;
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
DEBUGASSERT(cf->connected);
|
||
|
DEBUGASSERT(ctx);
|
||
|
DEBUGASSERT(ctx->qconn);
|
||
|
DEBUGASSERT(ctx->h3conn);
|
||
|
*err = CURLE_OK;
|
||
|
|
||
|
pktx_init(&pktx, cf, data);
|
||
|
|
||
|
if(!stream) {
|
||
|
*err = CURLE_RECV_ERROR;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if(!Curl_bufq_is_empty(&stream->recvbuf)) {
|
||
|
nread = Curl_bufq_read(&stream->recvbuf,
|
||
|
(unsigned char *)buf, len, err);
|
||
|
if(nread < 0) {
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) "
|
||
|
"-> %zd, %d", stream->id, len, nread, *err);
|
||
|
goto out;
|
||
|
}
|
||
|
report_consumed_data(cf, data, nread);
|
||
|
}
|
||
|
|
||
|
if(cf_progress_ingress(cf, data, &pktx)) {
|
||
|
*err = CURLE_RECV_ERROR;
|
||
|
nread = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* recvbuf had nothing before, maybe after progressing ingress? */
|
||
|
if(nread < 0 && !Curl_bufq_is_empty(&stream->recvbuf)) {
|
||
|
nread = Curl_bufq_read(&stream->recvbuf,
|
||
|
(unsigned char *)buf, len, err);
|
||
|
if(nread < 0) {
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) "
|
||
|
"-> %zd, %d", stream->id, len, nread, *err);
|
||
|
goto out;
|
||
|
}
|
||
|
report_consumed_data(cf, data, nread);
|
||
|
}
|
||
|
|
||
|
if(nread > 0) {
|
||
|
h3_drain_stream(cf, data);
|
||
|
}
|
||
|
else {
|
||
|
if(stream->closed) {
|
||
|
nread = recv_closed_stream(cf, data, stream, err);
|
||
|
goto out;
|
||
|
}
|
||
|
*err = CURLE_AGAIN;
|
||
|
nread = -1;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
if(cf_progress_egress(cf, data, &pktx)) {
|
||
|
*err = CURLE_SEND_ERROR;
|
||
|
nread = -1;
|
||
|
}
|
||
|
else {
|
||
|
CURLcode result2 = check_and_set_expiry(cf, data, &pktx);
|
||
|
if(result2) {
|
||
|
*err = result2;
|
||
|
nread = -1;
|
||
|
}
|
||
|
}
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_recv(len=%zu) -> %zd, %d",
|
||
|
stream? stream->id : -1, len, nread, *err);
|
||
|
CF_DATA_RESTORE(cf, save);
|
||
|
return nread;
|
||
|
}
|
||
|
|
||
|
static int cb_h3_acked_req_body(nghttp3_conn *conn, int64_t stream_id,
|
||
|
uint64_t datalen, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
size_t skiplen;
|
||
|
|
||
|
(void)cf;
|
||
|
if(!stream)
|
||
|
return 0;
|
||
|
/* The server acknowledged `datalen` of bytes from our request body.
|
||
|
* This is a delta. We have kept this data in `sendbuf` for
|
||
|
* re-transmissions and can free it now. */
|
||
|
if(datalen >= (uint64_t)stream->sendbuf_len_in_flight)
|
||
|
skiplen = stream->sendbuf_len_in_flight;
|
||
|
else
|
||
|
skiplen = (size_t)datalen;
|
||
|
Curl_bufq_skip(&stream->sendbuf, skiplen);
|
||
|
stream->sendbuf_len_in_flight -= skiplen;
|
||
|
|
||
|
/* Everything ACKed, we resume upload processing */
|
||
|
if(!stream->sendbuf_len_in_flight) {
|
||
|
int rv = nghttp3_conn_resume_stream(conn, stream_id);
|
||
|
if(rv && rv != NGHTTP3_ERR_STREAM_NOT_FOUND) {
|
||
|
return NGTCP2_ERR_CALLBACK_FAILURE;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static nghttp3_ssize
|
||
|
cb_h3_read_req_body(nghttp3_conn *conn, int64_t stream_id,
|
||
|
nghttp3_vec *vec, size_t veccnt,
|
||
|
uint32_t *pflags, void *user_data,
|
||
|
void *stream_user_data)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = user_data;
|
||
|
struct Curl_easy *data = stream_user_data;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
ssize_t nwritten = 0;
|
||
|
size_t nvecs = 0;
|
||
|
(void)cf;
|
||
|
(void)conn;
|
||
|
(void)stream_id;
|
||
|
(void)user_data;
|
||
|
(void)veccnt;
|
||
|
|
||
|
if(!stream)
|
||
|
return NGHTTP3_ERR_CALLBACK_FAILURE;
|
||
|
/* nghttp3 keeps references to the sendbuf data until it is ACKed
|
||
|
* by the server (see `cb_h3_acked_req_body()` for updates).
|
||
|
* `sendbuf_len_in_flight` is the amount of bytes in `sendbuf`
|
||
|
* that we have already passed to nghttp3, but which have not been
|
||
|
* ACKed yet.
|
||
|
* Any amount beyond `sendbuf_len_in_flight` we need still to pass
|
||
|
* to nghttp3. Do that now, if we can. */
|
||
|
if(stream->sendbuf_len_in_flight < Curl_bufq_len(&stream->sendbuf)) {
|
||
|
nvecs = 0;
|
||
|
while(nvecs < veccnt &&
|
||
|
Curl_bufq_peek_at(&stream->sendbuf,
|
||
|
stream->sendbuf_len_in_flight,
|
||
|
(const unsigned char **)&vec[nvecs].base,
|
||
|
&vec[nvecs].len)) {
|
||
|
stream->sendbuf_len_in_flight += vec[nvecs].len;
|
||
|
nwritten += vec[nvecs].len;
|
||
|
++nvecs;
|
||
|
}
|
||
|
DEBUGASSERT(nvecs > 0); /* we SHOULD have been be able to peek */
|
||
|
}
|
||
|
|
||
|
if(nwritten > 0 && stream->upload_left != -1)
|
||
|
stream->upload_left -= nwritten;
|
||
|
|
||
|
/* When we stopped sending and everything in `sendbuf` is "in flight",
|
||
|
* we are at the end of the request body. */
|
||
|
if(stream->upload_left == 0) {
|
||
|
*pflags = NGHTTP3_DATA_FLAG_EOF;
|
||
|
stream->send_closed = TRUE;
|
||
|
}
|
||
|
else if(!nwritten) {
|
||
|
/* Not EOF, and nothing to give, we signal WOULDBLOCK. */
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] read req body -> AGAIN",
|
||
|
stream->id);
|
||
|
return NGHTTP3_ERR_WOULDBLOCK;
|
||
|
}
|
||
|
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] read req body -> "
|
||
|
"%d vecs%s with %zu (buffered=%zu, left=%"
|
||
|
CURL_FORMAT_CURL_OFF_T ")",
|
||
|
stream->id, (int)nvecs,
|
||
|
*pflags == NGHTTP3_DATA_FLAG_EOF?" EOF":"",
|
||
|
nwritten, Curl_bufq_len(&stream->sendbuf),
|
||
|
stream->upload_left);
|
||
|
return (nghttp3_ssize)nvecs;
|
||
|
}
|
||
|
|
||
|
/* Index where :authority header field will appear in request header
|
||
|
field list. */
|
||
|
#define AUTHORITY_DST_IDX 3
|
||
|
|
||
|
static ssize_t h3_stream_open(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
const void *buf, size_t len,
|
||
|
CURLcode *err)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct h3_stream_ctx *stream = NULL;
|
||
|
struct dynhds h2_headers;
|
||
|
size_t nheader;
|
||
|
nghttp3_nv *nva = NULL;
|
||
|
int rc = 0;
|
||
|
unsigned int i;
|
||
|
ssize_t nwritten = -1;
|
||
|
nghttp3_data_reader reader;
|
||
|
nghttp3_data_reader *preader = NULL;
|
||
|
|
||
|
Curl_dynhds_init(&h2_headers, 0, DYN_HTTP_REQUEST);
|
||
|
|
||
|
*err = h3_data_setup(cf, data);
|
||
|
if(*err)
|
||
|
goto out;
|
||
|
stream = H3_STREAM_CTX(data);
|
||
|
DEBUGASSERT(stream);
|
||
|
|
||
|
nwritten = Curl_h1_req_parse_read(&stream->h1, buf, len, NULL, 0, err);
|
||
|
if(nwritten < 0)
|
||
|
goto out;
|
||
|
if(!stream->h1.done) {
|
||
|
/* need more data */
|
||
|
goto out;
|
||
|
}
|
||
|
DEBUGASSERT(stream->h1.req);
|
||
|
|
||
|
*err = Curl_http_req_to_h2(&h2_headers, stream->h1.req, data);
|
||
|
if(*err) {
|
||
|
nwritten = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
/* no longer needed */
|
||
|
Curl_h1_req_parse_free(&stream->h1);
|
||
|
|
||
|
nheader = Curl_dynhds_count(&h2_headers);
|
||
|
nva = malloc(sizeof(nghttp3_nv) * nheader);
|
||
|
if(!nva) {
|
||
|
*err = CURLE_OUT_OF_MEMORY;
|
||
|
nwritten = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
for(i = 0; i < nheader; ++i) {
|
||
|
struct dynhds_entry *e = Curl_dynhds_getn(&h2_headers, i);
|
||
|
nva[i].name = (unsigned char *)e->name;
|
||
|
nva[i].namelen = e->namelen;
|
||
|
nva[i].value = (unsigned char *)e->value;
|
||
|
nva[i].valuelen = e->valuelen;
|
||
|
nva[i].flags = NGHTTP3_NV_FLAG_NONE;
|
||
|
}
|
||
|
|
||
|
rc = ngtcp2_conn_open_bidi_stream(ctx->qconn, &stream->id, NULL);
|
||
|
if(rc) {
|
||
|
failf(data, "can get bidi streams");
|
||
|
*err = CURLE_SEND_ERROR;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
switch(data->state.httpreq) {
|
||
|
case HTTPREQ_POST:
|
||
|
case HTTPREQ_POST_FORM:
|
||
|
case HTTPREQ_POST_MIME:
|
||
|
case HTTPREQ_PUT:
|
||
|
/* known request body size or -1 */
|
||
|
if(data->state.infilesize != -1)
|
||
|
stream->upload_left = data->state.infilesize;
|
||
|
else
|
||
|
/* data sending without specifying the data amount up front */
|
||
|
stream->upload_left = -1; /* unknown */
|
||
|
break;
|
||
|
default:
|
||
|
/* there is not request body */
|
||
|
stream->upload_left = 0; /* no request body */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
stream->send_closed = (stream->upload_left == 0);
|
||
|
if(!stream->send_closed) {
|
||
|
reader.read_data = cb_h3_read_req_body;
|
||
|
preader = &reader;
|
||
|
}
|
||
|
|
||
|
rc = nghttp3_conn_submit_request(ctx->h3conn, stream->id,
|
||
|
nva, nheader, preader, data);
|
||
|
if(rc) {
|
||
|
switch(rc) {
|
||
|
case NGHTTP3_ERR_CONN_CLOSING:
|
||
|
CURL_TRC_CF(data, cf, "h3sid[%"PRId64"] failed to send, "
|
||
|
"connection is closing", stream->id);
|
||
|
break;
|
||
|
default:
|
||
|
CURL_TRC_CF(data, cf, "h3sid[%"PRId64"] failed to send -> %d (%s)",
|
||
|
stream->id, rc, ngtcp2_strerror(rc));
|
||
|
break;
|
||
|
}
|
||
|
*err = CURLE_SEND_ERROR;
|
||
|
nwritten = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if(Curl_trc_is_verbose(data)) {
|
||
|
infof(data, "[HTTP/3] [%" PRId64 "] OPENED stream for %s",
|
||
|
stream->id, data->state.url);
|
||
|
for(i = 0; i < nheader; ++i) {
|
||
|
infof(data, "[HTTP/3] [%" PRId64 "] [%.*s: %.*s]", stream->id,
|
||
|
(int)nva[i].namelen, nva[i].name,
|
||
|
(int)nva[i].valuelen, nva[i].value);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
free(nva);
|
||
|
Curl_dynhds_free(&h2_headers);
|
||
|
return nwritten;
|
||
|
}
|
||
|
|
||
|
static ssize_t cf_ngtcp2_send(struct Curl_cfilter *cf, struct Curl_easy *data,
|
||
|
const void *buf, size_t len, CURLcode *err)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
ssize_t sent = 0;
|
||
|
struct cf_call_data save;
|
||
|
struct pkt_io_ctx pktx;
|
||
|
CURLcode result;
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
DEBUGASSERT(cf->connected);
|
||
|
DEBUGASSERT(ctx->qconn);
|
||
|
DEBUGASSERT(ctx->h3conn);
|
||
|
pktx_init(&pktx, cf, data);
|
||
|
*err = CURLE_OK;
|
||
|
|
||
|
result = cf_progress_ingress(cf, data, &pktx);
|
||
|
if(result) {
|
||
|
*err = result;
|
||
|
sent = -1;
|
||
|
}
|
||
|
|
||
|
if(!stream || stream->id < 0) {
|
||
|
sent = h3_stream_open(cf, data, buf, len, err);
|
||
|
if(sent < 0) {
|
||
|
CURL_TRC_CF(data, cf, "failed to open stream -> %d", *err);
|
||
|
goto out;
|
||
|
}
|
||
|
stream = H3_STREAM_CTX(data);
|
||
|
}
|
||
|
else if(stream->upload_blocked_len) {
|
||
|
/* the data in `buf` has already been submitted or added to the
|
||
|
* buffers, but have been EAGAINed on the last invocation. */
|
||
|
DEBUGASSERT(len >= stream->upload_blocked_len);
|
||
|
if(len < stream->upload_blocked_len) {
|
||
|
/* Did we get called again with a smaller `len`? This should not
|
||
|
* happen. We are not prepared to handle that. */
|
||
|
failf(data, "HTTP/3 send again with decreased length");
|
||
|
*err = CURLE_HTTP3;
|
||
|
sent = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
sent = (ssize_t)stream->upload_blocked_len;
|
||
|
stream->upload_blocked_len = 0;
|
||
|
}
|
||
|
else if(stream->closed) {
|
||
|
if(stream->resp_hds_complete) {
|
||
|
/* Server decided to close the stream after having sent us a final
|
||
|
* response. This is valid if it is not interested in the request
|
||
|
* body. This happens on 30x or 40x responses.
|
||
|
* We silently discard the data sent, since this is not a transport
|
||
|
* error situation. */
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] discarding data"
|
||
|
"on closed stream with response", stream->id);
|
||
|
*err = CURLE_OK;
|
||
|
sent = (ssize_t)len;
|
||
|
goto out;
|
||
|
}
|
||
|
*err = CURLE_HTTP3;
|
||
|
sent = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
else {
|
||
|
sent = Curl_bufq_write(&stream->sendbuf, buf, len, err);
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send, add to "
|
||
|
"sendbuf(len=%zu) -> %zd, %d",
|
||
|
stream->id, len, sent, *err);
|
||
|
if(sent < 0) {
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
(void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id);
|
||
|
}
|
||
|
|
||
|
result = cf_progress_egress(cf, data, &pktx);
|
||
|
if(result) {
|
||
|
*err = result;
|
||
|
sent = -1;
|
||
|
}
|
||
|
|
||
|
if(stream && sent > 0 && stream->sendbuf_len_in_flight) {
|
||
|
/* We have unacknowledged DATA and cannot report success to our
|
||
|
* caller. Instead we EAGAIN and remember how much we have already
|
||
|
* "written" into our various internal connection buffers. */
|
||
|
stream->upload_blocked_len = sent;
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send(len=%zu), "
|
||
|
"%zu bytes in flight -> EGAIN", stream->id, len,
|
||
|
stream->sendbuf_len_in_flight);
|
||
|
*err = CURLE_AGAIN;
|
||
|
sent = -1;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
result = check_and_set_expiry(cf, data, &pktx);
|
||
|
if(result) {
|
||
|
*err = result;
|
||
|
sent = -1;
|
||
|
}
|
||
|
CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send(len=%zu) -> %zd, %d",
|
||
|
stream? stream->id : -1, len, sent, *err);
|
||
|
CF_DATA_RESTORE(cf, save);
|
||
|
return sent;
|
||
|
}
|
||
|
|
||
|
static CURLcode qng_verify_peer(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct ssl_primary_config *conn_config;
|
||
|
CURLcode result = CURLE_OK;
|
||
|
|
||
|
conn_config = Curl_ssl_cf_get_primary_config(cf);
|
||
|
if(!conn_config)
|
||
|
return CURLE_FAILED_INIT;
|
||
|
|
||
|
cf->conn->bits.multiplex = TRUE; /* at least potentially multiplexed */
|
||
|
cf->conn->httpversion = 30;
|
||
|
cf->conn->bundle->multiuse = BUNDLE_MULTIPLEX;
|
||
|
|
||
|
if(conn_config->verifyhost) {
|
||
|
#ifdef USE_OPENSSL
|
||
|
X509 *server_cert;
|
||
|
server_cert = SSL_get1_peer_certificate(ctx->ssl);
|
||
|
if(!server_cert) {
|
||
|
return CURLE_PEER_FAILED_VERIFICATION;
|
||
|
}
|
||
|
result = Curl_ossl_verifyhost(data, cf->conn, &ctx->peer, server_cert);
|
||
|
X509_free(server_cert);
|
||
|
if(result)
|
||
|
return result;
|
||
|
#elif defined(USE_GNUTLS)
|
||
|
result = Curl_gtls_verifyserver(data, ctx->gtls->session,
|
||
|
conn_config, &data->set.ssl, &ctx->peer,
|
||
|
data->set.str[STRING_SSL_PINNEDPUBLICKEY]);
|
||
|
if(result)
|
||
|
return result;
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
if(!ctx->peer.sni ||
|
||
|
wolfSSL_check_domain_name(ctx->ssl, ctx->peer.sni) == SSL_FAILURE)
|
||
|
return CURLE_PEER_FAILED_VERIFICATION;
|
||
|
#endif
|
||
|
infof(data, "Verified certificate just fine");
|
||
|
}
|
||
|
else
|
||
|
infof(data, "Skipped certificate verification");
|
||
|
#ifdef USE_OPENSSL
|
||
|
if(data->set.ssl.certinfo)
|
||
|
/* asked to gather certificate info */
|
||
|
(void)Curl_ossl_certchain(data, ctx->ssl);
|
||
|
#endif
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static CURLcode recv_pkt(const unsigned char *pkt, size_t pktlen,
|
||
|
struct sockaddr_storage *remote_addr,
|
||
|
socklen_t remote_addrlen, int ecn,
|
||
|
void *userp)
|
||
|
{
|
||
|
struct pkt_io_ctx *pktx = userp;
|
||
|
struct cf_ngtcp2_ctx *ctx = pktx->cf->ctx;
|
||
|
ngtcp2_pkt_info pi;
|
||
|
ngtcp2_path path;
|
||
|
int rv;
|
||
|
|
||
|
++pktx->pkt_count;
|
||
|
ngtcp2_addr_init(&path.local, (struct sockaddr *)&ctx->q.local_addr,
|
||
|
ctx->q.local_addrlen);
|
||
|
ngtcp2_addr_init(&path.remote, (struct sockaddr *)remote_addr,
|
||
|
remote_addrlen);
|
||
|
pi.ecn = (uint8_t)ecn;
|
||
|
|
||
|
rv = ngtcp2_conn_read_pkt(ctx->qconn, &path, &pi, pkt, pktlen, pktx->ts);
|
||
|
if(rv) {
|
||
|
CURL_TRC_CF(pktx->data, pktx->cf, "ingress, read_pkt -> %s",
|
||
|
ngtcp2_strerror(rv));
|
||
|
if(!ctx->last_error.error_code) {
|
||
|
if(rv == NGTCP2_ERR_CRYPTO) {
|
||
|
ngtcp2_ccerr_set_tls_alert(&ctx->last_error,
|
||
|
ngtcp2_conn_get_tls_alert(ctx->qconn),
|
||
|
NULL, 0);
|
||
|
}
|
||
|
else {
|
||
|
ngtcp2_ccerr_set_liberr(&ctx->last_error, rv, NULL, 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(rv == NGTCP2_ERR_CRYPTO)
|
||
|
/* this is a "TLS problem", but a failed certificate verification
|
||
|
is a common reason for this */
|
||
|
return CURLE_PEER_FAILED_VERIFICATION;
|
||
|
return CURLE_RECV_ERROR;
|
||
|
}
|
||
|
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
static CURLcode cf_progress_ingress(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct pkt_io_ctx *pktx)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct pkt_io_ctx local_pktx;
|
||
|
size_t pkts_chunk = 128, i;
|
||
|
size_t pkts_max = 10 * pkts_chunk;
|
||
|
CURLcode result = CURLE_OK;
|
||
|
|
||
|
if(!pktx) {
|
||
|
pktx_init(&local_pktx, cf, data);
|
||
|
pktx = &local_pktx;
|
||
|
}
|
||
|
else {
|
||
|
pktx_update_time(pktx, cf);
|
||
|
}
|
||
|
|
||
|
#ifdef USE_OPENSSL
|
||
|
if(!ctx->x509_store_setup) {
|
||
|
result = Curl_ssl_setup_x509_store(cf, data, ctx->sslctx);
|
||
|
if(result)
|
||
|
return result;
|
||
|
ctx->x509_store_setup = TRUE;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
for(i = 0; i < pkts_max; i += pkts_chunk) {
|
||
|
pktx->pkt_count = 0;
|
||
|
result = vquic_recv_packets(cf, data, &ctx->q, pkts_chunk,
|
||
|
recv_pkt, pktx);
|
||
|
if(result) /* error */
|
||
|
break;
|
||
|
if(pktx->pkt_count < pkts_chunk) /* got less than we could */
|
||
|
break;
|
||
|
/* give egress a chance before we receive more */
|
||
|
result = cf_progress_egress(cf, data, pktx);
|
||
|
if(result) /* error */
|
||
|
break;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Read a network packet to send from ngtcp2 into `buf`.
|
||
|
* Return number of bytes written or -1 with *err set.
|
||
|
*/
|
||
|
static ssize_t read_pkt_to_send(void *userp,
|
||
|
unsigned char *buf, size_t buflen,
|
||
|
CURLcode *err)
|
||
|
{
|
||
|
struct pkt_io_ctx *x = userp;
|
||
|
struct cf_ngtcp2_ctx *ctx = x->cf->ctx;
|
||
|
nghttp3_vec vec[16];
|
||
|
nghttp3_ssize veccnt;
|
||
|
ngtcp2_ssize ndatalen;
|
||
|
uint32_t flags;
|
||
|
int64_t stream_id;
|
||
|
int fin;
|
||
|
ssize_t nwritten, n;
|
||
|
veccnt = 0;
|
||
|
stream_id = -1;
|
||
|
fin = 0;
|
||
|
|
||
|
/* ngtcp2 may want to put several frames from different streams into
|
||
|
* this packet. `NGTCP2_WRITE_STREAM_FLAG_MORE` tells it to do so.
|
||
|
* When `NGTCP2_ERR_WRITE_MORE` is returned, we *need* to make
|
||
|
* another iteration.
|
||
|
* When ngtcp2 is happy (because it has no other frame that would fit
|
||
|
* or it has nothing more to send), it returns the total length
|
||
|
* of the assembled packet. This may be 0 if there was nothing to send. */
|
||
|
nwritten = 0;
|
||
|
*err = CURLE_OK;
|
||
|
for(;;) {
|
||
|
|
||
|
if(ctx->h3conn && ngtcp2_conn_get_max_data_left(ctx->qconn)) {
|
||
|
veccnt = nghttp3_conn_writev_stream(ctx->h3conn, &stream_id, &fin, vec,
|
||
|
sizeof(vec) / sizeof(vec[0]));
|
||
|
if(veccnt < 0) {
|
||
|
failf(x->data, "nghttp3_conn_writev_stream returned error: %s",
|
||
|
nghttp3_strerror((int)veccnt));
|
||
|
ngtcp2_ccerr_set_application_error(
|
||
|
&ctx->last_error,
|
||
|
nghttp3_err_infer_quic_app_error_code((int)veccnt), NULL, 0);
|
||
|
*err = CURLE_SEND_ERROR;
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
flags = NGTCP2_WRITE_STREAM_FLAG_MORE |
|
||
|
(fin ? NGTCP2_WRITE_STREAM_FLAG_FIN : 0);
|
||
|
n = ngtcp2_conn_writev_stream(ctx->qconn, &x->ps.path,
|
||
|
NULL, buf, buflen,
|
||
|
&ndatalen, flags, stream_id,
|
||
|
(const ngtcp2_vec *)vec, veccnt, x->ts);
|
||
|
if(n == 0) {
|
||
|
/* nothing to send */
|
||
|
*err = CURLE_AGAIN;
|
||
|
nwritten = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
else if(n < 0) {
|
||
|
switch(n) {
|
||
|
case NGTCP2_ERR_STREAM_DATA_BLOCKED: {
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(x->data);
|
||
|
DEBUGASSERT(ndatalen == -1);
|
||
|
nghttp3_conn_block_stream(ctx->h3conn, stream_id);
|
||
|
CURL_TRC_CF(x->data, x->cf, "[%" PRId64 "] block quic flow",
|
||
|
stream_id);
|
||
|
DEBUGASSERT(stream);
|
||
|
if(stream)
|
||
|
stream->quic_flow_blocked = TRUE;
|
||
|
n = 0;
|
||
|
break;
|
||
|
}
|
||
|
case NGTCP2_ERR_STREAM_SHUT_WR:
|
||
|
DEBUGASSERT(ndatalen == -1);
|
||
|
nghttp3_conn_shutdown_stream_write(ctx->h3conn, stream_id);
|
||
|
n = 0;
|
||
|
break;
|
||
|
case NGTCP2_ERR_WRITE_MORE:
|
||
|
/* ngtcp2 wants to send more. update the flow of the stream whose data
|
||
|
* is in the buffer and continue */
|
||
|
DEBUGASSERT(ndatalen >= 0);
|
||
|
n = 0;
|
||
|
break;
|
||
|
default:
|
||
|
DEBUGASSERT(ndatalen == -1);
|
||
|
failf(x->data, "ngtcp2_conn_writev_stream returned error: %s",
|
||
|
ngtcp2_strerror((int)n));
|
||
|
ngtcp2_ccerr_set_liberr(&ctx->last_error, (int)n, NULL, 0);
|
||
|
*err = CURLE_SEND_ERROR;
|
||
|
nwritten = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(ndatalen >= 0) {
|
||
|
/* we add the amount of data bytes to the flow windows */
|
||
|
int rv = nghttp3_conn_add_write_offset(ctx->h3conn, stream_id, ndatalen);
|
||
|
if(rv) {
|
||
|
failf(x->data, "nghttp3_conn_add_write_offset returned error: %s\n",
|
||
|
nghttp3_strerror(rv));
|
||
|
return CURLE_SEND_ERROR;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if(n > 0) {
|
||
|
/* packet assembled, leave */
|
||
|
nwritten = n;
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
out:
|
||
|
return nwritten;
|
||
|
}
|
||
|
|
||
|
static CURLcode cf_progress_egress(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct pkt_io_ctx *pktx)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
ssize_t nread;
|
||
|
size_t max_payload_size, path_max_payload_size, max_pktcnt;
|
||
|
size_t pktcnt = 0;
|
||
|
size_t gsolen = 0; /* this disables gso until we have a clue */
|
||
|
CURLcode curlcode;
|
||
|
struct pkt_io_ctx local_pktx;
|
||
|
|
||
|
if(!pktx) {
|
||
|
pktx_init(&local_pktx, cf, data);
|
||
|
pktx = &local_pktx;
|
||
|
}
|
||
|
else {
|
||
|
pktx_update_time(pktx, cf);
|
||
|
ngtcp2_path_storage_zero(&pktx->ps);
|
||
|
}
|
||
|
|
||
|
curlcode = vquic_flush(cf, data, &ctx->q);
|
||
|
if(curlcode) {
|
||
|
if(curlcode == CURLE_AGAIN) {
|
||
|
Curl_expire(data, 1, EXPIRE_QUIC);
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
return curlcode;
|
||
|
}
|
||
|
|
||
|
/* In UDP, there is a maximum theoretical packet paload length and
|
||
|
* a minimum payload length that is "guarantueed" to work.
|
||
|
* To detect if this minimum payload can be increased, ngtcp2 sends
|
||
|
* now and then a packet payload larger than the minimum. It that
|
||
|
* is ACKed by the peer, both parties know that it works and
|
||
|
* the subsequent packets can use a larger one.
|
||
|
* This is called PMTUD (Path Maximum Transmission Unit Discovery).
|
||
|
* Since a PMTUD might be rejected right on send, we do not want it
|
||
|
* be followed by other packets of lesser size. Because those would
|
||
|
* also fail then. So, if we detect a PMTUD while buffering, we flush.
|
||
|
*/
|
||
|
max_payload_size = ngtcp2_conn_get_max_tx_udp_payload_size(ctx->qconn);
|
||
|
path_max_payload_size =
|
||
|
ngtcp2_conn_get_path_max_tx_udp_payload_size(ctx->qconn);
|
||
|
/* maximum number of packets buffered before we flush to the socket */
|
||
|
max_pktcnt = CURLMIN(MAX_PKT_BURST,
|
||
|
ctx->q.sendbuf.chunk_size / max_payload_size);
|
||
|
|
||
|
for(;;) {
|
||
|
/* add the next packet to send, if any, to our buffer */
|
||
|
nread = Curl_bufq_sipn(&ctx->q.sendbuf, max_payload_size,
|
||
|
read_pkt_to_send, pktx, &curlcode);
|
||
|
if(nread < 0) {
|
||
|
if(curlcode != CURLE_AGAIN)
|
||
|
return curlcode;
|
||
|
/* Nothing more to add, flush and leave */
|
||
|
curlcode = vquic_send(cf, data, &ctx->q, gsolen);
|
||
|
if(curlcode) {
|
||
|
if(curlcode == CURLE_AGAIN) {
|
||
|
Curl_expire(data, 1, EXPIRE_QUIC);
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
return curlcode;
|
||
|
}
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
DEBUGASSERT(nread > 0);
|
||
|
if(pktcnt == 0) {
|
||
|
/* first packet in buffer. This is either of a known, "good"
|
||
|
* payload size or it is a PMTUD. We'll see. */
|
||
|
gsolen = (size_t)nread;
|
||
|
}
|
||
|
else if((size_t)nread > gsolen ||
|
||
|
(gsolen > path_max_payload_size && (size_t)nread != gsolen)) {
|
||
|
/* The just added packet is a PMTUD *or* the one(s) before the
|
||
|
* just added were PMTUD and the last one is smaller.
|
||
|
* Flush the buffer before the last add. */
|
||
|
curlcode = vquic_send_tail_split(cf, data, &ctx->q,
|
||
|
gsolen, nread, nread);
|
||
|
if(curlcode) {
|
||
|
if(curlcode == CURLE_AGAIN) {
|
||
|
Curl_expire(data, 1, EXPIRE_QUIC);
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
return curlcode;
|
||
|
}
|
||
|
pktcnt = 0;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if(++pktcnt >= max_pktcnt || (size_t)nread < gsolen) {
|
||
|
/* Reached MAX_PKT_BURST *or*
|
||
|
* the capacity of our buffer *or*
|
||
|
* last add was shorter than the previous ones, flush */
|
||
|
curlcode = vquic_send(cf, data, &ctx->q, gsolen);
|
||
|
if(curlcode) {
|
||
|
if(curlcode == CURLE_AGAIN) {
|
||
|
Curl_expire(data, 1, EXPIRE_QUIC);
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
return curlcode;
|
||
|
}
|
||
|
/* pktbuf has been completely sent */
|
||
|
pktcnt = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called from transfer.c:data_pending to know if we should keep looping
|
||
|
* to receive more data from the connection.
|
||
|
*/
|
||
|
static bool cf_ngtcp2_data_pending(struct Curl_cfilter *cf,
|
||
|
const struct Curl_easy *data)
|
||
|
{
|
||
|
const struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
(void)cf;
|
||
|
return stream && !Curl_bufq_is_empty(&stream->recvbuf);
|
||
|
}
|
||
|
|
||
|
static CURLcode h3_data_pause(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
bool pause)
|
||
|
{
|
||
|
/* TODO: there seems right now no API in ngtcp2 to shrink/enlarge
|
||
|
* the streams windows. As we do in HTTP/2. */
|
||
|
if(!pause) {
|
||
|
h3_drain_stream(cf, data);
|
||
|
Curl_expire(data, 0, EXPIRE_RUN_NOW);
|
||
|
}
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
static CURLcode cf_ngtcp2_data_event(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
int event, int arg1, void *arg2)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
CURLcode result = CURLE_OK;
|
||
|
struct cf_call_data save;
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
(void)arg1;
|
||
|
(void)arg2;
|
||
|
switch(event) {
|
||
|
case CF_CTRL_DATA_SETUP:
|
||
|
break;
|
||
|
case CF_CTRL_DATA_PAUSE:
|
||
|
result = h3_data_pause(cf, data, (arg1 != 0));
|
||
|
break;
|
||
|
case CF_CTRL_DATA_DETACH:
|
||
|
h3_data_done(cf, data);
|
||
|
break;
|
||
|
case CF_CTRL_DATA_DONE:
|
||
|
h3_data_done(cf, data);
|
||
|
break;
|
||
|
case CF_CTRL_DATA_DONE_SEND: {
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
if(stream && !stream->send_closed) {
|
||
|
stream->send_closed = TRUE;
|
||
|
stream->upload_left = Curl_bufq_len(&stream->sendbuf);
|
||
|
(void)nghttp3_conn_resume_stream(ctx->h3conn, stream->id);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case CF_CTRL_DATA_IDLE: {
|
||
|
struct h3_stream_ctx *stream = H3_STREAM_CTX(data);
|
||
|
CURL_TRC_CF(data, cf, "data idle");
|
||
|
if(stream && !stream->closed) {
|
||
|
result = check_and_set_expiry(cf, data, NULL);
|
||
|
if(result)
|
||
|
CURL_TRC_CF(data, cf, "data idle, check_and_set_expiry -> %d", result);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
CF_DATA_RESTORE(cf, save);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static void cf_ngtcp2_ctx_clear(struct cf_ngtcp2_ctx *ctx)
|
||
|
{
|
||
|
struct cf_call_data save = ctx->call_data;
|
||
|
|
||
|
if(ctx->qlogfd != -1) {
|
||
|
close(ctx->qlogfd);
|
||
|
}
|
||
|
#ifdef USE_OPENSSL
|
||
|
if(ctx->ssl)
|
||
|
SSL_free(ctx->ssl);
|
||
|
if(ctx->sslctx)
|
||
|
SSL_CTX_free(ctx->sslctx);
|
||
|
#elif defined(USE_GNUTLS)
|
||
|
if(ctx->gtls) {
|
||
|
if(ctx->gtls->cred)
|
||
|
gnutls_certificate_free_credentials(ctx->gtls->cred);
|
||
|
if(ctx->gtls->session)
|
||
|
gnutls_deinit(ctx->gtls->session);
|
||
|
free(ctx->gtls);
|
||
|
}
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
if(ctx->ssl)
|
||
|
wolfSSL_free(ctx->ssl);
|
||
|
if(ctx->sslctx)
|
||
|
wolfSSL_CTX_free(ctx->sslctx);
|
||
|
#endif
|
||
|
vquic_ctx_free(&ctx->q);
|
||
|
if(ctx->h3conn)
|
||
|
nghttp3_conn_del(ctx->h3conn);
|
||
|
if(ctx->qconn)
|
||
|
ngtcp2_conn_del(ctx->qconn);
|
||
|
Curl_bufcp_free(&ctx->stream_bufcp);
|
||
|
Curl_ssl_peer_cleanup(&ctx->peer);
|
||
|
|
||
|
memset(ctx, 0, sizeof(*ctx));
|
||
|
ctx->qlogfd = -1;
|
||
|
ctx->call_data = save;
|
||
|
}
|
||
|
|
||
|
static void cf_ngtcp2_close(struct Curl_cfilter *cf, struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct cf_call_data save;
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
if(ctx && ctx->qconn) {
|
||
|
char buffer[NGTCP2_MAX_UDP_PAYLOAD_SIZE];
|
||
|
struct pkt_io_ctx pktx;
|
||
|
ngtcp2_ssize rc;
|
||
|
|
||
|
CURL_TRC_CF(data, cf, "close");
|
||
|
pktx_init(&pktx, cf, data);
|
||
|
rc = ngtcp2_conn_write_connection_close(ctx->qconn, NULL, /* path */
|
||
|
NULL, /* pkt_info */
|
||
|
(uint8_t *)buffer, sizeof(buffer),
|
||
|
&ctx->last_error, pktx.ts);
|
||
|
if(rc > 0) {
|
||
|
while((send(ctx->q.sockfd, buffer, (SEND_TYPE_ARG3)rc, 0) == -1) &&
|
||
|
SOCKERRNO == EINTR);
|
||
|
}
|
||
|
|
||
|
cf_ngtcp2_ctx_clear(ctx);
|
||
|
}
|
||
|
|
||
|
cf->connected = FALSE;
|
||
|
CF_DATA_RESTORE(cf, save);
|
||
|
}
|
||
|
|
||
|
static void cf_ngtcp2_destroy(struct Curl_cfilter *cf, struct Curl_easy *data)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct cf_call_data save;
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
CURL_TRC_CF(data, cf, "destroy");
|
||
|
if(ctx) {
|
||
|
cf_ngtcp2_ctx_clear(ctx);
|
||
|
free(ctx);
|
||
|
}
|
||
|
cf->ctx = NULL;
|
||
|
/* No CF_DATA_RESTORE(cf, save) possible */
|
||
|
(void)save;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Might be called twice for happy eyeballs.
|
||
|
*/
|
||
|
static CURLcode cf_connect_start(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
struct pkt_io_ctx *pktx)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
int rc;
|
||
|
int rv;
|
||
|
CURLcode result;
|
||
|
const struct Curl_sockaddr_ex *sockaddr = NULL;
|
||
|
int qfd;
|
||
|
|
||
|
ctx->version = NGTCP2_PROTO_VER_MAX;
|
||
|
ctx->max_stream_window = H3_STREAM_WINDOW_SIZE;
|
||
|
ctx->max_idle_ms = CURL_QUIC_MAX_IDLE_MS;
|
||
|
Curl_bufcp_init(&ctx->stream_bufcp, H3_STREAM_CHUNK_SIZE,
|
||
|
H3_STREAM_POOL_SPARES);
|
||
|
|
||
|
result = Curl_ssl_peer_init(&ctx->peer, cf);
|
||
|
if(result)
|
||
|
return result;
|
||
|
|
||
|
#ifdef USE_OPENSSL
|
||
|
result = quic_ssl_ctx(&ctx->sslctx, cf, data);
|
||
|
if(result)
|
||
|
return result;
|
||
|
|
||
|
result = quic_set_client_cert(cf, data);
|
||
|
if(result)
|
||
|
return result;
|
||
|
#elif defined(USE_WOLFSSL)
|
||
|
result = quic_ssl_ctx(&ctx->sslctx, cf, data);
|
||
|
if(result)
|
||
|
return result;
|
||
|
#endif
|
||
|
|
||
|
result = quic_init_ssl(cf, data);
|
||
|
if(result)
|
||
|
return result;
|
||
|
|
||
|
ctx->dcid.datalen = NGTCP2_MAX_CIDLEN;
|
||
|
result = Curl_rand(data, ctx->dcid.data, NGTCP2_MAX_CIDLEN);
|
||
|
if(result)
|
||
|
return result;
|
||
|
|
||
|
ctx->scid.datalen = NGTCP2_MAX_CIDLEN;
|
||
|
result = Curl_rand(data, ctx->scid.data, NGTCP2_MAX_CIDLEN);
|
||
|
if(result)
|
||
|
return result;
|
||
|
|
||
|
(void)Curl_qlogdir(data, ctx->scid.data, NGTCP2_MAX_CIDLEN, &qfd);
|
||
|
ctx->qlogfd = qfd; /* -1 if failure above */
|
||
|
quic_settings(ctx, data, pktx);
|
||
|
|
||
|
result = vquic_ctx_init(&ctx->q);
|
||
|
if(result)
|
||
|
return result;
|
||
|
|
||
|
Curl_cf_socket_peek(cf->next, data, &ctx->q.sockfd,
|
||
|
&sockaddr, NULL, NULL, NULL, NULL);
|
||
|
if(!sockaddr)
|
||
|
return CURLE_QUIC_CONNECT_ERROR;
|
||
|
ctx->q.local_addrlen = sizeof(ctx->q.local_addr);
|
||
|
rv = getsockname(ctx->q.sockfd, (struct sockaddr *)&ctx->q.local_addr,
|
||
|
&ctx->q.local_addrlen);
|
||
|
if(rv == -1)
|
||
|
return CURLE_QUIC_CONNECT_ERROR;
|
||
|
|
||
|
ngtcp2_addr_init(&ctx->connected_path.local,
|
||
|
(struct sockaddr *)&ctx->q.local_addr,
|
||
|
ctx->q.local_addrlen);
|
||
|
ngtcp2_addr_init(&ctx->connected_path.remote,
|
||
|
&sockaddr->sa_addr, sockaddr->addrlen);
|
||
|
|
||
|
rc = ngtcp2_conn_client_new(&ctx->qconn, &ctx->dcid, &ctx->scid,
|
||
|
&ctx->connected_path,
|
||
|
NGTCP2_PROTO_VER_V1, &ng_callbacks,
|
||
|
&ctx->settings, &ctx->transport_params,
|
||
|
NULL, cf);
|
||
|
if(rc)
|
||
|
return CURLE_QUIC_CONNECT_ERROR;
|
||
|
|
||
|
#ifdef USE_GNUTLS
|
||
|
ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->gtls->session);
|
||
|
#else
|
||
|
ngtcp2_conn_set_tls_native_handle(ctx->qconn, ctx->ssl);
|
||
|
#endif
|
||
|
|
||
|
ngtcp2_ccerr_default(&ctx->last_error);
|
||
|
|
||
|
ctx->conn_ref.get_conn = get_conn;
|
||
|
ctx->conn_ref.user_data = cf;
|
||
|
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
static CURLcode cf_ngtcp2_connect(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
bool blocking, bool *done)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
CURLcode result = CURLE_OK;
|
||
|
struct cf_call_data save;
|
||
|
struct curltime now;
|
||
|
struct pkt_io_ctx pktx;
|
||
|
|
||
|
if(cf->connected) {
|
||
|
*done = TRUE;
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
|
||
|
/* Connect the UDP filter first */
|
||
|
if(!cf->next->connected) {
|
||
|
result = Curl_conn_cf_connect(cf->next, data, blocking, done);
|
||
|
if(result || !*done)
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
*done = FALSE;
|
||
|
now = Curl_now();
|
||
|
pktx_init(&pktx, cf, data);
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
|
||
|
if(ctx->reconnect_at.tv_sec && Curl_timediff(now, ctx->reconnect_at) < 0) {
|
||
|
/* Not time yet to attempt the next connect */
|
||
|
CURL_TRC_CF(data, cf, "waiting for reconnect time");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if(!ctx->qconn) {
|
||
|
ctx->started_at = now;
|
||
|
result = cf_connect_start(cf, data, &pktx);
|
||
|
if(result)
|
||
|
goto out;
|
||
|
result = cf_progress_egress(cf, data, &pktx);
|
||
|
/* we do not expect to be able to recv anything yet */
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
result = cf_progress_ingress(cf, data, &pktx);
|
||
|
if(result)
|
||
|
goto out;
|
||
|
|
||
|
result = cf_progress_egress(cf, data, &pktx);
|
||
|
if(result)
|
||
|
goto out;
|
||
|
|
||
|
if(ngtcp2_conn_get_handshake_completed(ctx->qconn)) {
|
||
|
ctx->handshake_at = now;
|
||
|
CURL_TRC_CF(data, cf, "handshake complete after %dms",
|
||
|
(int)Curl_timediff(now, ctx->started_at));
|
||
|
result = qng_verify_peer(cf, data);
|
||
|
if(!result) {
|
||
|
CURL_TRC_CF(data, cf, "peer verified");
|
||
|
cf->connected = TRUE;
|
||
|
cf->conn->alpn = CURL_HTTP_VERSION_3;
|
||
|
*done = TRUE;
|
||
|
connkeep(cf->conn, "HTTP/3 default");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
if(result == CURLE_RECV_ERROR && ctx->qconn &&
|
||
|
ngtcp2_conn_in_draining_period(ctx->qconn)) {
|
||
|
/* When a QUIC server instance is shutting down, it may send us a
|
||
|
* CONNECTION_CLOSE right away. Our connection then enters the DRAINING
|
||
|
* state. The CONNECT may work in the near future again. Indicate
|
||
|
* that as a "weird" reply. */
|
||
|
result = CURLE_WEIRD_SERVER_REPLY;
|
||
|
}
|
||
|
|
||
|
#ifndef CURL_DISABLE_VERBOSE_STRINGS
|
||
|
if(result) {
|
||
|
const char *r_ip = NULL;
|
||
|
int r_port = 0;
|
||
|
|
||
|
Curl_cf_socket_peek(cf->next, data, NULL, NULL,
|
||
|
&r_ip, &r_port, NULL, NULL);
|
||
|
infof(data, "QUIC connect to %s port %u failed: %s",
|
||
|
r_ip, r_port, curl_easy_strerror(result));
|
||
|
}
|
||
|
#endif
|
||
|
if(!result && ctx->qconn) {
|
||
|
result = check_and_set_expiry(cf, data, &pktx);
|
||
|
}
|
||
|
if(result || *done)
|
||
|
CURL_TRC_CF(data, cf, "connect -> %d, done=%d", result, *done);
|
||
|
CF_DATA_RESTORE(cf, save);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
static CURLcode cf_ngtcp2_query(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
int query, int *pres1, void *pres2)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
struct cf_call_data save;
|
||
|
|
||
|
switch(query) {
|
||
|
case CF_QUERY_MAX_CONCURRENT: {
|
||
|
const ngtcp2_transport_params *rp;
|
||
|
DEBUGASSERT(pres1);
|
||
|
|
||
|
CF_DATA_SAVE(save, cf, data);
|
||
|
rp = ngtcp2_conn_get_remote_transport_params(ctx->qconn);
|
||
|
if(rp)
|
||
|
*pres1 = (rp->initial_max_streams_bidi > INT_MAX)?
|
||
|
INT_MAX : (int)rp->initial_max_streams_bidi;
|
||
|
else /* not arrived yet? */
|
||
|
*pres1 = Curl_multi_max_concurrent_streams(data->multi);
|
||
|
CURL_TRC_CF(data, cf, "query max_conncurrent -> %d", *pres1);
|
||
|
CF_DATA_RESTORE(cf, save);
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
case CF_QUERY_CONNECT_REPLY_MS:
|
||
|
if(ctx->got_first_byte) {
|
||
|
timediff_t ms = Curl_timediff(ctx->first_byte_at, ctx->started_at);
|
||
|
*pres1 = (ms < INT_MAX)? (int)ms : INT_MAX;
|
||
|
}
|
||
|
else
|
||
|
*pres1 = -1;
|
||
|
return CURLE_OK;
|
||
|
case CF_QUERY_TIMER_CONNECT: {
|
||
|
struct curltime *when = pres2;
|
||
|
if(ctx->got_first_byte)
|
||
|
*when = ctx->first_byte_at;
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
case CF_QUERY_TIMER_APPCONNECT: {
|
||
|
struct curltime *when = pres2;
|
||
|
if(cf->connected)
|
||
|
*when = ctx->handshake_at;
|
||
|
return CURLE_OK;
|
||
|
}
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return cf->next?
|
||
|
cf->next->cft->query(cf->next, data, query, pres1, pres2) :
|
||
|
CURLE_UNKNOWN_OPTION;
|
||
|
}
|
||
|
|
||
|
static bool cf_ngtcp2_conn_is_alive(struct Curl_cfilter *cf,
|
||
|
struct Curl_easy *data,
|
||
|
bool *input_pending)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = cf->ctx;
|
||
|
bool alive = TRUE;
|
||
|
const ngtcp2_transport_params *rp;
|
||
|
|
||
|
*input_pending = FALSE;
|
||
|
if(!ctx->qconn)
|
||
|
return FALSE;
|
||
|
|
||
|
/* Both sides of the QUIC connection announce they max idle times in
|
||
|
* the transport parameters. Look at the minimum of both and if
|
||
|
* we exceed this, regard the connection as dead. The other side
|
||
|
* may have completely purged it and will no longer respond
|
||
|
* to any packets from us. */
|
||
|
rp = ngtcp2_conn_get_remote_transport_params(ctx->qconn);
|
||
|
if(rp) {
|
||
|
timediff_t idletime;
|
||
|
uint64_t idle_ms = ctx->max_idle_ms;
|
||
|
|
||
|
if(rp->max_idle_timeout &&
|
||
|
(rp->max_idle_timeout / NGTCP2_MILLISECONDS) < idle_ms)
|
||
|
idle_ms = (rp->max_idle_timeout / NGTCP2_MILLISECONDS);
|
||
|
idletime = Curl_timediff(Curl_now(), ctx->q.last_io);
|
||
|
if(idletime > 0 && (uint64_t)idletime > idle_ms)
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
if(!cf->next || !cf->next->cft->is_alive(cf->next, data, input_pending))
|
||
|
return FALSE;
|
||
|
|
||
|
if(*input_pending) {
|
||
|
/* This happens before we've sent off a request and the connection is
|
||
|
not in use by any other transfer, there shouldn't be any data here,
|
||
|
only "protocol frames" */
|
||
|
*input_pending = FALSE;
|
||
|
if(cf_progress_ingress(cf, data, NULL))
|
||
|
alive = FALSE;
|
||
|
else {
|
||
|
alive = TRUE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return alive;
|
||
|
}
|
||
|
|
||
|
struct Curl_cftype Curl_cft_http3 = {
|
||
|
"HTTP/3",
|
||
|
CF_TYPE_IP_CONNECT | CF_TYPE_SSL | CF_TYPE_MULTIPLEX,
|
||
|
0,
|
||
|
cf_ngtcp2_destroy,
|
||
|
cf_ngtcp2_connect,
|
||
|
cf_ngtcp2_close,
|
||
|
Curl_cf_def_get_host,
|
||
|
cf_ngtcp2_adjust_pollset,
|
||
|
cf_ngtcp2_data_pending,
|
||
|
cf_ngtcp2_send,
|
||
|
cf_ngtcp2_recv,
|
||
|
cf_ngtcp2_data_event,
|
||
|
cf_ngtcp2_conn_is_alive,
|
||
|
Curl_cf_def_conn_keep_alive,
|
||
|
cf_ngtcp2_query,
|
||
|
};
|
||
|
|
||
|
CURLcode Curl_cf_ngtcp2_create(struct Curl_cfilter **pcf,
|
||
|
struct Curl_easy *data,
|
||
|
struct connectdata *conn,
|
||
|
const struct Curl_addrinfo *ai)
|
||
|
{
|
||
|
struct cf_ngtcp2_ctx *ctx = NULL;
|
||
|
struct Curl_cfilter *cf = NULL, *udp_cf = NULL;
|
||
|
CURLcode result;
|
||
|
|
||
|
(void)data;
|
||
|
ctx = calloc(1, sizeof(*ctx));
|
||
|
if(!ctx) {
|
||
|
result = CURLE_OUT_OF_MEMORY;
|
||
|
goto out;
|
||
|
}
|
||
|
ctx->qlogfd = -1;
|
||
|
cf_ngtcp2_ctx_clear(ctx);
|
||
|
|
||
|
result = Curl_cf_create(&cf, &Curl_cft_http3, ctx);
|
||
|
if(result)
|
||
|
goto out;
|
||
|
|
||
|
result = Curl_cf_udp_create(&udp_cf, data, conn, ai, TRNSPRT_QUIC);
|
||
|
if(result)
|
||
|
goto out;
|
||
|
|
||
|
cf->conn = conn;
|
||
|
udp_cf->conn = cf->conn;
|
||
|
udp_cf->sockindex = cf->sockindex;
|
||
|
cf->next = udp_cf;
|
||
|
|
||
|
out:
|
||
|
*pcf = (!result)? cf : NULL;
|
||
|
if(result) {
|
||
|
if(udp_cf)
|
||
|
Curl_conn_cf_discard_sub(cf, udp_cf, data, TRUE);
|
||
|
Curl_safefree(cf);
|
||
|
Curl_safefree(ctx);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
bool Curl_conn_is_ngtcp2(const struct Curl_easy *data,
|
||
|
const struct connectdata *conn,
|
||
|
int sockindex)
|
||
|
{
|
||
|
struct Curl_cfilter *cf = conn? conn->cfilter[sockindex] : NULL;
|
||
|
|
||
|
(void)data;
|
||
|
for(; cf; cf = cf->next) {
|
||
|
if(cf->cft == &Curl_cft_http3)
|
||
|
return TRUE;
|
||
|
if(cf->cft->flags & CF_TYPE_IP_CONNECT)
|
||
|
return FALSE;
|
||
|
}
|
||
|
return FALSE;
|
||
|
}
|
||
|
|
||
|
#endif
|