2025-04-28 23:30:04 -04:00

2071 lines
57 KiB
C

/***************************************************************************
* _ _ ____ _
* Project ___| | | | _ \| |
* / __| | | | |_) | |
* | (__| |_| | _ <| |___
* \___|\___/|_| \_\_____|
*
* Copyright (C) Daniel Stenberg, <daniel@haxx.se>, et al.
*
* This software is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at https://curl.se/docs/copyright.html.
*
* You may opt to use, copy, modify, merge, publish, distribute and/or sell
* copies of the Software, and permit persons to whom the Software is
* furnished to do so, under the terms of the COPYING file.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* SPDX-License-Identifier: curl
*
***************************************************************************/
/* This file is for implementing all "generic" SSL functions that all libcurl
internals should use. It is then responsible for calling the proper
"backend" function.
SSL-functions in libcurl should call functions in this source file, and not
to any specific SSL-layer.
Curl_ssl_ - prefix for generic ones
Note that this source code uses the functions of the configured SSL
backend via the global Curl_ssl instance.
"SSL/TLS Strong Encryption: An Introduction"
https://httpd.apache.org/docs/2.0/ssl/ssl_intro.html
*/
#include "curl_setup.h"
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#include "urldata.h"
#include "cfilters.h"
#include "vtls.h" /* generic SSL protos etc */
#include "vtls_int.h"
#include "vtls_scache.h"
#include "openssl.h" /* OpenSSL versions */
#include "gtls.h" /* GnuTLS versions */
#include "wolfssl.h" /* wolfSSL versions */
#include "schannel.h" /* Schannel SSPI version */
#include "sectransp.h" /* Secure Transport (Darwin) version */
#include "mbedtls.h" /* mbedTLS versions */
#include "bearssl.h" /* BearSSL versions */
#include "rustls.h" /* Rustls versions */
#include "slist.h"
#include "sendf.h"
#include "strcase.h"
#include "url.h"
#include "progress.h"
#include "share.h"
#include "multiif.h"
#include "timeval.h"
#include "curl_md5.h"
#include "curl_sha256.h"
#include "warnless.h"
#include "curl_base64.h"
#include "curl_printf.h"
#include "inet_pton.h"
#include "connect.h"
#include "select.h"
#include "strdup.h"
#include "rand.h"
/* The last #include files should be: */
#include "curl_memory.h"
#include "memdebug.h"
#define CLONE_STRING(var) \
do { \
if(source->var) { \
dest->var = strdup(source->var); \
if(!dest->var) \
return FALSE; \
} \
else \
dest->var = NULL; \
} while(0)
#define CLONE_BLOB(var) \
do { \
if(blobdup(&dest->var, source->var)) \
return FALSE; \
} while(0)
static CURLcode blobdup(struct curl_blob **dest,
struct curl_blob *src)
{
DEBUGASSERT(dest);
DEBUGASSERT(!*dest);
if(src) {
/* only if there is data to dupe! */
struct curl_blob *d;
d = malloc(sizeof(struct curl_blob) + src->len);
if(!d)
return CURLE_OUT_OF_MEMORY;
d->len = src->len;
/* Always duplicate because the connection may survive longer than the
handle that passed in the blob. */
d->flags = CURL_BLOB_COPY;
d->data = (void *)((char *)d + sizeof(struct curl_blob));
memcpy(d->data, src->data, src->len);
*dest = d;
}
return CURLE_OK;
}
/* returns TRUE if the blobs are identical */
static bool blobcmp(struct curl_blob *first, struct curl_blob *second)
{
if(!first && !second) /* both are NULL */
return TRUE;
if(!first || !second) /* one is NULL */
return FALSE;
if(first->len != second->len) /* different sizes */
return FALSE;
return !memcmp(first->data, second->data, first->len); /* same data */
}
#ifdef USE_SSL
static const struct alpn_spec ALPN_SPEC_H11 = {
{ ALPN_HTTP_1_1 }, 1
};
#ifdef USE_HTTP2
static const struct alpn_spec ALPN_SPEC_H2 = {
{ ALPN_H2 }, 1
};
static const struct alpn_spec ALPN_SPEC_H2_H11 = {
{ ALPN_H2, ALPN_HTTP_1_1 }, 2
};
#endif
static const struct alpn_spec *
alpn_get_spec(http_majors allowed, bool use_alpn)
{
if(!use_alpn)
return NULL;
#ifdef USE_HTTP2
if(allowed & CURL_HTTP_V2x) {
if(allowed & CURL_HTTP_V1x)
return &ALPN_SPEC_H2_H11;
return &ALPN_SPEC_H2;
}
#else
(void)allowed;
#endif
/* Use the ALPN protocol "http/1.1" for HTTP/1.x.
Avoid "http/1.0" because some servers do not support it. */
return &ALPN_SPEC_H11;
}
#endif /* USE_SSL */
void Curl_ssl_easy_config_init(struct Curl_easy *data)
{
/*
* libcurl 7.10 introduced SSL verification *by default*! This needs to be
* switched off unless wanted.
*/
data->set.ssl.primary.verifypeer = TRUE;
data->set.ssl.primary.verifyhost = TRUE;
data->set.ssl.primary.cache_session = TRUE; /* caching by default */
#ifndef CURL_DISABLE_PROXY
data->set.proxy_ssl = data->set.ssl;
#endif
}
static bool
match_ssl_primary_config(struct Curl_easy *data,
struct ssl_primary_config *c1,
struct ssl_primary_config *c2)
{
(void)data;
if((c1->version == c2->version) &&
(c1->version_max == c2->version_max) &&
(c1->ssl_options == c2->ssl_options) &&
(c1->verifypeer == c2->verifypeer) &&
(c1->verifyhost == c2->verifyhost) &&
(c1->verifystatus == c2->verifystatus) &&
blobcmp(c1->cert_blob, c2->cert_blob) &&
blobcmp(c1->ca_info_blob, c2->ca_info_blob) &&
blobcmp(c1->issuercert_blob, c2->issuercert_blob) &&
Curl_safecmp(c1->CApath, c2->CApath) &&
Curl_safecmp(c1->CAfile, c2->CAfile) &&
Curl_safecmp(c1->issuercert, c2->issuercert) &&
Curl_safecmp(c1->clientcert, c2->clientcert) &&
#ifdef USE_TLS_SRP
!Curl_timestrcmp(c1->username, c2->username) &&
!Curl_timestrcmp(c1->password, c2->password) &&
#endif
strcasecompare(c1->cipher_list, c2->cipher_list) &&
strcasecompare(c1->cipher_list13, c2->cipher_list13) &&
strcasecompare(c1->curves, c2->curves) &&
strcasecompare(c1->CRLfile, c2->CRLfile) &&
strcasecompare(c1->pinned_key, c2->pinned_key))
return TRUE;
return FALSE;
}
bool Curl_ssl_conn_config_match(struct Curl_easy *data,
struct connectdata *candidate,
bool proxy)
{
#ifndef CURL_DISABLE_PROXY
if(proxy)
return match_ssl_primary_config(data, &data->set.proxy_ssl.primary,
&candidate->proxy_ssl_config);
#else
(void)proxy;
#endif
return match_ssl_primary_config(data, &data->set.ssl.primary,
&candidate->ssl_config);
}
static bool clone_ssl_primary_config(struct ssl_primary_config *source,
struct ssl_primary_config *dest)
{
dest->version = source->version;
dest->version_max = source->version_max;
dest->verifypeer = source->verifypeer;
dest->verifyhost = source->verifyhost;
dest->verifystatus = source->verifystatus;
dest->cache_session = source->cache_session;
dest->ssl_options = source->ssl_options;
CLONE_BLOB(cert_blob);
CLONE_BLOB(ca_info_blob);
CLONE_BLOB(issuercert_blob);
CLONE_STRING(CApath);
CLONE_STRING(CAfile);
CLONE_STRING(issuercert);
CLONE_STRING(clientcert);
CLONE_STRING(cipher_list);
CLONE_STRING(cipher_list13);
CLONE_STRING(pinned_key);
CLONE_STRING(curves);
CLONE_STRING(CRLfile);
#ifdef USE_TLS_SRP
CLONE_STRING(username);
CLONE_STRING(password);
#endif
return TRUE;
}
static void free_primary_ssl_config(struct ssl_primary_config *sslc)
{
Curl_safefree(sslc->CApath);
Curl_safefree(sslc->CAfile);
Curl_safefree(sslc->issuercert);
Curl_safefree(sslc->clientcert);
Curl_safefree(sslc->cipher_list);
Curl_safefree(sslc->cipher_list13);
Curl_safefree(sslc->pinned_key);
Curl_safefree(sslc->cert_blob);
Curl_safefree(sslc->ca_info_blob);
Curl_safefree(sslc->issuercert_blob);
Curl_safefree(sslc->curves);
Curl_safefree(sslc->CRLfile);
#ifdef USE_TLS_SRP
Curl_safefree(sslc->username);
Curl_safefree(sslc->password);
#endif
}
CURLcode Curl_ssl_easy_config_complete(struct Curl_easy *data)
{
data->set.ssl.primary.CApath = data->set.str[STRING_SSL_CAPATH];
data->set.ssl.primary.CAfile = data->set.str[STRING_SSL_CAFILE];
data->set.ssl.primary.CRLfile = data->set.str[STRING_SSL_CRLFILE];
data->set.ssl.primary.issuercert = data->set.str[STRING_SSL_ISSUERCERT];
data->set.ssl.primary.issuercert_blob = data->set.blobs[BLOB_SSL_ISSUERCERT];
data->set.ssl.primary.cipher_list =
data->set.str[STRING_SSL_CIPHER_LIST];
data->set.ssl.primary.cipher_list13 =
data->set.str[STRING_SSL_CIPHER13_LIST];
data->set.ssl.primary.pinned_key =
data->set.str[STRING_SSL_PINNEDPUBLICKEY];
data->set.ssl.primary.cert_blob = data->set.blobs[BLOB_CERT];
data->set.ssl.primary.ca_info_blob = data->set.blobs[BLOB_CAINFO];
data->set.ssl.primary.curves = data->set.str[STRING_SSL_EC_CURVES];
#ifdef USE_TLS_SRP
data->set.ssl.primary.username = data->set.str[STRING_TLSAUTH_USERNAME];
data->set.ssl.primary.password = data->set.str[STRING_TLSAUTH_PASSWORD];
#endif
data->set.ssl.cert_type = data->set.str[STRING_CERT_TYPE];
data->set.ssl.key = data->set.str[STRING_KEY];
data->set.ssl.key_type = data->set.str[STRING_KEY_TYPE];
data->set.ssl.key_passwd = data->set.str[STRING_KEY_PASSWD];
data->set.ssl.primary.clientcert = data->set.str[STRING_CERT];
data->set.ssl.key_blob = data->set.blobs[BLOB_KEY];
#ifndef CURL_DISABLE_PROXY
data->set.proxy_ssl.primary.CApath = data->set.str[STRING_SSL_CAPATH_PROXY];
data->set.proxy_ssl.primary.CAfile = data->set.str[STRING_SSL_CAFILE_PROXY];
data->set.proxy_ssl.primary.cipher_list =
data->set.str[STRING_SSL_CIPHER_LIST_PROXY];
data->set.proxy_ssl.primary.cipher_list13 =
data->set.str[STRING_SSL_CIPHER13_LIST_PROXY];
data->set.proxy_ssl.primary.pinned_key =
data->set.str[STRING_SSL_PINNEDPUBLICKEY_PROXY];
data->set.proxy_ssl.primary.cert_blob = data->set.blobs[BLOB_CERT_PROXY];
data->set.proxy_ssl.primary.ca_info_blob =
data->set.blobs[BLOB_CAINFO_PROXY];
data->set.proxy_ssl.primary.issuercert =
data->set.str[STRING_SSL_ISSUERCERT_PROXY];
data->set.proxy_ssl.primary.issuercert_blob =
data->set.blobs[BLOB_SSL_ISSUERCERT_PROXY];
data->set.proxy_ssl.primary.CRLfile =
data->set.str[STRING_SSL_CRLFILE_PROXY];
data->set.proxy_ssl.cert_type = data->set.str[STRING_CERT_TYPE_PROXY];
data->set.proxy_ssl.key = data->set.str[STRING_KEY_PROXY];
data->set.proxy_ssl.key_type = data->set.str[STRING_KEY_TYPE_PROXY];
data->set.proxy_ssl.key_passwd = data->set.str[STRING_KEY_PASSWD_PROXY];
data->set.proxy_ssl.primary.clientcert = data->set.str[STRING_CERT_PROXY];
data->set.proxy_ssl.key_blob = data->set.blobs[BLOB_KEY_PROXY];
#ifdef USE_TLS_SRP
data->set.proxy_ssl.primary.username =
data->set.str[STRING_TLSAUTH_USERNAME_PROXY];
data->set.proxy_ssl.primary.password =
data->set.str[STRING_TLSAUTH_PASSWORD_PROXY];
#endif
#endif /* CURL_DISABLE_PROXY */
return CURLE_OK;
}
CURLcode Curl_ssl_conn_config_init(struct Curl_easy *data,
struct connectdata *conn)
{
/* Clone "primary" SSL configurations from the esay handle to
* the connection. They are used for connection cache matching and
* probably outlive the easy handle */
if(!clone_ssl_primary_config(&data->set.ssl.primary, &conn->ssl_config))
return CURLE_OUT_OF_MEMORY;
#ifndef CURL_DISABLE_PROXY
if(!clone_ssl_primary_config(&data->set.proxy_ssl.primary,
&conn->proxy_ssl_config))
return CURLE_OUT_OF_MEMORY;
#endif
return CURLE_OK;
}
void Curl_ssl_conn_config_cleanup(struct connectdata *conn)
{
free_primary_ssl_config(&conn->ssl_config);
#ifndef CURL_DISABLE_PROXY
free_primary_ssl_config(&conn->proxy_ssl_config);
#endif
}
void Curl_ssl_conn_config_update(struct Curl_easy *data, bool for_proxy)
{
/* May be called on an easy that has no connection yet */
if(data->conn) {
struct ssl_primary_config *src, *dest;
#ifndef CURL_DISABLE_PROXY
src = for_proxy ? &data->set.proxy_ssl.primary : &data->set.ssl.primary;
dest = for_proxy ? &data->conn->proxy_ssl_config : &data->conn->ssl_config;
#else
(void)for_proxy;
src = &data->set.ssl.primary;
dest = &data->conn->ssl_config;
#endif
dest->verifyhost = src->verifyhost;
dest->verifypeer = src->verifypeer;
dest->verifystatus = src->verifystatus;
}
}
#ifdef USE_SSL
static int multissl_setup(const struct Curl_ssl *backend);
#endif
curl_sslbackend Curl_ssl_backend(void)
{
#ifdef USE_SSL
multissl_setup(NULL);
return Curl_ssl->info.id;
#else
return CURLSSLBACKEND_NONE;
#endif
}
#ifdef USE_SSL
/* "global" init done? */
static bool init_ssl = FALSE;
/**
* Global SSL init
*
* @retval 0 error initializing SSL
* @retval 1 SSL initialized successfully
*/
int Curl_ssl_init(void)
{
/* make sure this is only done once */
if(init_ssl)
return 1;
init_ssl = TRUE; /* never again */
if(Curl_ssl->init)
return Curl_ssl->init();
return 1;
}
static bool ssl_prefs_check(struct Curl_easy *data)
{
/* check for CURLOPT_SSLVERSION invalid parameter value */
const unsigned char sslver = data->set.ssl.primary.version;
if(sslver >= CURL_SSLVERSION_LAST) {
failf(data, "Unrecognized parameter value passed via CURLOPT_SSLVERSION");
return FALSE;
}
switch(data->set.ssl.primary.version_max) {
case CURL_SSLVERSION_MAX_NONE:
case CURL_SSLVERSION_MAX_DEFAULT:
break;
default:
if((data->set.ssl.primary.version_max >> 16) < sslver) {
failf(data, "CURL_SSLVERSION_MAX incompatible with CURL_SSLVERSION");
return FALSE;
}
}
return TRUE;
}
static struct ssl_connect_data *cf_ctx_new(struct Curl_easy *data,
const struct alpn_spec *alpn)
{
struct ssl_connect_data *ctx;
(void)data;
ctx = calloc(1, sizeof(*ctx));
if(!ctx)
return NULL;
ctx->ssl_impl = Curl_ssl;
ctx->alpn = alpn;
Curl_bufq_init2(&ctx->earlydata, CURL_SSL_EARLY_MAX, 1, BUFQ_OPT_NO_SPARES);
ctx->backend = calloc(1, ctx->ssl_impl->sizeof_ssl_backend_data);
if(!ctx->backend) {
free(ctx);
return NULL;
}
return ctx;
}
static void cf_ctx_free(struct ssl_connect_data *ctx)
{
if(ctx) {
Curl_safefree(ctx->negotiated.alpn);
Curl_bufq_free(&ctx->earlydata);
free(ctx->backend);
free(ctx);
}
}
CURLcode Curl_ssl_get_channel_binding(struct Curl_easy *data, int sockindex,
struct dynbuf *binding)
{
if(Curl_ssl->get_channel_binding)
return Curl_ssl->get_channel_binding(data, sockindex, binding);
return CURLE_OK;
}
void Curl_ssl_close_all(struct Curl_easy *data)
{
if(Curl_ssl->close_all)
Curl_ssl->close_all(data);
}
void Curl_ssl_adjust_pollset(struct Curl_cfilter *cf, struct Curl_easy *data,
struct easy_pollset *ps)
{
struct ssl_connect_data *connssl = cf->ctx;
if(connssl->io_need) {
curl_socket_t sock = Curl_conn_cf_get_socket(cf->next, data);
if(sock != CURL_SOCKET_BAD) {
if(connssl->io_need & CURL_SSL_IO_NEED_SEND) {
Curl_pollset_set_out_only(data, ps, sock);
CURL_TRC_CF(data, cf, "adjust_pollset, POLLOUT fd=%" FMT_SOCKET_T,
sock);
}
else {
Curl_pollset_set_in_only(data, ps, sock);
CURL_TRC_CF(data, cf, "adjust_pollset, POLLIN fd=%" FMT_SOCKET_T,
sock);
}
}
}
}
/* Selects an SSL crypto engine
*/
CURLcode Curl_ssl_set_engine(struct Curl_easy *data, const char *engine)
{
if(Curl_ssl->set_engine)
return Curl_ssl->set_engine(data, engine);
return CURLE_NOT_BUILT_IN;
}
/* Selects the default SSL crypto engine
*/
CURLcode Curl_ssl_set_engine_default(struct Curl_easy *data)
{
if(Curl_ssl->set_engine_default)
return Curl_ssl->set_engine_default(data);
return CURLE_NOT_BUILT_IN;
}
/* Return list of OpenSSL crypto engine names. */
struct curl_slist *Curl_ssl_engines_list(struct Curl_easy *data)
{
if(Curl_ssl->engines_list)
return Curl_ssl->engines_list(data);
return NULL;
}
static size_t multissl_version(char *buffer, size_t size);
void Curl_ssl_version(char *buffer, size_t size)
{
#ifdef CURL_WITH_MULTI_SSL
(void)multissl_version(buffer, size);
#else
(void)Curl_ssl->version(buffer, size);
#endif
}
void Curl_ssl_free_certinfo(struct Curl_easy *data)
{
struct curl_certinfo *ci = &data->info.certs;
if(ci->num_of_certs) {
/* free all individual lists used */
int i;
for(i = 0; i < ci->num_of_certs; i++) {
curl_slist_free_all(ci->certinfo[i]);
ci->certinfo[i] = NULL;
}
free(ci->certinfo); /* free the actual array too */
ci->certinfo = NULL;
ci->num_of_certs = 0;
}
}
CURLcode Curl_ssl_init_certinfo(struct Curl_easy *data, int num)
{
struct curl_certinfo *ci = &data->info.certs;
struct curl_slist **table;
/* Free any previous certificate information structures */
Curl_ssl_free_certinfo(data);
/* Allocate the required certificate information structures */
table = calloc((size_t) num, sizeof(struct curl_slist *));
if(!table)
return CURLE_OUT_OF_MEMORY;
ci->num_of_certs = num;
ci->certinfo = table;
return CURLE_OK;
}
/*
* 'value' is NOT a null-terminated string
*/
CURLcode Curl_ssl_push_certinfo_len(struct Curl_easy *data,
int certnum,
const char *label,
const char *value,
size_t valuelen)
{
struct curl_certinfo *ci = &data->info.certs;
struct curl_slist *nl;
CURLcode result = CURLE_OK;
struct dynbuf build;
DEBUGASSERT(certnum < ci->num_of_certs);
Curl_dyn_init(&build, CURL_X509_STR_MAX);
if(Curl_dyn_add(&build, label) ||
Curl_dyn_addn(&build, ":", 1) ||
Curl_dyn_addn(&build, value, valuelen))
return CURLE_OUT_OF_MEMORY;
nl = Curl_slist_append_nodup(ci->certinfo[certnum],
Curl_dyn_ptr(&build));
if(!nl) {
Curl_dyn_free(&build);
curl_slist_free_all(ci->certinfo[certnum]);
result = CURLE_OUT_OF_MEMORY;
}
ci->certinfo[certnum] = nl;
return result;
}
/* get length bytes of randomness */
CURLcode Curl_ssl_random(struct Curl_easy *data,
unsigned char *entropy,
size_t length)
{
DEBUGASSERT(length == sizeof(int));
if(Curl_ssl->random)
return Curl_ssl->random(data, entropy, length);
else
return CURLE_NOT_BUILT_IN;
}
/*
* Public key pem to der conversion
*/
static CURLcode pubkey_pem_to_der(const char *pem,
unsigned char **der, size_t *der_len)
{
char *begin_pos, *end_pos;
size_t pem_count, pem_len;
CURLcode result;
struct dynbuf pbuf;
/* if no pem, exit. */
if(!pem)
return CURLE_BAD_CONTENT_ENCODING;
Curl_dyn_init(&pbuf, MAX_PINNED_PUBKEY_SIZE);
begin_pos = strstr(pem, "-----BEGIN PUBLIC KEY-----");
if(!begin_pos)
return CURLE_BAD_CONTENT_ENCODING;
pem_count = begin_pos - pem;
/* Invalid if not at beginning AND not directly following \n */
if(0 != pem_count && '\n' != pem[pem_count - 1])
return CURLE_BAD_CONTENT_ENCODING;
/* 26 is length of "-----BEGIN PUBLIC KEY-----" */
pem_count += 26;
/* Invalid if not directly following \n */
end_pos = strstr(pem + pem_count, "\n-----END PUBLIC KEY-----");
if(!end_pos)
return CURLE_BAD_CONTENT_ENCODING;
pem_len = end_pos - pem;
/*
* Here we loop through the pem array one character at a time between the
* correct indices, and place each character that is not '\n' or '\r'
* into the stripped_pem array, which should represent the raw base64 string
*/
while(pem_count < pem_len) {
if('\n' != pem[pem_count] && '\r' != pem[pem_count]) {
result = Curl_dyn_addn(&pbuf, &pem[pem_count], 1);
if(result)
return result;
}
++pem_count;
}
result = Curl_base64_decode(Curl_dyn_ptr(&pbuf), der, der_len);
Curl_dyn_free(&pbuf);
return result;
}
/*
* Generic pinned public key check.
*/
CURLcode Curl_pin_peer_pubkey(struct Curl_easy *data,
const char *pinnedpubkey,
const unsigned char *pubkey, size_t pubkeylen)
{
CURLcode result = CURLE_SSL_PINNEDPUBKEYNOTMATCH;
#ifdef CURL_DISABLE_VERBOSE_STRINGS
(void)data;
#endif
/* if a path was not specified, do not pin */
if(!pinnedpubkey)
return CURLE_OK;
if(!pubkey || !pubkeylen)
return result;
/* only do this if pinnedpubkey starts with "sha256//", length 8 */
if(!strncmp(pinnedpubkey, "sha256//", 8)) {
CURLcode encode;
size_t encodedlen = 0;
char *encoded = NULL, *pinkeycopy, *begin_pos, *end_pos;
unsigned char *sha256sumdigest;
if(!Curl_ssl->sha256sum) {
/* without sha256 support, this cannot match */
return result;
}
/* compute sha256sum of public key */
sha256sumdigest = malloc(CURL_SHA256_DIGEST_LENGTH);
if(!sha256sumdigest)
return CURLE_OUT_OF_MEMORY;
encode = Curl_ssl->sha256sum(pubkey, pubkeylen,
sha256sumdigest, CURL_SHA256_DIGEST_LENGTH);
if(!encode)
encode = Curl_base64_encode((char *)sha256sumdigest,
CURL_SHA256_DIGEST_LENGTH, &encoded,
&encodedlen);
Curl_safefree(sha256sumdigest);
if(encode)
return encode;
infof(data, " public key hash: sha256//%s", encoded);
/* it starts with sha256//, copy so we can modify it */
pinkeycopy = strdup(pinnedpubkey);
if(!pinkeycopy) {
Curl_safefree(encoded);
return CURLE_OUT_OF_MEMORY;
}
/* point begin_pos to the copy, and start extracting keys */
begin_pos = pinkeycopy;
do {
end_pos = strstr(begin_pos, ";sha256//");
/*
* if there is an end_pos, null terminate,
* otherwise it will go to the end of the original string
*/
if(end_pos)
end_pos[0] = '\0';
/* compare base64 sha256 digests, 8 is the length of "sha256//" */
if(encodedlen == strlen(begin_pos + 8) &&
!memcmp(encoded, begin_pos + 8, encodedlen)) {
result = CURLE_OK;
break;
}
/*
* change back the null-terminator we changed earlier,
* and look for next begin
*/
if(end_pos) {
end_pos[0] = ';';
begin_pos = strstr(end_pos, "sha256//");
}
} while(end_pos && begin_pos);
Curl_safefree(encoded);
Curl_safefree(pinkeycopy);
}
else {
long filesize;
size_t size, pem_len;
CURLcode pem_read;
struct dynbuf buf;
char unsigned *pem_ptr = NULL;
size_t left;
FILE *fp = fopen(pinnedpubkey, "rb");
if(!fp)
return result;
Curl_dyn_init(&buf, MAX_PINNED_PUBKEY_SIZE);
/* Determine the file's size */
if(fseek(fp, 0, SEEK_END))
goto end;
filesize = ftell(fp);
if(fseek(fp, 0, SEEK_SET))
goto end;
if(filesize < 0 || filesize > MAX_PINNED_PUBKEY_SIZE)
goto end;
/*
* if the size of our certificate is bigger than the file
* size then it cannot match
*/
size = curlx_sotouz((curl_off_t) filesize);
if(pubkeylen > size)
goto end;
/*
* Read the file into the dynbuf
*/
left = size;
do {
char buffer[1024];
size_t want = left > sizeof(buffer) ? sizeof(buffer) : left;
if(want != fread(buffer, 1, want, fp))
goto end;
if(Curl_dyn_addn(&buf, buffer, want))
goto end;
left -= want;
} while(left);
/* If the sizes are the same, it cannot be base64 encoded, must be der */
if(pubkeylen == size) {
if(!memcmp(pubkey, Curl_dyn_ptr(&buf), pubkeylen))
result = CURLE_OK;
goto end;
}
/*
* Otherwise we will assume it is PEM and try to decode it
* after placing null terminator
*/
pem_read = pubkey_pem_to_der(Curl_dyn_ptr(&buf), &pem_ptr, &pem_len);
/* if it was not read successfully, exit */
if(pem_read)
goto end;
/*
* if the size of our certificate does not match the size of
* the decoded file, they cannot be the same, otherwise compare
*/
if(pubkeylen == pem_len && !memcmp(pubkey, pem_ptr, pubkeylen))
result = CURLE_OK;
end:
Curl_dyn_free(&buf);
Curl_safefree(pem_ptr);
fclose(fp);
}
return result;
}
/*
* Check whether the SSL backend supports the status_request extension.
*/
bool Curl_ssl_cert_status_request(void)
{
if(Curl_ssl->cert_status_request)
return Curl_ssl->cert_status_request();
return FALSE;
}
/*
* Check whether the SSL backend supports false start.
*/
bool Curl_ssl_false_start(void)
{
if(Curl_ssl->false_start)
return Curl_ssl->false_start();
return FALSE;
}
static int multissl_init(void)
{
if(multissl_setup(NULL))
return 1;
if(Curl_ssl->init)
return Curl_ssl->init();
return 1;
}
static CURLcode multissl_connect(struct Curl_cfilter *cf,
struct Curl_easy *data, bool *done)
{
if(multissl_setup(NULL))
return CURLE_FAILED_INIT;
return Curl_ssl->do_connect(cf, data, done);
}
static void multissl_adjust_pollset(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct easy_pollset *ps)
{
if(multissl_setup(NULL))
return;
Curl_ssl->adjust_pollset(cf, data, ps);
}
static void *multissl_get_internals(struct ssl_connect_data *connssl,
CURLINFO info)
{
if(multissl_setup(NULL))
return NULL;
return Curl_ssl->get_internals(connssl, info);
}
static void multissl_close(struct Curl_cfilter *cf, struct Curl_easy *data)
{
if(multissl_setup(NULL))
return;
Curl_ssl->close(cf, data);
}
static ssize_t multissl_recv_plain(struct Curl_cfilter *cf,
struct Curl_easy *data,
char *buf, size_t len, CURLcode *code)
{
if(multissl_setup(NULL))
return CURLE_FAILED_INIT;
return Curl_ssl->recv_plain(cf, data, buf, len, code);
}
static ssize_t multissl_send_plain(struct Curl_cfilter *cf,
struct Curl_easy *data,
const void *mem, size_t len,
CURLcode *code)
{
if(multissl_setup(NULL))
return CURLE_FAILED_INIT;
return Curl_ssl->send_plain(cf, data, mem, len, code);
}
static const struct Curl_ssl Curl_ssl_multi = {
{ CURLSSLBACKEND_NONE, "multi" }, /* info */
0, /* supports nothing */
(size_t)-1, /* something insanely large to be on the safe side */
multissl_init, /* init */
NULL, /* cleanup */
multissl_version, /* version */
NULL, /* shutdown */
NULL, /* data_pending */
NULL, /* random */
NULL, /* cert_status_request */
multissl_connect, /* connect */
multissl_adjust_pollset, /* adjust_pollset */
multissl_get_internals, /* get_internals */
multissl_close, /* close_one */
NULL, /* close_all */
NULL, /* set_engine */
NULL, /* set_engine_default */
NULL, /* engines_list */
NULL, /* false_start */
NULL, /* sha256sum */
multissl_recv_plain, /* recv decrypted data */
multissl_send_plain, /* send data to encrypt */
NULL, /* get_channel_binding */
};
const struct Curl_ssl *Curl_ssl =
#if defined(CURL_WITH_MULTI_SSL)
&Curl_ssl_multi;
#elif defined(USE_WOLFSSL)
&Curl_ssl_wolfssl;
#elif defined(USE_GNUTLS)
&Curl_ssl_gnutls;
#elif defined(USE_MBEDTLS)
&Curl_ssl_mbedtls;
#elif defined(USE_RUSTLS)
&Curl_ssl_rustls;
#elif defined(USE_OPENSSL)
&Curl_ssl_openssl;
#elif defined(USE_SECTRANSP)
&Curl_ssl_sectransp;
#elif defined(USE_SCHANNEL)
&Curl_ssl_schannel;
#elif defined(USE_BEARSSL)
&Curl_ssl_bearssl;
#else
#error "Missing struct Curl_ssl for selected SSL backend"
#endif
static const struct Curl_ssl *available_backends[] = {
#if defined(USE_WOLFSSL)
&Curl_ssl_wolfssl,
#endif
#if defined(USE_GNUTLS)
&Curl_ssl_gnutls,
#endif
#if defined(USE_MBEDTLS)
&Curl_ssl_mbedtls,
#endif
#if defined(USE_OPENSSL)
&Curl_ssl_openssl,
#endif
#if defined(USE_SECTRANSP)
&Curl_ssl_sectransp,
#endif
#if defined(USE_SCHANNEL)
&Curl_ssl_schannel,
#endif
#if defined(USE_BEARSSL)
&Curl_ssl_bearssl,
#endif
#if defined(USE_RUSTLS)
&Curl_ssl_rustls,
#endif
NULL
};
/* Global cleanup */
void Curl_ssl_cleanup(void)
{
if(init_ssl) {
/* only cleanup if we did a previous init */
if(Curl_ssl->cleanup)
Curl_ssl->cleanup();
#if defined(CURL_WITH_MULTI_SSL)
Curl_ssl = &Curl_ssl_multi;
#endif
init_ssl = FALSE;
}
}
static size_t multissl_version(char *buffer, size_t size)
{
static const struct Curl_ssl *selected;
static char backends[200];
static size_t backends_len;
const struct Curl_ssl *current;
current = Curl_ssl == &Curl_ssl_multi ? available_backends[0] : Curl_ssl;
if(current != selected) {
char *p = backends;
char *end = backends + sizeof(backends);
int i;
selected = current;
backends[0] = '\0';
for(i = 0; available_backends[i]; ++i) {
char vb[200];
bool paren = (selected != available_backends[i]);
if(available_backends[i]->version(vb, sizeof(vb))) {
p += msnprintf(p, end - p, "%s%s%s%s", (p != backends ? " " : ""),
(paren ? "(" : ""), vb, (paren ? ")" : ""));
}
}
backends_len = p - backends;
}
if(size) {
if(backends_len < size)
strcpy(buffer, backends);
else
*buffer = 0; /* did not fit */
}
return 0;
}
static int multissl_setup(const struct Curl_ssl *backend)
{
int i;
char *env;
if(Curl_ssl != &Curl_ssl_multi)
return 1;
if(backend) {
Curl_ssl = backend;
return 0;
}
if(!available_backends[0])
return 1;
env = curl_getenv("CURL_SSL_BACKEND");
if(env) {
for(i = 0; available_backends[i]; i++) {
if(strcasecompare(env, available_backends[i]->info.name)) {
Curl_ssl = available_backends[i];
free(env);
return 0;
}
}
}
#ifdef CURL_DEFAULT_SSL_BACKEND
for(i = 0; available_backends[i]; i++) {
if(strcasecompare(CURL_DEFAULT_SSL_BACKEND,
available_backends[i]->info.name)) {
Curl_ssl = available_backends[i];
free(env);
return 0;
}
}
#endif
/* Fall back to first available backend */
Curl_ssl = available_backends[0];
free(env);
return 0;
}
/* This function is used to select the SSL backend to use. It is called by
curl_global_sslset (easy.c) which uses the global init lock. */
CURLsslset Curl_init_sslset_nolock(curl_sslbackend id, const char *name,
const curl_ssl_backend ***avail)
{
int i;
if(avail)
*avail = (const curl_ssl_backend **)&available_backends;
if(Curl_ssl != &Curl_ssl_multi)
return id == Curl_ssl->info.id ||
(name && strcasecompare(name, Curl_ssl->info.name)) ?
CURLSSLSET_OK :
#if defined(CURL_WITH_MULTI_SSL)
CURLSSLSET_TOO_LATE;
#else
CURLSSLSET_UNKNOWN_BACKEND;
#endif
for(i = 0; available_backends[i]; i++) {
if(available_backends[i]->info.id == id ||
(name && strcasecompare(available_backends[i]->info.name, name))) {
multissl_setup(available_backends[i]);
return CURLSSLSET_OK;
}
}
return CURLSSLSET_UNKNOWN_BACKEND;
}
#else /* USE_SSL */
CURLsslset Curl_init_sslset_nolock(curl_sslbackend id, const char *name,
const curl_ssl_backend ***avail)
{
(void)id;
(void)name;
(void)avail;
return CURLSSLSET_NO_BACKENDS;
}
#endif /* !USE_SSL */
#ifdef USE_SSL
void Curl_ssl_peer_cleanup(struct ssl_peer *peer)
{
Curl_safefree(peer->sni);
if(peer->dispname != peer->hostname)
free(peer->dispname);
peer->dispname = NULL;
Curl_safefree(peer->hostname);
Curl_safefree(peer->scache_key);
peer->type = CURL_SSL_PEER_DNS;
}
static void cf_close(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
if(connssl) {
connssl->ssl_impl->close(cf, data);
connssl->state = ssl_connection_none;
Curl_ssl_peer_cleanup(&connssl->peer);
}
cf->connected = FALSE;
}
static ssl_peer_type get_peer_type(const char *hostname)
{
if(hostname && hostname[0]) {
#ifdef USE_IPV6
struct in6_addr addr;
#else
struct in_addr addr;
#endif
if(curlx_inet_pton(AF_INET, hostname, &addr))
return CURL_SSL_PEER_IPV4;
#ifdef USE_IPV6
else if(curlx_inet_pton(AF_INET6, hostname, &addr)) {
return CURL_SSL_PEER_IPV6;
}
#endif
}
return CURL_SSL_PEER_DNS;
}
CURLcode Curl_ssl_peer_init(struct ssl_peer *peer,
struct Curl_cfilter *cf,
const char *tls_id,
int transport)
{
const char *ehostname, *edispname;
CURLcode result = CURLE_OUT_OF_MEMORY;
/* We expect a clean struct, e.g. called only ONCE */
DEBUGASSERT(peer);
DEBUGASSERT(!peer->hostname);
DEBUGASSERT(!peer->dispname);
DEBUGASSERT(!peer->sni);
/* We need the hostname for SNI negotiation. Once handshaked, this remains
* the SNI hostname for the TLS connection. When the connection is reused,
* the settings in cf->conn might change. We keep a copy of the hostname we
* use for SNI.
*/
peer->transport = transport;
#ifndef CURL_DISABLE_PROXY
if(Curl_ssl_cf_is_proxy(cf)) {
ehostname = cf->conn->http_proxy.host.name;
edispname = cf->conn->http_proxy.host.dispname;
peer->port = cf->conn->http_proxy.port;
}
else
#endif
{
ehostname = cf->conn->host.name;
edispname = cf->conn->host.dispname;
peer->port = cf->conn->remote_port;
}
/* hostname MUST exist and not be empty */
if(!ehostname || !ehostname[0]) {
result = CURLE_FAILED_INIT;
goto out;
}
peer->hostname = strdup(ehostname);
if(!peer->hostname)
goto out;
if(!edispname || !strcmp(ehostname, edispname))
peer->dispname = peer->hostname;
else {
peer->dispname = strdup(edispname);
if(!peer->dispname)
goto out;
}
peer->type = get_peer_type(peer->hostname);
if(peer->type == CURL_SSL_PEER_DNS) {
/* not an IP address, normalize according to RCC 6066 ch. 3,
* max len of SNI is 2^16-1, no trailing dot */
size_t len = strlen(peer->hostname);
if(len && (peer->hostname[len-1] == '.'))
len--;
if(len < USHRT_MAX) {
peer->sni = calloc(1, len + 1);
if(!peer->sni)
goto out;
Curl_strntolower(peer->sni, peer->hostname, len);
peer->sni[len] = 0;
}
}
result = Curl_ssl_peer_key_make(cf, peer, tls_id, &peer->scache_key);
out:
if(result)
Curl_ssl_peer_cleanup(peer);
return result;
}
static void ssl_cf_destroy(struct Curl_cfilter *cf, struct Curl_easy *data)
{
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
cf_close(cf, data);
CF_DATA_RESTORE(cf, save);
cf_ctx_free(cf->ctx);
cf->ctx = NULL;
}
static void ssl_cf_close(struct Curl_cfilter *cf,
struct Curl_easy *data)
{
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
cf_close(cf, data);
if(cf->next)
cf->next->cft->do_close(cf->next, data);
CF_DATA_RESTORE(cf, save);
}
static CURLcode ssl_cf_connect(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool *done)
{
struct ssl_connect_data *connssl = cf->ctx;
struct cf_call_data save;
CURLcode result;
if(cf->connected && (connssl->state != ssl_connection_deferred)) {
*done = TRUE;
return CURLE_OK;
}
if(!cf->next) {
*done = FALSE;
return CURLE_FAILED_INIT;
}
if(!cf->next->connected) {
result = cf->next->cft->do_connect(cf->next, data, done);
if(result || !*done)
return result;
}
CF_DATA_SAVE(save, cf, data);
CURL_TRC_CF(data, cf, "cf_connect()");
DEBUGASSERT(connssl);
*done = FALSE;
if(!connssl->peer.hostname) {
char tls_id[80];
connssl->ssl_impl->version(tls_id, sizeof(tls_id) - 1);
result = Curl_ssl_peer_init(&connssl->peer, cf, tls_id, TRNSPRT_TCP);
if(result)
goto out;
}
if(!connssl->prefs_checked) {
if(!ssl_prefs_check(data))
return CURLE_SSL_CONNECT_ERROR;
connssl->prefs_checked = TRUE;
}
result = connssl->ssl_impl->do_connect(cf, data, done);
if(!result && *done) {
cf->connected = TRUE;
if(connssl->state == ssl_connection_complete)
connssl->handshake_done = Curl_now();
/* Connection can be deferred when sending early data */
DEBUGASSERT(connssl->state == ssl_connection_complete ||
connssl->state == ssl_connection_deferred);
DEBUGASSERT(connssl->state != ssl_connection_deferred ||
connssl->earlydata_state > ssl_earlydata_none);
}
out:
CURL_TRC_CF(data, cf, "cf_connect() -> %d, done=%d", result, *done);
CF_DATA_RESTORE(cf, save);
return result;
}
static CURLcode ssl_cf_set_earlydata(struct Curl_cfilter *cf,
struct Curl_easy *data,
const void *buf, size_t blen)
{
struct ssl_connect_data *connssl = cf->ctx;
ssize_t nwritten = 0;
CURLcode result = CURLE_OK;
DEBUGASSERT(connssl->earlydata_state == ssl_earlydata_await);
DEBUGASSERT(Curl_bufq_is_empty(&connssl->earlydata));
if(blen) {
if(blen > connssl->earlydata_max)
blen = connssl->earlydata_max;
nwritten = Curl_bufq_write(&connssl->earlydata, buf, blen, &result);
CURL_TRC_CF(data, cf, "ssl_cf_set_earlydata(len=%zu) -> %zd",
blen, nwritten);
if(nwritten < 0)
return result;
}
return CURLE_OK;
}
static CURLcode ssl_cf_connect_deferred(struct Curl_cfilter *cf,
struct Curl_easy *data,
const void *buf, size_t blen,
bool *done)
{
struct ssl_connect_data *connssl = cf->ctx;
CURLcode result = CURLE_OK;
DEBUGASSERT(connssl->state == ssl_connection_deferred);
*done = FALSE;
if(connssl->earlydata_state == ssl_earlydata_await) {
result = ssl_cf_set_earlydata(cf, data, buf, blen);
if(result)
return result;
/* we buffered any early data we'd like to send. Actually
* do the connect now which sends it and performs the handshake. */
connssl->earlydata_state = ssl_earlydata_sending;
connssl->earlydata_skip = Curl_bufq_len(&connssl->earlydata);
}
result = ssl_cf_connect(cf, data, done);
if(!result && *done) {
Curl_pgrsTimeWas(data, TIMER_APPCONNECT, connssl->handshake_done);
switch(connssl->earlydata_state) {
case ssl_earlydata_none:
break;
case ssl_earlydata_accepted:
if(!Curl_ssl_cf_is_proxy(cf))
Curl_pgrsEarlyData(data, (curl_off_t)connssl->earlydata_skip);
infof(data, "Server accepted %zu bytes of TLS early data.",
connssl->earlydata_skip);
break;
case ssl_earlydata_rejected:
if(!Curl_ssl_cf_is_proxy(cf))
Curl_pgrsEarlyData(data, -(curl_off_t)connssl->earlydata_skip);
infof(data, "Server rejected TLS early data.");
connssl->earlydata_skip = 0;
break;
default:
/* This should not happen. Either we do not use early data or we
* should know if it was accepted or not. */
DEBUGASSERT(NULL);
break;
}
}
return result;
}
static bool ssl_cf_data_pending(struct Curl_cfilter *cf,
const struct Curl_easy *data)
{
struct ssl_connect_data *connssl = cf->ctx;
struct cf_call_data save;
bool result;
CF_DATA_SAVE(save, cf, data);
if(connssl->ssl_impl->data_pending &&
connssl->ssl_impl->data_pending(cf, data))
result = TRUE;
else
result = cf->next->cft->has_data_pending(cf->next, data);
CF_DATA_RESTORE(cf, save);
return result;
}
static ssize_t ssl_cf_send(struct Curl_cfilter *cf,
struct Curl_easy *data,
const void *buf, size_t blen,
bool eos, CURLcode *err)
{
struct ssl_connect_data *connssl = cf->ctx;
struct cf_call_data save;
ssize_t nwritten = 0, early_written = 0;
(void)eos;
*err = CURLE_OK;
CF_DATA_SAVE(save, cf, data);
if(connssl->state == ssl_connection_deferred) {
bool done = FALSE;
*err = ssl_cf_connect_deferred(cf, data, buf, blen, &done);
if(*err) {
nwritten = -1;
goto out;
}
else if(!done) {
*err = CURLE_AGAIN;
nwritten = -1;
goto out;
}
DEBUGASSERT(connssl->state == ssl_connection_complete);
}
if(connssl->earlydata_skip) {
if(connssl->earlydata_skip >= blen) {
connssl->earlydata_skip -= blen;
*err = CURLE_OK;
nwritten = (ssize_t)blen;
goto out;
}
else {
early_written = connssl->earlydata_skip;
buf = ((const char *)buf) + connssl->earlydata_skip;
blen -= connssl->earlydata_skip;
connssl->earlydata_skip = 0;
}
}
/* OpenSSL and maybe other TLS libs do not like 0-length writes. Skip. */
if(blen > 0)
nwritten = connssl->ssl_impl->send_plain(cf, data, buf, blen, err);
if(nwritten >= 0)
nwritten += early_written;
out:
CF_DATA_RESTORE(cf, save);
return nwritten;
}
static ssize_t ssl_cf_recv(struct Curl_cfilter *cf,
struct Curl_easy *data, char *buf, size_t len,
CURLcode *err)
{
struct ssl_connect_data *connssl = cf->ctx;
struct cf_call_data save;
ssize_t nread;
CF_DATA_SAVE(save, cf, data);
*err = CURLE_OK;
if(connssl->state == ssl_connection_deferred) {
bool done = FALSE;
*err = ssl_cf_connect_deferred(cf, data, NULL, 0, &done);
if(*err) {
nread = -1;
goto out;
}
else if(!done) {
*err = CURLE_AGAIN;
nread = -1;
goto out;
}
DEBUGASSERT(connssl->state == ssl_connection_complete);
}
nread = connssl->ssl_impl->recv_plain(cf, data, buf, len, err);
if(nread > 0) {
DEBUGASSERT((size_t)nread <= len);
}
else if(nread == 0) {
/* eof */
*err = CURLE_OK;
}
out:
CURL_TRC_CF(data, cf, "cf_recv(len=%zu) -> %zd, %d", len,
nread, *err);
CF_DATA_RESTORE(cf, save);
return nread;
}
static CURLcode ssl_cf_shutdown(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool *done)
{
struct ssl_connect_data *connssl = cf->ctx;
CURLcode result = CURLE_OK;
*done = TRUE;
/* If we have done the SSL handshake, shut down the connection cleanly */
if(cf->connected && (connssl->state == ssl_connection_complete) &&
!cf->shutdown && Curl_ssl->shut_down) {
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
result = connssl->ssl_impl->shut_down(cf, data, TRUE, done);
CURL_TRC_CF(data, cf, "cf_shutdown -> %d, done=%d", result, *done);
CF_DATA_RESTORE(cf, save);
cf->shutdown = (result || *done);
}
return result;
}
static void ssl_cf_adjust_pollset(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct easy_pollset *ps)
{
struct ssl_connect_data *connssl = cf->ctx;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
connssl->ssl_impl->adjust_pollset(cf, data, ps);
CF_DATA_RESTORE(cf, save);
}
static CURLcode ssl_cf_query(struct Curl_cfilter *cf,
struct Curl_easy *data,
int query, int *pres1, void *pres2)
{
struct ssl_connect_data *connssl = cf->ctx;
switch(query) {
case CF_QUERY_TIMER_APPCONNECT: {
struct curltime *when = pres2;
if(cf->connected && !Curl_ssl_cf_is_proxy(cf))
*when = connssl->handshake_done;
return CURLE_OK;
}
default:
break;
}
return cf->next ?
cf->next->cft->query(cf->next, data, query, pres1, pres2) :
CURLE_UNKNOWN_OPTION;
}
static bool cf_ssl_is_alive(struct Curl_cfilter *cf, struct Curl_easy *data,
bool *input_pending)
{
/*
* This function tries to determine connection status.
*/
return cf->next ?
cf->next->cft->is_alive(cf->next, data, input_pending) :
FALSE; /* pessimistic in absence of data */
}
struct Curl_cftype Curl_cft_ssl = {
"SSL",
CF_TYPE_SSL,
CURL_LOG_LVL_NONE,
ssl_cf_destroy,
ssl_cf_connect,
ssl_cf_close,
ssl_cf_shutdown,
Curl_cf_def_get_host,
ssl_cf_adjust_pollset,
ssl_cf_data_pending,
ssl_cf_send,
ssl_cf_recv,
Curl_cf_def_cntrl,
cf_ssl_is_alive,
Curl_cf_def_conn_keep_alive,
ssl_cf_query,
};
#ifndef CURL_DISABLE_PROXY
struct Curl_cftype Curl_cft_ssl_proxy = {
"SSL-PROXY",
CF_TYPE_SSL|CF_TYPE_PROXY,
CURL_LOG_LVL_NONE,
ssl_cf_destroy,
ssl_cf_connect,
ssl_cf_close,
ssl_cf_shutdown,
Curl_cf_def_get_host,
ssl_cf_adjust_pollset,
ssl_cf_data_pending,
ssl_cf_send,
ssl_cf_recv,
Curl_cf_def_cntrl,
cf_ssl_is_alive,
Curl_cf_def_conn_keep_alive,
Curl_cf_def_query,
};
#endif /* !CURL_DISABLE_PROXY */
static CURLcode cf_ssl_create(struct Curl_cfilter **pcf,
struct Curl_easy *data,
struct connectdata *conn)
{
struct Curl_cfilter *cf = NULL;
struct ssl_connect_data *ctx;
CURLcode result;
DEBUGASSERT(data->conn);
ctx = cf_ctx_new(data, alpn_get_spec(data->state.http_neg.wanted,
conn->bits.tls_enable_alpn));
if(!ctx) {
result = CURLE_OUT_OF_MEMORY;
goto out;
}
result = Curl_cf_create(&cf, &Curl_cft_ssl, ctx);
out:
if(result)
cf_ctx_free(ctx);
*pcf = result ? NULL : cf;
return result;
}
CURLcode Curl_ssl_cfilter_add(struct Curl_easy *data,
struct connectdata *conn,
int sockindex)
{
struct Curl_cfilter *cf;
CURLcode result;
result = cf_ssl_create(&cf, data, conn);
if(!result)
Curl_conn_cf_add(data, conn, sockindex, cf);
return result;
}
CURLcode Curl_cf_ssl_insert_after(struct Curl_cfilter *cf_at,
struct Curl_easy *data)
{
struct Curl_cfilter *cf;
CURLcode result;
result = cf_ssl_create(&cf, data, cf_at->conn);
if(!result)
Curl_conn_cf_insert_after(cf_at, cf);
return result;
}
#ifndef CURL_DISABLE_PROXY
static CURLcode cf_ssl_proxy_create(struct Curl_cfilter **pcf,
struct Curl_easy *data,
struct connectdata *conn)
{
struct Curl_cfilter *cf = NULL;
struct ssl_connect_data *ctx;
CURLcode result;
bool use_alpn = conn->bits.tls_enable_alpn;
http_majors allowed = CURL_HTTP_V1x;
#ifdef USE_HTTP2
if(conn->http_proxy.proxytype == CURLPROXY_HTTPS2) {
use_alpn = TRUE;
allowed = (CURL_HTTP_V1x|CURL_HTTP_V2x);
}
#endif
ctx = cf_ctx_new(data, alpn_get_spec(allowed, use_alpn));
if(!ctx) {
result = CURLE_OUT_OF_MEMORY;
goto out;
}
result = Curl_cf_create(&cf, &Curl_cft_ssl_proxy, ctx);
out:
if(result)
cf_ctx_free(ctx);
*pcf = result ? NULL : cf;
return result;
}
CURLcode Curl_cf_ssl_proxy_insert_after(struct Curl_cfilter *cf_at,
struct Curl_easy *data)
{
struct Curl_cfilter *cf;
CURLcode result;
result = cf_ssl_proxy_create(&cf, data, cf_at->conn);
if(!result)
Curl_conn_cf_insert_after(cf_at, cf);
return result;
}
#endif /* !CURL_DISABLE_PROXY */
bool Curl_ssl_supports(struct Curl_easy *data, unsigned int ssl_option)
{
(void)data;
return (Curl_ssl->supports & ssl_option);
}
static struct Curl_cfilter *get_ssl_filter(struct Curl_cfilter *cf)
{
for(; cf; cf = cf->next) {
if(cf->cft == &Curl_cft_ssl)
return cf;
#ifndef CURL_DISABLE_PROXY
if(cf->cft == &Curl_cft_ssl_proxy)
return cf;
#endif
}
return NULL;
}
void *Curl_ssl_get_internals(struct Curl_easy *data, int sockindex,
CURLINFO info, int n)
{
void *result = NULL;
(void)n;
if(data->conn) {
struct Curl_cfilter *cf;
/* get first SSL filter in chain, if any is present */
cf = get_ssl_filter(data->conn->cfilter[sockindex]);
if(cf) {
struct ssl_connect_data *connssl = cf->ctx;
struct cf_call_data save;
CF_DATA_SAVE(save, cf, data);
result = connssl->ssl_impl->get_internals(cf->ctx, info);
CF_DATA_RESTORE(cf, save);
}
}
return result;
}
static CURLcode vtls_shutdown_blocking(struct Curl_cfilter *cf,
struct Curl_easy *data,
bool send_shutdown, bool *done)
{
struct ssl_connect_data *connssl = cf->ctx;
struct cf_call_data save;
CURLcode result = CURLE_OK;
timediff_t timeout_ms;
int what, loop = 10;
if(cf->shutdown) {
*done = TRUE;
return CURLE_OK;
}
CF_DATA_SAVE(save, cf, data);
*done = FALSE;
while(!result && !*done && loop--) {
timeout_ms = Curl_shutdown_timeleft(cf->conn, cf->sockindex, NULL);
if(timeout_ms < 0) {
/* no need to continue if time is already up */
failf(data, "SSL shutdown timeout");
return CURLE_OPERATION_TIMEDOUT;
}
result = connssl->ssl_impl->shut_down(cf, data, send_shutdown, done);
if(result ||*done)
goto out;
if(connssl->io_need) {
what = Curl_conn_cf_poll(cf, data, timeout_ms);
if(what < 0) {
/* fatal error */
failf(data, "select/poll on SSL socket, errno: %d", SOCKERRNO);
result = CURLE_RECV_ERROR;
goto out;
}
else if(0 == what) {
/* timeout */
failf(data, "SSL shutdown timeout");
result = CURLE_OPERATION_TIMEDOUT;
goto out;
}
/* socket is readable or writable */
}
}
out:
CF_DATA_RESTORE(cf, save);
cf->shutdown = (result || *done);
return result;
}
CURLcode Curl_ssl_cfilter_remove(struct Curl_easy *data,
int sockindex, bool send_shutdown)
{
struct Curl_cfilter *cf, *head;
CURLcode result = CURLE_OK;
head = data->conn ? data->conn->cfilter[sockindex] : NULL;
for(cf = head; cf; cf = cf->next) {
if(cf->cft == &Curl_cft_ssl) {
bool done;
CURL_TRC_CF(data, cf, "shutdown and remove SSL, start");
Curl_shutdown_start(data, sockindex, 0, NULL);
result = vtls_shutdown_blocking(cf, data, send_shutdown, &done);
Curl_shutdown_clear(data, sockindex);
if(!result && !done) /* blocking failed? */
result = CURLE_SSL_SHUTDOWN_FAILED;
Curl_conn_cf_discard_sub(head, cf, data, FALSE);
CURL_TRC_CF(data, cf, "shutdown and remove SSL, done -> %d", result);
break;
}
}
return result;
}
bool Curl_ssl_cf_is_proxy(struct Curl_cfilter *cf)
{
return (cf->cft->flags & CF_TYPE_SSL) && (cf->cft->flags & CF_TYPE_PROXY);
}
struct ssl_config_data *
Curl_ssl_cf_get_config(struct Curl_cfilter *cf, struct Curl_easy *data)
{
#ifdef CURL_DISABLE_PROXY
(void)cf;
return &data->set.ssl;
#else
return Curl_ssl_cf_is_proxy(cf) ? &data->set.proxy_ssl : &data->set.ssl;
#endif
}
struct ssl_primary_config *
Curl_ssl_cf_get_primary_config(struct Curl_cfilter *cf)
{
#ifdef CURL_DISABLE_PROXY
return &cf->conn->ssl_config;
#else
return Curl_ssl_cf_is_proxy(cf) ?
&cf->conn->proxy_ssl_config : &cf->conn->ssl_config;
#endif
}
CURLcode Curl_alpn_to_proto_buf(struct alpn_proto_buf *buf,
const struct alpn_spec *spec)
{
size_t i, len;
int off = 0;
unsigned char blen;
memset(buf, 0, sizeof(*buf));
for(i = 0; spec && i < spec->count; ++i) {
len = strlen(spec->entries[i]);
if(len >= ALPN_NAME_MAX)
return CURLE_FAILED_INIT;
blen = (unsigned char)len;
if(off + blen + 1 >= (int)sizeof(buf->data))
return CURLE_FAILED_INIT;
buf->data[off++] = blen;
memcpy(buf->data + off, spec->entries[i], blen);
off += blen;
}
buf->len = off;
return CURLE_OK;
}
CURLcode Curl_alpn_to_proto_str(struct alpn_proto_buf *buf,
const struct alpn_spec *spec)
{
size_t i, len;
size_t off = 0;
memset(buf, 0, sizeof(*buf));
for(i = 0; spec && i < spec->count; ++i) {
len = strlen(spec->entries[i]);
if(len >= ALPN_NAME_MAX)
return CURLE_FAILED_INIT;
if(off + len + 2 >= sizeof(buf->data))
return CURLE_FAILED_INIT;
if(off)
buf->data[off++] = ',';
memcpy(buf->data + off, spec->entries[i], len);
off += len;
}
buf->data[off] = '\0';
buf->len = (int)off;
return CURLE_OK;
}
bool Curl_alpn_contains_proto(const struct alpn_spec *spec,
const char *proto)
{
size_t i, plen = proto ? strlen(proto) : 0;
for(i = 0; spec && plen && i < spec->count; ++i) {
size_t slen = strlen(spec->entries[i]);
if((slen == plen) && !memcmp(proto, spec->entries[i], plen))
return TRUE;
}
return FALSE;
}
void Curl_alpn_restrict_to(struct alpn_spec *spec, const char *proto)
{
size_t plen = strlen(proto);
DEBUGASSERT(plen < sizeof(spec->entries[0]));
if(plen < sizeof(spec->entries[0])) {
memcpy(spec->entries[0], proto, plen + 1);
spec->count = 1;
}
}
void Curl_alpn_copy(struct alpn_spec *dest, const struct alpn_spec *src)
{
if(src)
memcpy(dest, src, sizeof(*dest));
else
memset(dest, 0, sizeof(*dest));
}
CURLcode Curl_alpn_set_negotiated(struct Curl_cfilter *cf,
struct Curl_easy *data,
struct ssl_connect_data *connssl,
const unsigned char *proto,
size_t proto_len)
{
CURLcode result = CURLE_OK;
unsigned char *palpn =
#ifndef CURL_DISABLE_PROXY
(cf->conn->bits.tunnel_proxy && Curl_ssl_cf_is_proxy(cf)) ?
&cf->conn->proxy_alpn : &cf->conn->alpn
#else
&cf->conn->alpn
#endif
;
if(connssl->negotiated.alpn) {
/* When we ask for a specific ALPN protocol, we need the confirmation
* of it by the server, as we have installed protocol handler and
* connection filter chain for exactly this protocol. */
if(!proto_len) {
failf(data, "ALPN: asked for '%s' from previous session, "
"but server did not confirm it. Refusing to continue.",
connssl->negotiated.alpn);
result = CURLE_SSL_CONNECT_ERROR;
goto out;
}
else if((strlen(connssl->negotiated.alpn) != proto_len) ||
memcmp(connssl->negotiated.alpn, proto, proto_len)) {
failf(data, "ALPN: asked for '%s' from previous session, but server "
"selected '%.*s'. Refusing to continue.",
connssl->negotiated.alpn, (int)proto_len, proto);
result = CURLE_SSL_CONNECT_ERROR;
goto out;
}
/* ALPN is exactly what we asked for, done. */
infof(data, "ALPN: server confirmed to use '%s'",
connssl->negotiated.alpn);
goto out;
}
if(proto && proto_len) {
if(memchr(proto, '\0', proto_len)) {
failf(data, "ALPN: server selected protocol contains NUL. "
"Refusing to continue.");
result = CURLE_SSL_CONNECT_ERROR;
goto out;
}
connssl->negotiated.alpn = malloc(proto_len + 1);
if(!connssl->negotiated.alpn)
return CURLE_OUT_OF_MEMORY;
memcpy(connssl->negotiated.alpn, proto, proto_len);
connssl->negotiated.alpn[proto_len] = 0;
}
if(proto && proto_len) {
if(proto_len == ALPN_HTTP_1_1_LENGTH &&
!memcmp(ALPN_HTTP_1_1, proto, ALPN_HTTP_1_1_LENGTH)) {
*palpn = CURL_HTTP_VERSION_1_1;
}
#ifdef USE_HTTP2
else if(proto_len == ALPN_H2_LENGTH &&
!memcmp(ALPN_H2, proto, ALPN_H2_LENGTH)) {
*palpn = CURL_HTTP_VERSION_2;
}
#endif
#ifdef USE_HTTP3
else if(proto_len == ALPN_H3_LENGTH &&
!memcmp(ALPN_H3, proto, ALPN_H3_LENGTH)) {
*palpn = CURL_HTTP_VERSION_3;
}
#endif
else {
*palpn = CURL_HTTP_VERSION_NONE;
failf(data, "unsupported ALPN protocol: '%.*s'", (int)proto_len, proto);
/* Previous code just ignored it and some vtls backends even ignore the
* return code of this function. */
/* return CURLE_NOT_BUILT_IN; */
goto out;
}
if(connssl->state == ssl_connection_deferred)
infof(data, VTLS_INFOF_ALPN_DEFERRED, (int)proto_len, proto);
else
infof(data, VTLS_INFOF_ALPN_ACCEPTED, (int)proto_len, proto);
}
else {
*palpn = CURL_HTTP_VERSION_NONE;
if(connssl->state == ssl_connection_deferred)
infof(data, VTLS_INFOF_NO_ALPN_DEFERRED);
else
infof(data, VTLS_INFOF_NO_ALPN);
}
out:
return result;
}
#endif /* USE_SSL */