213 lines
5.4 KiB
C
213 lines
5.4 KiB
C
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
|
/* SPDX-License-Identifier: Unlicense */
|
|
|
|
/**
|
|
@file tea.c
|
|
Implementation of TEA, Steffen Jaeckel
|
|
*/
|
|
#include "tomcrypt_private.h"
|
|
|
|
#ifdef LTC_TEA
|
|
|
|
const struct ltc_cipher_descriptor tea_desc =
|
|
{
|
|
"tea",
|
|
26,
|
|
16, 16, 8, 32,
|
|
&tea_setup,
|
|
&tea_ecb_encrypt,
|
|
&tea_ecb_decrypt,
|
|
&tea_test,
|
|
&tea_done,
|
|
&tea_keysize,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
|
|
};
|
|
|
|
#define DELTA 0x9E3779B9uL
|
|
#define SUM 0xC6EF3720uL
|
|
|
|
int tea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
|
|
{
|
|
LTC_ARGCHK(key != NULL);
|
|
LTC_ARGCHK(skey != NULL);
|
|
|
|
/* check arguments */
|
|
if (keylen != 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
|
|
if (num_rounds != 0 && num_rounds != 32) {
|
|
return CRYPT_INVALID_ROUNDS;
|
|
}
|
|
|
|
/* load key */
|
|
LOAD32H(skey->tea.k[0], key+0);
|
|
LOAD32H(skey->tea.k[1], key+4);
|
|
LOAD32H(skey->tea.k[2], key+8);
|
|
LOAD32H(skey->tea.k[3], key+12);
|
|
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**
|
|
Encrypts a block of text with TEA
|
|
@param pt The input plaintext (8 bytes)
|
|
@param ct The output ciphertext (8 bytes)
|
|
@param skey The key as scheduled
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
int tea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
|
|
{
|
|
ulong32 y, z, sum = 0;
|
|
const ulong32 delta = DELTA;
|
|
int r;
|
|
|
|
LTC_ARGCHK(pt != NULL);
|
|
LTC_ARGCHK(ct != NULL);
|
|
LTC_ARGCHK(skey != NULL);
|
|
|
|
LOAD32H(y, &pt[0]);
|
|
LOAD32H(z, &pt[4]);
|
|
for (r = 0; r < 32; r++) {
|
|
sum += delta;
|
|
y += ((z<<4) + skey->tea.k[0]) ^ (z + sum) ^ ((z>>5) + skey->tea.k[1]);
|
|
z += ((y<<4) + skey->tea.k[2]) ^ (y + sum) ^ ((y>>5) + skey->tea.k[3]);
|
|
}
|
|
STORE32H(y, &ct[0]);
|
|
STORE32H(z, &ct[4]);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**
|
|
Decrypts a block of text with TEA
|
|
@param ct The input ciphertext (8 bytes)
|
|
@param pt The output plaintext (8 bytes)
|
|
@param skey The key as scheduled
|
|
@return CRYPT_OK if successful
|
|
*/
|
|
int tea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
|
|
{
|
|
ulong32 v0, v1, sum = SUM;
|
|
const ulong32 delta = DELTA;
|
|
int r;
|
|
|
|
LTC_ARGCHK(pt != NULL);
|
|
LTC_ARGCHK(ct != NULL);
|
|
LTC_ARGCHK(skey != NULL);
|
|
|
|
LOAD32H(v0, &ct[0]);
|
|
LOAD32H(v1, &ct[4]);
|
|
|
|
for (r = 0; r < 32; r++) {
|
|
v1 -= ((v0 << 4) + skey->tea.k[2]) ^ (v0 + sum) ^ ((v0 >> 5) + skey->tea.k[3]);
|
|
v0 -= ((v1 << 4) + skey->tea.k[0]) ^ (v1 + sum) ^ ((v1 >> 5) + skey->tea.k[1]);
|
|
sum -= delta;
|
|
}
|
|
|
|
STORE32H(v0, &pt[0]);
|
|
STORE32H(v1, &pt[4]);
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
/**
|
|
Performs a self-test of the TEA block cipher
|
|
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
|
|
*/
|
|
int tea_test(void)
|
|
{
|
|
#ifndef LTC_TEST
|
|
return CRYPT_NOP;
|
|
#else
|
|
static const struct {
|
|
const char *key, *pt, *ct;
|
|
} tests[] = {
|
|
{
|
|
"00000000000000000000000000000000",
|
|
"0000000000000000",
|
|
"41ea3a0a94baa940"
|
|
}, {
|
|
"32a1e65408b63bb9214105744ec5d2e2",
|
|
"5ada1d89a9c3801a",
|
|
"dd46249e28aa0b4b"
|
|
}, {
|
|
"60388adadf70a1f5d9cb4e097d2c6c57",
|
|
"7a6adb4d69c53e0f",
|
|
"44b71215cf25368a"
|
|
}, {
|
|
"4368d2249bd0321eb7c56d5b63a1bfac",
|
|
"5a5d7ca2e186c41a",
|
|
"91f56dff7281794f"
|
|
}, {
|
|
"5c60bff27072d01c4513c5eb8f3a38ab",
|
|
"80d9c4adcf899635",
|
|
"2bb0f1b3c023ed11"
|
|
}
|
|
};
|
|
unsigned char ptct[2][8];
|
|
unsigned char tmp[2][8];
|
|
unsigned char key[16];
|
|
unsigned long l;
|
|
symmetric_key skey;
|
|
size_t i;
|
|
int err, y;
|
|
for (i = 0; i < sizeof(tests)/sizeof(tests[0]); i++) {
|
|
zeromem(&skey, sizeof(skey));
|
|
|
|
l = sizeof(key);
|
|
if ((err = base16_decode(tests[i].key, XSTRLEN(tests[i].key), key, &l)) != CRYPT_OK) return err;
|
|
l = sizeof(ptct[0]);
|
|
if ((err = base16_decode(tests[i].pt, XSTRLEN(tests[i].pt), ptct[0], &l)) != CRYPT_OK) return err;
|
|
l = sizeof(ptct[1]);
|
|
if ((err = base16_decode(tests[i].ct, XSTRLEN(tests[i].ct), ptct[1], &l)) != CRYPT_OK) return err;
|
|
|
|
if ((err = tea_setup(key, 16, 0, &skey)) != CRYPT_OK) {
|
|
return err;
|
|
}
|
|
tea_ecb_encrypt(ptct[0], tmp[0], &skey);
|
|
tea_ecb_decrypt(tmp[0], tmp[1], &skey);
|
|
|
|
if (compare_testvector(tmp[0], 8, ptct[1], 8, "TEA Encrypt", i) != 0 ||
|
|
compare_testvector(tmp[1], 8, ptct[0], 8, "TEA Decrypt", i) != 0) {
|
|
return CRYPT_FAIL_TESTVECTOR;
|
|
}
|
|
|
|
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
|
|
for (y = 0; y < 8; y++) tmp[0][y] = 0;
|
|
for (y = 0; y < 1000; y++) tea_ecb_encrypt(tmp[0], tmp[0], &skey);
|
|
for (y = 0; y < 1000; y++) tea_ecb_decrypt(tmp[0], tmp[0], &skey);
|
|
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
|
|
} /* for */
|
|
|
|
return CRYPT_OK;
|
|
#endif
|
|
}
|
|
|
|
/** Terminate the context
|
|
@param skey The scheduled key
|
|
*/
|
|
void tea_done(symmetric_key *skey)
|
|
{
|
|
LTC_UNUSED_PARAM(skey);
|
|
}
|
|
|
|
/**
|
|
Gets suitable key size
|
|
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
|
|
@return CRYPT_OK if the input key size is acceptable.
|
|
*/
|
|
int tea_keysize(int *keysize)
|
|
{
|
|
LTC_ARGCHK(keysize != NULL);
|
|
if (*keysize < 16) {
|
|
return CRYPT_INVALID_KEYSIZE;
|
|
}
|
|
*keysize = 16;
|
|
return CRYPT_OK;
|
|
}
|
|
|
|
#undef DELTA
|
|
#undef SUM
|
|
|
|
#endif
|
|
|