#include "tommath_private.h"
#ifdef S_MP_MUL_HIGH_COMBA_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis */
/* SPDX-License-Identifier: Unlicense */

/* this is a modified version of s_mp_mul_comba that only produces
 * output digits *above* digs.  See the comments for s_mp_mul_comba
 * to see how it works.
 *
 * This is used in the Barrett reduction since for one of the multiplications
 * only the higher digits were needed.  This essentially halves the work.
 *
 * Based on Algorithm 14.12 on pp.595 of HAC.
 */
mp_err s_mp_mul_high_comba(const mp_int *a, const mp_int *b, mp_int *c, int digs)
{
   int     oldused, pa, ix;
   mp_err   err;
   mp_digit W[MP_WARRAY];
   mp_word  _W;

   if (digs < 0) {
      return MP_VAL;
   }

   /* grow the destination as required */
   pa = a->used + b->used;
   if ((err = mp_grow(c, pa)) != MP_OKAY) {
      return err;
   }

   /* number of output digits to produce */
   pa = a->used + b->used;
   _W = 0;
   for (ix = digs; ix < pa; ix++) {
      int      tx, ty, iy, iz;

      /* get offsets into the two bignums */
      ty = MP_MIN(b->used-1, ix);
      tx = ix - ty;

      /* this is the number of times the loop will iterate, essentially its
         while (tx++ < a->used && ty-- >= 0) { ... }
       */
      iy = MP_MIN(a->used-tx, ty+1);

      /* execute loop */
      for (iz = 0; iz < iy; iz++) {
         _W += (mp_word)a->dp[tx + iz] * (mp_word)b->dp[ty - iz];
      }

      /* store term */
      W[ix] = (mp_digit)_W & MP_MASK;

      /* make next carry */
      _W = _W >> (mp_word)MP_DIGIT_BIT;
   }

   /* setup dest */
   oldused  = c->used;
   c->used = pa;

   for (ix = digs; ix < pa; ix++) {
      /* now extract the previous digit [below the carry] */
      c->dp[ix] = W[ix];
   }

   /* clear unused digits [that existed in the old copy of c] */
   s_mp_zero_digs(c->dp + c->used, oldused - c->used);

   mp_clamp(c);
   return MP_OKAY;
}
#endif