#include "tommath_private.h" #ifdef MP_SQRTMOD_PRIME_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Tonelli-Shanks algorithm * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html * */ mp_err mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret) { mp_err err; int legendre; /* The type is "int" because of the types in the mp_int struct. Don't forget to change them here when you change them there! */ int S, M, i; mp_int t1, C, Q, Z, T, R, two; /* first handle the simple cases */ if (mp_cmp_d(n, 0uL) == MP_EQ) { mp_zero(ret); return MP_OKAY; } /* "prime" must be odd and > 2 */ if (mp_iseven(prime) || (mp_cmp_d(prime, 3uL) == MP_LT)) return MP_VAL; if ((err = mp_kronecker(n, prime, &legendre)) != MP_OKAY) return err; /* n \not\cong 0 (mod p) and n \cong r^2 (mod p) for some r \in N^+ */ if (legendre != 1) return MP_VAL; if ((err = mp_init_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL)) != MP_OKAY) { return err; } /* SPECIAL CASE: if prime mod 4 == 3 * compute directly: err = n^(prime+1)/4 mod prime * Handbook of Applied Cryptography algorithm 3.36 */ /* x%4 == x&3 for x in N and x>0 */ if ((prime->dp[0] & 3u) == 3u) { if ((err = mp_add_d(prime, 1uL, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto LBL_END; err = MP_OKAY; goto LBL_END; } /* NOW: Tonelli-Shanks algorithm */ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ if ((err = mp_copy(prime, &Q)) != MP_OKAY) goto LBL_END; if ((err = mp_sub_d(&Q, 1uL, &Q)) != MP_OKAY) goto LBL_END; /* Q = prime - 1 */ S = 0; /* S = 0 */ while (mp_iseven(&Q)) { if ((err = mp_div_2(&Q, &Q)) != MP_OKAY) goto LBL_END; /* Q = Q / 2 */ S++; /* S = S + 1 */ } /* find a Z such that the Legendre symbol (Z|prime) == -1 */ mp_set(&Z, 2uL); /* Z = 2 */ for (;;) { if ((err = mp_kronecker(&Z, prime, &legendre)) != MP_OKAY) goto LBL_END; /* If "prime" (p) is an odd prime Jacobi(k|p) = 0 for k \cong 0 (mod p) */ /* but there is at least one non-quadratic residue before k>=p if p is an odd prime. */ if (legendre == 0) { err = MP_VAL; goto LBL_END; } if (legendre == -1) break; if ((err = mp_add_d(&Z, 1uL, &Z)) != MP_OKAY) goto LBL_END; /* Z = Z + 1 */ } if ((err = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto LBL_END; /* C = Z ^ Q mod prime */ if ((err = mp_add_d(&Q, 1uL, &t1)) != MP_OKAY) goto LBL_END; if ((err = mp_div_2(&t1, &t1)) != MP_OKAY) goto LBL_END; /* t1 = (Q + 1) / 2 */ if ((err = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto LBL_END; /* R = n ^ ((Q + 1) / 2) mod prime */ if ((err = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto LBL_END; /* T = n ^ Q mod prime */ M = S; /* M = S */ mp_set(&two, 2uL); for (;;) { if ((err = mp_copy(&T, &t1)) != MP_OKAY) goto LBL_END; i = 0; for (;;) { if (mp_cmp_d(&t1, 1uL) == MP_EQ) break; /* No exponent in the range 0 < i < M found (M is at least 1 in the first round because "prime" > 2) */ if (M == i) { err = MP_VAL; goto LBL_END; } if ((err = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto LBL_END; i++; } if (i == 0) { if ((err = mp_copy(&R, ret)) != MP_OKAY) goto LBL_END; err = MP_OKAY; goto LBL_END; } mp_set_i32(&t1, M - i - 1); if ((err = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto LBL_END; /* t1 = 2 ^ (M - i - 1) */ if ((err = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto LBL_END; /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ if ((err = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto LBL_END; /* C = (t1 * t1) mod prime */ if ((err = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto LBL_END; /* R = (R * t1) mod prime */ if ((err = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto LBL_END; /* T = (T * C) mod prime */ M = i; /* M = i */ } LBL_END: mp_clear_multi(&t1, &C, &Q, &Z, &T, &R, &two, NULL); return err; } #endif