/*************************************************************************** * _ _ ____ _ * Project ___| | | | _ \| | * / __| | | | |_) | | * | (__| |_| | _ <| |___ * \___|\___/|_| \_\_____| * * Copyright (C) Daniel Stenberg, , et al. * * This software is licensed as described in the file COPYING, which * you should have received as part of this distribution. The terms * are also available at https://curl.se/docs/copyright.html. * * You may opt to use, copy, modify, merge, publish, distribute and/or sell * copies of the Software, and permit persons to whom the Software is * furnished to do so, under the terms of the COPYING file. * * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY * KIND, either express or implied. * * SPDX-License-Identifier: curl * ***************************************************************************/ #include "curl_setup.h" #ifdef USE_QUICHE #include #include #include #include "bufq.h" #include "urldata.h" #include "cfilters.h" #include "cf-socket.h" #include "sendf.h" #include "strdup.h" #include "rand.h" #include "strcase.h" #include "multiif.h" #include "connect.h" #include "progress.h" #include "strerror.h" #include "http1.h" #include "vquic.h" #include "vquic_int.h" #include "curl_quiche.h" #include "transfer.h" #include "inet_pton.h" #include "vtls/openssl.h" #include "vtls/keylog.h" #include "vtls/vtls.h" /* The last 3 #include files should be in this order */ #include "curl_printf.h" #include "curl_memory.h" #include "memdebug.h" /* HTTP/3 error values defined in RFC 9114, ch. 8.1 */ #define CURL_H3_NO_ERROR (0x0100) #define QUIC_MAX_STREAMS (100) #define H3_STREAM_WINDOW_SIZE (128 * 1024) #define H3_STREAM_CHUNK_SIZE (16 * 1024) /* The pool keeps spares around and half of a full stream windows * seems good. More does not seem to improve performance. * The benefit of the pool is that stream buffer to not keep * spares. So memory consumption goes down when streams run empty, * have a large upload done, etc. */ #define H3_STREAM_POOL_SPARES \ (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE ) / 2 /* Receive and Send max number of chunks just follows from the * chunk size and window size */ #define H3_STREAM_RECV_CHUNKS \ (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE) #define H3_STREAM_SEND_CHUNKS \ (H3_STREAM_WINDOW_SIZE / H3_STREAM_CHUNK_SIZE) /* * Store quiche version info in this buffer. */ void Curl_quiche_ver(char *p, size_t len) { (void)msnprintf(p, len, "quiche/%s", quiche_version()); } static void keylog_callback(const SSL *ssl, const char *line) { (void)ssl; Curl_tls_keylog_write_line(line); } struct cf_quiche_ctx { struct cf_quic_ctx q; struct ssl_peer peer; quiche_conn *qconn; quiche_config *cfg; quiche_h3_conn *h3c; quiche_h3_config *h3config; uint8_t scid[QUICHE_MAX_CONN_ID_LEN]; SSL_CTX *sslctx; SSL *ssl; struct curltime started_at; /* time the current attempt started */ struct curltime handshake_at; /* time connect handshake finished */ struct curltime first_byte_at; /* when first byte was recvd */ struct curltime reconnect_at; /* time the next attempt should start */ struct bufc_pool stream_bufcp; /* chunk pool for streams */ curl_off_t data_recvd; uint64_t max_idle_ms; /* max idle time for QUIC conn */ BIT(goaway); /* got GOAWAY from server */ BIT(got_first_byte); /* if first byte was received */ BIT(x509_store_setup); /* if x509 store has been set up */ }; #ifdef DEBUG_QUICHE static void quiche_debug_log(const char *line, void *argp) { (void)argp; fprintf(stderr, "%s\n", line); } #endif static void cf_quiche_ctx_clear(struct cf_quiche_ctx *ctx) { if(ctx) { vquic_ctx_free(&ctx->q); if(ctx->qconn) quiche_conn_free(ctx->qconn); if(ctx->h3config) quiche_h3_config_free(ctx->h3config); if(ctx->h3c) quiche_h3_conn_free(ctx->h3c); if(ctx->cfg) quiche_config_free(ctx->cfg); Curl_bufcp_free(&ctx->stream_bufcp); Curl_ssl_peer_cleanup(&ctx->peer); memset(ctx, 0, sizeof(*ctx)); } } static CURLcode quic_x509_store_setup(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct ssl_primary_config *conn_config; conn_config = Curl_ssl_cf_get_primary_config(cf); if(!conn_config) return CURLE_FAILED_INIT; if(!ctx->x509_store_setup) { if(conn_config->verifypeer) { const char * const ssl_cafile = conn_config->CAfile; const char * const ssl_capath = conn_config->CApath; if(ssl_cafile || ssl_capath) { SSL_CTX_set_verify(ctx->sslctx, SSL_VERIFY_PEER, NULL); /* tell OpenSSL where to find CA certificates that are used to verify the server's certificate. */ if(!SSL_CTX_load_verify_locations(ctx->sslctx, ssl_cafile, ssl_capath)) { /* Fail if we insist on successfully verifying the server. */ failf(data, "error setting certificate verify locations:" " CAfile: %s CApath: %s", ssl_cafile ? ssl_cafile : "none", ssl_capath ? ssl_capath : "none"); return CURLE_SSL_CACERT_BADFILE; } infof(data, " CAfile: %s", ssl_cafile ? ssl_cafile : "none"); infof(data, " CApath: %s", ssl_capath ? ssl_capath : "none"); } #ifdef CURL_CA_FALLBACK else { /* verifying the peer without any CA certificates won't work so use openssl's built-in default as fallback */ SSL_CTX_set_default_verify_paths(ctx->sslctx); } #endif } ctx->x509_store_setup = TRUE; } return CURLE_OK; } static CURLcode quic_ssl_setup(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct ssl_primary_config *conn_config; CURLcode result; conn_config = Curl_ssl_cf_get_primary_config(cf); if(!conn_config) return CURLE_FAILED_INIT; result = Curl_ssl_peer_init(&ctx->peer, cf); if(result) return result; DEBUGASSERT(!ctx->sslctx); ctx->sslctx = SSL_CTX_new(TLS_method()); if(!ctx->sslctx) return CURLE_OUT_OF_MEMORY; SSL_CTX_set_alpn_protos(ctx->sslctx, (const uint8_t *)QUICHE_H3_APPLICATION_PROTOCOL, sizeof(QUICHE_H3_APPLICATION_PROTOCOL) - 1); SSL_CTX_set_default_verify_paths(ctx->sslctx); /* Open the file if a TLS or QUIC backend has not done this before. */ Curl_tls_keylog_open(); if(Curl_tls_keylog_enabled()) { SSL_CTX_set_keylog_callback(ctx->sslctx, keylog_callback); } if(conn_config->curves && !SSL_CTX_set1_curves_list(ctx->sslctx, conn_config->curves)) { failf(data, "failed setting curves list for QUIC: '%s'", conn_config->curves); return CURLE_SSL_CIPHER; } ctx->ssl = SSL_new(ctx->sslctx); if(!ctx->ssl) return CURLE_QUIC_CONNECT_ERROR; SSL_set_app_data(ctx->ssl, cf); if(ctx->peer.sni) { if(!SSL_set_tlsext_host_name(ctx->ssl, ctx->peer.sni)) { failf(data, "Failed set SNI"); SSL_free(ctx->ssl); ctx->ssl = NULL; return CURLE_QUIC_CONNECT_ERROR; } } return CURLE_OK; } /** * All about the H3 internals of a stream */ struct stream_ctx { int64_t id; /* HTTP/3 protocol stream identifier */ struct bufq recvbuf; /* h3 response */ struct h1_req_parser h1; /* h1 request parsing */ uint64_t error3; /* HTTP/3 stream error code */ curl_off_t upload_left; /* number of request bytes left to upload */ bool closed; /* TRUE on stream close */ bool reset; /* TRUE on stream reset */ bool send_closed; /* stream is locally closed */ bool resp_hds_complete; /* complete, final response has been received */ bool resp_got_header; /* TRUE when h3 stream has recvd some HEADER */ BIT(quic_flow_blocked); /* stream is blocked by QUIC flow control */ }; #define H3_STREAM_CTX(d) ((struct stream_ctx *)(((d) && (d)->req.p.http)? \ ((struct HTTP *)(d)->req.p.http)->h3_ctx \ : NULL)) #define H3_STREAM_LCTX(d) ((struct HTTP *)(d)->req.p.http)->h3_ctx #define H3_STREAM_ID(d) (H3_STREAM_CTX(d)? \ H3_STREAM_CTX(d)->id : -2) static void check_resumes(struct Curl_cfilter *cf, struct Curl_easy *data) { struct Curl_easy *sdata; struct stream_ctx *stream; DEBUGASSERT(data->multi); for(sdata = data->multi->easyp; sdata; sdata = sdata->next) { if(sdata->conn == data->conn) { stream = H3_STREAM_CTX(sdata); if(stream && stream->quic_flow_blocked) { stream->quic_flow_blocked = FALSE; Curl_expire(data, 0, EXPIRE_RUN_NOW); CURL_TRC_CF(data, cf, "[%"PRId64"] unblock", stream->id); } } } } static CURLcode h3_data_setup(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(data); if(stream) return CURLE_OK; stream = calloc(1, sizeof(*stream)); if(!stream) return CURLE_OUT_OF_MEMORY; H3_STREAM_LCTX(data) = stream; stream->id = -1; Curl_bufq_initp(&stream->recvbuf, &ctx->stream_bufcp, H3_STREAM_RECV_CHUNKS, BUFQ_OPT_SOFT_LIMIT); Curl_h1_req_parse_init(&stream->h1, H1_PARSE_DEFAULT_MAX_LINE_LEN); return CURLE_OK; } static void h3_data_done(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(data); (void)cf; if(stream) { CURL_TRC_CF(data, cf, "[%"PRId64"] easy handle is done", stream->id); if(ctx->qconn && !stream->closed) { quiche_conn_stream_shutdown(ctx->qconn, stream->id, QUICHE_SHUTDOWN_READ, CURL_H3_NO_ERROR); if(!stream->send_closed) { quiche_conn_stream_shutdown(ctx->qconn, stream->id, QUICHE_SHUTDOWN_WRITE, CURL_H3_NO_ERROR); stream->send_closed = TRUE; } stream->closed = TRUE; } Curl_bufq_free(&stream->recvbuf); Curl_h1_req_parse_free(&stream->h1); free(stream); H3_STREAM_LCTX(data) = NULL; } } static void drain_stream(struct Curl_cfilter *cf, struct Curl_easy *data) { struct stream_ctx *stream = H3_STREAM_CTX(data); unsigned char bits; (void)cf; bits = CURL_CSELECT_IN; if(stream && !stream->send_closed && stream->upload_left) bits |= CURL_CSELECT_OUT; if(data->state.dselect_bits != bits) { data->state.dselect_bits = bits; Curl_expire(data, 0, EXPIRE_RUN_NOW); } } static struct Curl_easy *get_stream_easy(struct Curl_cfilter *cf, struct Curl_easy *data, int64_t stream3_id) { struct Curl_easy *sdata; (void)cf; if(H3_STREAM_ID(data) == stream3_id) { return data; } else { DEBUGASSERT(data->multi); for(sdata = data->multi->easyp; sdata; sdata = sdata->next) { if((sdata->conn == data->conn) && H3_STREAM_ID(sdata) == stream3_id) { return sdata; } } } return NULL; } /* * write_resp_raw() copies response data in raw format to the `data`'s * receive buffer. If not enough space is available, it appends to the * `data`'s overflow buffer. */ static CURLcode write_resp_raw(struct Curl_cfilter *cf, struct Curl_easy *data, const void *mem, size_t memlen) { struct stream_ctx *stream = H3_STREAM_CTX(data); CURLcode result = CURLE_OK; ssize_t nwritten; (void)cf; if(!stream) return CURLE_RECV_ERROR; nwritten = Curl_bufq_write(&stream->recvbuf, mem, memlen, &result); if(nwritten < 0) return result; if((size_t)nwritten < memlen) { /* This MUST not happen. Our recbuf is dimensioned to hold the * full max_stream_window and then some for this very reason. */ DEBUGASSERT(0); return CURLE_RECV_ERROR; } return result; } struct cb_ctx { struct Curl_cfilter *cf; struct Curl_easy *data; }; static int cb_each_header(uint8_t *name, size_t name_len, uint8_t *value, size_t value_len, void *argp) { struct cb_ctx *x = argp; struct stream_ctx *stream = H3_STREAM_CTX(x->data); CURLcode result; if(!stream) return CURLE_OK; if((name_len == 7) && !strncmp(HTTP_PSEUDO_STATUS, (char *)name, 7)) { CURL_TRC_CF(x->data, x->cf, "[%" PRId64 "] status: %.*s", stream->id, (int)value_len, value); result = write_resp_raw(x->cf, x->data, "HTTP/3 ", sizeof("HTTP/3 ") - 1); if(!result) result = write_resp_raw(x->cf, x->data, value, value_len); if(!result) result = write_resp_raw(x->cf, x->data, " \r\n", 3); } else { CURL_TRC_CF(x->data, x->cf, "[%" PRId64 "] header: %.*s: %.*s", stream->id, (int)name_len, name, (int)value_len, value); result = write_resp_raw(x->cf, x->data, name, name_len); if(!result) result = write_resp_raw(x->cf, x->data, ": ", 2); if(!result) result = write_resp_raw(x->cf, x->data, value, value_len); if(!result) result = write_resp_raw(x->cf, x->data, "\r\n", 2); } if(result) { CURL_TRC_CF(x->data, x->cf, "[%"PRId64"] on header error %d", stream->id, result); } return result; } static ssize_t stream_resp_read(void *reader_ctx, unsigned char *buf, size_t len, CURLcode *err) { struct cb_ctx *x = reader_ctx; struct cf_quiche_ctx *ctx = x->cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(x->data); ssize_t nread; if(!stream) { *err = CURLE_RECV_ERROR; return -1; } nread = quiche_h3_recv_body(ctx->h3c, ctx->qconn, stream->id, buf, len); if(nread >= 0) { *err = CURLE_OK; return nread; } else { *err = CURLE_AGAIN; return -1; } } static CURLcode cf_recv_body(struct Curl_cfilter *cf, struct Curl_easy *data) { struct stream_ctx *stream = H3_STREAM_CTX(data); ssize_t nwritten; struct cb_ctx cb_ctx; CURLcode result = CURLE_OK; if(!stream) return CURLE_RECV_ERROR; if(!stream->resp_hds_complete) { result = write_resp_raw(cf, data, "\r\n", 2); if(result) return result; stream->resp_hds_complete = TRUE; } cb_ctx.cf = cf; cb_ctx.data = data; nwritten = Curl_bufq_slurp(&stream->recvbuf, stream_resp_read, &cb_ctx, &result); if(nwritten < 0 && result != CURLE_AGAIN) { CURL_TRC_CF(data, cf, "[%"PRId64"] recv_body error %zd", stream->id, nwritten); failf(data, "Error %d in HTTP/3 response body for stream[%"PRId64"]", result, stream->id); stream->closed = TRUE; stream->reset = TRUE; stream->send_closed = TRUE; streamclose(cf->conn, "Reset of stream"); return result; } return CURLE_OK; } #ifdef DEBUGBUILD static const char *cf_ev_name(quiche_h3_event *ev) { switch(quiche_h3_event_type(ev)) { case QUICHE_H3_EVENT_HEADERS: return "HEADERS"; case QUICHE_H3_EVENT_DATA: return "DATA"; case QUICHE_H3_EVENT_RESET: return "RESET"; case QUICHE_H3_EVENT_FINISHED: return "FINISHED"; case QUICHE_H3_EVENT_GOAWAY: return "GOAWAY"; default: return "Unknown"; } } #else #define cf_ev_name(x) "" #endif static CURLcode h3_process_event(struct Curl_cfilter *cf, struct Curl_easy *data, int64_t stream3_id, quiche_h3_event *ev) { struct stream_ctx *stream = H3_STREAM_CTX(data); struct cb_ctx cb_ctx; CURLcode result = CURLE_OK; int rc; if(!stream) return CURLE_OK; DEBUGASSERT(stream3_id == stream->id); switch(quiche_h3_event_type(ev)) { case QUICHE_H3_EVENT_HEADERS: stream->resp_got_header = TRUE; cb_ctx.cf = cf; cb_ctx.data = data; rc = quiche_h3_event_for_each_header(ev, cb_each_header, &cb_ctx); if(rc) { failf(data, "Error %d in HTTP/3 response header for stream[%"PRId64"]", rc, stream3_id); return CURLE_RECV_ERROR; } CURL_TRC_CF(data, cf, "[%"PRId64"] <- [HEADERS]", stream3_id); break; case QUICHE_H3_EVENT_DATA: if(!stream->closed) { result = cf_recv_body(cf, data); } break; case QUICHE_H3_EVENT_RESET: CURL_TRC_CF(data, cf, "[%"PRId64"] RESET", stream3_id); stream->closed = TRUE; stream->reset = TRUE; stream->send_closed = TRUE; streamclose(cf->conn, "Reset of stream"); break; case QUICHE_H3_EVENT_FINISHED: CURL_TRC_CF(data, cf, "[%"PRId64"] CLOSED", stream3_id); if(!stream->resp_hds_complete) { result = write_resp_raw(cf, data, "\r\n", 2); if(result) return result; stream->resp_hds_complete = TRUE; } stream->closed = TRUE; streamclose(cf->conn, "End of stream"); break; case QUICHE_H3_EVENT_GOAWAY: CURL_TRC_CF(data, cf, "[%"PRId64"] <- [GOAWAY]", stream3_id); break; default: CURL_TRC_CF(data, cf, "[%"PRId64"] recv, unhandled event %d", stream3_id, quiche_h3_event_type(ev)); break; } return result; } static CURLcode cf_poll_events(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(data); struct Curl_easy *sdata; quiche_h3_event *ev; CURLcode result; /* Take in the events and distribute them to the transfers. */ while(ctx->h3c) { int64_t stream3_id = quiche_h3_conn_poll(ctx->h3c, ctx->qconn, &ev); if(stream3_id == QUICHE_H3_ERR_DONE) { break; } else if(stream3_id < 0) { CURL_TRC_CF(data, cf, "[%"PRId64"] error poll: %"PRId64, stream? stream->id : -1, stream3_id); return CURLE_HTTP3; } sdata = get_stream_easy(cf, data, stream3_id); if(!sdata) { CURL_TRC_CF(data, cf, "[%"PRId64"] discard event %s for " "unknown [%"PRId64"]", stream? stream->id : -1, cf_ev_name(ev), stream3_id); } else { result = h3_process_event(cf, sdata, stream3_id, ev); drain_stream(cf, sdata); if(result) { CURL_TRC_CF(data, cf, "[%"PRId64"] error processing event %s " "for [%"PRId64"] -> %d", stream? stream->id : -1, cf_ev_name(ev), stream3_id, result); if(data == sdata) { /* Only report this error to the caller if it is about the * transfer we were called with. Otherwise we fail a transfer * due to a problem in another one. */ quiche_h3_event_free(ev); return result; } } quiche_h3_event_free(ev); } } return CURLE_OK; } struct recv_ctx { struct Curl_cfilter *cf; struct Curl_easy *data; int pkts; }; static CURLcode recv_pkt(const unsigned char *pkt, size_t pktlen, struct sockaddr_storage *remote_addr, socklen_t remote_addrlen, int ecn, void *userp) { struct recv_ctx *r = userp; struct cf_quiche_ctx *ctx = r->cf->ctx; quiche_recv_info recv_info; ssize_t nread; (void)ecn; ++r->pkts; recv_info.to = (struct sockaddr *)&ctx->q.local_addr; recv_info.to_len = ctx->q.local_addrlen; recv_info.from = (struct sockaddr *)remote_addr; recv_info.from_len = remote_addrlen; nread = quiche_conn_recv(ctx->qconn, (unsigned char *)pkt, pktlen, &recv_info); if(nread < 0) { if(QUICHE_ERR_DONE == nread) { CURL_TRC_CF(r->data, r->cf, "ingress, quiche is DONE"); return CURLE_OK; } else if(QUICHE_ERR_TLS_FAIL == nread) { long verify_ok = SSL_get_verify_result(ctx->ssl); if(verify_ok != X509_V_OK) { failf(r->data, "SSL certificate problem: %s", X509_verify_cert_error_string(verify_ok)); return CURLE_PEER_FAILED_VERIFICATION; } } else { failf(r->data, "quiche_conn_recv() == %zd", nread); return CURLE_RECV_ERROR; } } else if((size_t)nread < pktlen) { CURL_TRC_CF(r->data, r->cf, "ingress, quiche only read %zd/%zu bytes", nread, pktlen); } return CURLE_OK; } static CURLcode cf_process_ingress(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct recv_ctx rctx; CURLcode result; DEBUGASSERT(ctx->qconn); result = quic_x509_store_setup(cf, data); if(result) return result; rctx.cf = cf; rctx.data = data; rctx.pkts = 0; result = vquic_recv_packets(cf, data, &ctx->q, 1000, recv_pkt, &rctx); if(result) return result; if(rctx.pkts > 0) { /* quiche digested ingress packets. It might have opened flow control * windows again. */ check_resumes(cf, data); } return cf_poll_events(cf, data); } struct read_ctx { struct Curl_cfilter *cf; struct Curl_easy *data; quiche_send_info send_info; }; static ssize_t read_pkt_to_send(void *userp, unsigned char *buf, size_t buflen, CURLcode *err) { struct read_ctx *x = userp; struct cf_quiche_ctx *ctx = x->cf->ctx; ssize_t nwritten; nwritten = quiche_conn_send(ctx->qconn, buf, buflen, &x->send_info); if(nwritten == QUICHE_ERR_DONE) { *err = CURLE_AGAIN; return -1; } if(nwritten < 0) { failf(x->data, "quiche_conn_send returned %zd", nwritten); *err = CURLE_SEND_ERROR; return -1; } *err = CURLE_OK; return nwritten; } /* * flush_egress drains the buffers and sends off data. * Calls failf() on errors. */ static CURLcode cf_flush_egress(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; ssize_t nread; CURLcode result; int64_t expiry_ns; int64_t timeout_ns; struct read_ctx readx; size_t pkt_count, gsolen; expiry_ns = quiche_conn_timeout_as_nanos(ctx->qconn); if(!expiry_ns) { quiche_conn_on_timeout(ctx->qconn); if(quiche_conn_is_closed(ctx->qconn)) { failf(data, "quiche_conn_on_timeout closed the connection"); return CURLE_SEND_ERROR; } } result = vquic_flush(cf, data, &ctx->q); if(result) { if(result == CURLE_AGAIN) { Curl_expire(data, 1, EXPIRE_QUIC); return CURLE_OK; } return result; } readx.cf = cf; readx.data = data; memset(&readx.send_info, 0, sizeof(readx.send_info)); pkt_count = 0; gsolen = quiche_conn_max_send_udp_payload_size(ctx->qconn); for(;;) { /* add the next packet to send, if any, to our buffer */ nread = Curl_bufq_sipn(&ctx->q.sendbuf, 0, read_pkt_to_send, &readx, &result); if(nread < 0) { if(result != CURLE_AGAIN) return result; /* Nothing more to add, flush and leave */ result = vquic_send(cf, data, &ctx->q, gsolen); if(result) { if(result == CURLE_AGAIN) { Curl_expire(data, 1, EXPIRE_QUIC); return CURLE_OK; } return result; } goto out; } ++pkt_count; if((size_t)nread < gsolen || pkt_count >= MAX_PKT_BURST) { result = vquic_send(cf, data, &ctx->q, gsolen); if(result) { if(result == CURLE_AGAIN) { Curl_expire(data, 1, EXPIRE_QUIC); return CURLE_OK; } goto out; } pkt_count = 0; } } out: timeout_ns = quiche_conn_timeout_as_nanos(ctx->qconn); if(timeout_ns % 1000000) timeout_ns += 1000000; /* expire resolution is milliseconds */ Curl_expire(data, (timeout_ns / 1000000), EXPIRE_QUIC); return result; } static ssize_t recv_closed_stream(struct Curl_cfilter *cf, struct Curl_easy *data, CURLcode *err) { struct stream_ctx *stream = H3_STREAM_CTX(data); ssize_t nread = -1; DEBUGASSERT(stream); if(stream->reset) { failf(data, "HTTP/3 stream %" PRId64 " reset by server", stream->id); *err = stream->resp_got_header? CURLE_PARTIAL_FILE : CURLE_RECV_ERROR; CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_recv, was reset -> %d", stream->id, *err); } else if(!stream->resp_got_header) { failf(data, "HTTP/3 stream %" PRId64 " was closed cleanly, but before getting" " all response header fields, treated as error", stream->id); /* *err = CURLE_PARTIAL_FILE; */ *err = CURLE_RECV_ERROR; CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_recv, closed incomplete" " -> %d", stream->id, *err); } else { *err = CURLE_OK; nread = 0; } return nread; } static ssize_t cf_quiche_recv(struct Curl_cfilter *cf, struct Curl_easy *data, char *buf, size_t len, CURLcode *err) { struct cf_quiche_ctx *ctx = cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(data); ssize_t nread = -1; CURLcode result; vquic_ctx_update_time(&ctx->q); if(!stream) { *err = CURLE_RECV_ERROR; return -1; } if(!Curl_bufq_is_empty(&stream->recvbuf)) { nread = Curl_bufq_read(&stream->recvbuf, (unsigned char *)buf, len, err); CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) " "-> %zd, %d", stream->id, len, nread, *err); if(nread < 0) goto out; } if(cf_process_ingress(cf, data)) { CURL_TRC_CF(data, cf, "cf_recv, error on ingress"); *err = CURLE_RECV_ERROR; nread = -1; goto out; } /* recvbuf had nothing before, maybe after progressing ingress? */ if(nread < 0 && !Curl_bufq_is_empty(&stream->recvbuf)) { nread = Curl_bufq_read(&stream->recvbuf, (unsigned char *)buf, len, err); CURL_TRC_CF(data, cf, "[%" PRId64 "] read recvbuf(len=%zu) " "-> %zd, %d", stream->id, len, nread, *err); if(nread < 0) goto out; } if(nread > 0) { if(stream->closed) drain_stream(cf, data); } else { if(stream->closed) { nread = recv_closed_stream(cf, data, err); goto out; } else if(quiche_conn_is_draining(ctx->qconn)) { failf(data, "QUIC connection is draining"); *err = CURLE_HTTP3; nread = -1; goto out; } *err = CURLE_AGAIN; nread = -1; } out: result = cf_flush_egress(cf, data); if(result) { CURL_TRC_CF(data, cf, "cf_recv, flush egress failed"); *err = result; nread = -1; } if(nread > 0) ctx->data_recvd += nread; CURL_TRC_CF(data, cf, "[%"PRId64"] cf_recv(total=%" CURL_FORMAT_CURL_OFF_T ") -> %zd, %d", stream->id, ctx->data_recvd, nread, *err); return nread; } /* Index where :authority header field will appear in request header field list. */ #define AUTHORITY_DST_IDX 3 static ssize_t h3_open_stream(struct Curl_cfilter *cf, struct Curl_easy *data, const void *buf, size_t len, CURLcode *err) { struct cf_quiche_ctx *ctx = cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(data); size_t nheader, i; int64_t stream3_id; struct dynhds h2_headers; quiche_h3_header *nva = NULL; ssize_t nwritten; if(!stream) { *err = h3_data_setup(cf, data); if(*err) { return -1; } stream = H3_STREAM_CTX(data); DEBUGASSERT(stream); } Curl_dynhds_init(&h2_headers, 0, DYN_HTTP_REQUEST); DEBUGASSERT(stream); nwritten = Curl_h1_req_parse_read(&stream->h1, buf, len, NULL, 0, err); if(nwritten < 0) goto out; if(!stream->h1.done) { /* need more data */ goto out; } DEBUGASSERT(stream->h1.req); *err = Curl_http_req_to_h2(&h2_headers, stream->h1.req, data); if(*err) { nwritten = -1; goto out; } /* no longer needed */ Curl_h1_req_parse_free(&stream->h1); nheader = Curl_dynhds_count(&h2_headers); nva = malloc(sizeof(quiche_h3_header) * nheader); if(!nva) { *err = CURLE_OUT_OF_MEMORY; nwritten = -1; goto out; } for(i = 0; i < nheader; ++i) { struct dynhds_entry *e = Curl_dynhds_getn(&h2_headers, i); nva[i].name = (unsigned char *)e->name; nva[i].name_len = e->namelen; nva[i].value = (unsigned char *)e->value; nva[i].value_len = e->valuelen; } switch(data->state.httpreq) { case HTTPREQ_POST: case HTTPREQ_POST_FORM: case HTTPREQ_POST_MIME: case HTTPREQ_PUT: if(data->state.infilesize != -1) stream->upload_left = data->state.infilesize; else /* data sending without specifying the data amount up front */ stream->upload_left = -1; /* unknown */ break; default: stream->upload_left = 0; /* no request body */ break; } if(stream->upload_left == 0) stream->send_closed = TRUE; stream3_id = quiche_h3_send_request(ctx->h3c, ctx->qconn, nva, nheader, stream->send_closed); if(stream3_id < 0) { if(QUICHE_H3_ERR_STREAM_BLOCKED == stream3_id) { /* quiche seems to report this error if the connection window is * exhausted. Which happens frequently and intermittent. */ CURL_TRC_CF(data, cf, "[%"PRId64"] blocked", stream->id); stream->quic_flow_blocked = TRUE; *err = CURLE_AGAIN; nwritten = -1; goto out; } else { CURL_TRC_CF(data, cf, "send_request(%s) -> %" PRId64, data->state.url, stream3_id); } *err = CURLE_SEND_ERROR; nwritten = -1; goto out; } DEBUGASSERT(stream->id == -1); *err = CURLE_OK; stream->id = stream3_id; stream->closed = FALSE; stream->reset = FALSE; if(Curl_trc_is_verbose(data)) { infof(data, "[HTTP/3] [%" PRId64 "] OPENED stream for %s", stream->id, data->state.url); for(i = 0; i < nheader; ++i) { infof(data, "[HTTP/3] [%" PRId64 "] [%.*s: %.*s]", stream->id, (int)nva[i].name_len, nva[i].name, (int)nva[i].value_len, nva[i].value); } } out: free(nva); Curl_dynhds_free(&h2_headers); return nwritten; } static ssize_t cf_quiche_send(struct Curl_cfilter *cf, struct Curl_easy *data, const void *buf, size_t len, CURLcode *err) { struct cf_quiche_ctx *ctx = cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(data); CURLcode result; ssize_t nwritten; vquic_ctx_update_time(&ctx->q); *err = cf_process_ingress(cf, data); if(*err) { nwritten = -1; goto out; } if(!stream || stream->id < 0) { nwritten = h3_open_stream(cf, data, buf, len, err); if(nwritten < 0) goto out; stream = H3_STREAM_CTX(data); } else { bool eof = (stream->upload_left >= 0 && (curl_off_t)len >= stream->upload_left); nwritten = quiche_h3_send_body(ctx->h3c, ctx->qconn, stream->id, (uint8_t *)buf, len, eof); if(nwritten == QUICHE_H3_ERR_DONE || (nwritten == 0 && len > 0)) { /* TODO: we seem to be blocked on flow control and should HOLD * sending. But when do we open again? */ if(!quiche_conn_stream_writable(ctx->qconn, stream->id, len)) { CURL_TRC_CF(data, cf, "[%" PRId64 "] send_body(len=%zu) " "-> window exhausted", stream->id, len); stream->quic_flow_blocked = TRUE; } *err = CURLE_AGAIN; nwritten = -1; goto out; } else if(nwritten == QUICHE_H3_TRANSPORT_ERR_INVALID_STREAM_STATE && stream->closed && stream->resp_hds_complete) { /* sending request body on a stream that has been closed by the * server. If the server has send us a final response, we should * silently discard the send data. * This happens for example on redirects where the server, instead * of reading the full request body just closed the stream after * sending the 30x response. * This is sort of a race: had the transfer loop called recv first, * it would see the response and stop/discard sending on its own- */ CURL_TRC_CF(data, cf, "[%" PRId64 "] discarding data" "on closed stream with response", stream->id); *err = CURLE_OK; nwritten = (ssize_t)len; goto out; } else if(nwritten == QUICHE_H3_TRANSPORT_ERR_FINAL_SIZE) { CURL_TRC_CF(data, cf, "[%" PRId64 "] send_body(len=%zu) " "-> exceeds size", stream->id, len); *err = CURLE_SEND_ERROR; nwritten = -1; goto out; } else if(nwritten < 0) { CURL_TRC_CF(data, cf, "[%" PRId64 "] send_body(len=%zu) " "-> quiche err %zd", stream->id, len, nwritten); *err = CURLE_SEND_ERROR; nwritten = -1; goto out; } else { /* quiche accepted all or at least a part of the buf */ if(stream->upload_left > 0) { stream->upload_left = (nwritten < stream->upload_left)? (stream->upload_left - nwritten) : 0; } if(stream->upload_left == 0) stream->send_closed = TRUE; CURL_TRC_CF(data, cf, "[%" PRId64 "] send body(len=%zu, " "left=%" CURL_FORMAT_CURL_OFF_T ") -> %zd", stream->id, len, stream->upload_left, nwritten); *err = CURLE_OK; } } out: result = cf_flush_egress(cf, data); if(result) { *err = result; nwritten = -1; } CURL_TRC_CF(data, cf, "[%" PRId64 "] cf_send(len=%zu) -> %zd, %d", stream? stream->id : -1, len, nwritten, *err); return nwritten; } static bool stream_is_writeable(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct stream_ctx *stream = H3_STREAM_CTX(data); return stream && (quiche_conn_stream_writable(ctx->qconn, (uint64_t)stream->id, 1) > 0); } static void cf_quiche_adjust_pollset(struct Curl_cfilter *cf, struct Curl_easy *data, struct easy_pollset *ps) { struct cf_quiche_ctx *ctx = cf->ctx; bool want_recv = CURL_WANT_RECV(data); bool want_send = CURL_WANT_SEND(data); if(ctx->qconn && (want_recv || want_send)) { struct stream_ctx *stream = H3_STREAM_CTX(data); bool c_exhaust, s_exhaust; c_exhaust = FALSE; /* Have not found any call in quiche that tells us if the connection itself is blocked */ s_exhaust = stream && stream->id >= 0 && (stream->quic_flow_blocked || !stream_is_writeable(cf, data)); want_recv = (want_recv || c_exhaust || s_exhaust); want_send = (!s_exhaust && want_send) || !Curl_bufq_is_empty(&ctx->q.sendbuf); Curl_pollset_set(data, ps, ctx->q.sockfd, want_recv, want_send); } } /* * Called from transfer.c:data_pending to know if we should keep looping * to receive more data from the connection. */ static bool cf_quiche_data_pending(struct Curl_cfilter *cf, const struct Curl_easy *data) { const struct stream_ctx *stream = H3_STREAM_CTX(data); (void)cf; return stream && !Curl_bufq_is_empty(&stream->recvbuf); } static CURLcode h3_data_pause(struct Curl_cfilter *cf, struct Curl_easy *data, bool pause) { /* TODO: there seems right now no API in quiche to shrink/enlarge * the streams windows. As we do in HTTP/2. */ if(!pause) { drain_stream(cf, data); Curl_expire(data, 0, EXPIRE_RUN_NOW); } return CURLE_OK; } static CURLcode cf_quiche_data_event(struct Curl_cfilter *cf, struct Curl_easy *data, int event, int arg1, void *arg2) { CURLcode result = CURLE_OK; (void)arg1; (void)arg2; switch(event) { case CF_CTRL_DATA_SETUP: break; case CF_CTRL_DATA_PAUSE: result = h3_data_pause(cf, data, (arg1 != 0)); break; case CF_CTRL_DATA_DETACH: h3_data_done(cf, data); break; case CF_CTRL_DATA_DONE: h3_data_done(cf, data); break; case CF_CTRL_DATA_DONE_SEND: { struct stream_ctx *stream = H3_STREAM_CTX(data); if(stream && !stream->send_closed) { unsigned char body[1]; ssize_t sent; stream->send_closed = TRUE; stream->upload_left = 0; body[0] = 'X'; sent = cf_quiche_send(cf, data, body, 0, &result); CURL_TRC_CF(data, cf, "[%"PRId64"] DONE_SEND -> %zd, %d", stream->id, sent, result); } break; } case CF_CTRL_DATA_IDLE: { struct stream_ctx *stream = H3_STREAM_CTX(data); if(stream && !stream->closed) { result = cf_flush_egress(cf, data); if(result) CURL_TRC_CF(data, cf, "data idle, flush egress -> %d", result); } break; } default: break; } return result; } static CURLcode cf_verify_peer(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; struct ssl_primary_config *conn_config; CURLcode result = CURLE_OK; conn_config = Curl_ssl_cf_get_primary_config(cf); if(!conn_config) return CURLE_FAILED_INIT; cf->conn->bits.multiplex = TRUE; /* at least potentially multiplexed */ cf->conn->httpversion = 30; cf->conn->bundle->multiuse = BUNDLE_MULTIPLEX; if(conn_config->verifyhost) { X509 *server_cert; server_cert = SSL_get_peer_certificate(ctx->ssl); if(!server_cert) { result = CURLE_PEER_FAILED_VERIFICATION; goto out; } result = Curl_ossl_verifyhost(data, cf->conn, &ctx->peer, server_cert); X509_free(server_cert); if(result) goto out; } else CURL_TRC_CF(data, cf, "Skipped certificate verification"); ctx->h3config = quiche_h3_config_new(); if(!ctx->h3config) { result = CURLE_OUT_OF_MEMORY; goto out; } /* Create a new HTTP/3 connection on the QUIC connection. */ ctx->h3c = quiche_h3_conn_new_with_transport(ctx->qconn, ctx->h3config); if(!ctx->h3c) { result = CURLE_OUT_OF_MEMORY; goto out; } if(data->set.ssl.certinfo) /* asked to gather certificate info */ (void)Curl_ossl_certchain(data, ctx->ssl); out: if(result) { if(ctx->h3config) { quiche_h3_config_free(ctx->h3config); ctx->h3config = NULL; } if(ctx->h3c) { quiche_h3_conn_free(ctx->h3c); ctx->h3c = NULL; } } return result; } static CURLcode cf_connect_start(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; int rv; CURLcode result; const struct Curl_sockaddr_ex *sockaddr; DEBUGASSERT(ctx->q.sockfd != CURL_SOCKET_BAD); #ifdef DEBUG_QUICHE /* initialize debug log callback only once */ static int debug_log_init = 0; if(!debug_log_init) { quiche_enable_debug_logging(quiche_debug_log, NULL); debug_log_init = 1; } #endif ctx->max_idle_ms = CURL_QUIC_MAX_IDLE_MS; Curl_bufcp_init(&ctx->stream_bufcp, H3_STREAM_CHUNK_SIZE, H3_STREAM_POOL_SPARES); ctx->data_recvd = 0; result = vquic_ctx_init(&ctx->q); if(result) return result; ctx->cfg = quiche_config_new(QUICHE_PROTOCOL_VERSION); if(!ctx->cfg) { failf(data, "can't create quiche config"); return CURLE_FAILED_INIT; } quiche_config_enable_pacing(ctx->cfg, false); quiche_config_set_max_idle_timeout(ctx->cfg, ctx->max_idle_ms * 1000); quiche_config_set_initial_max_data(ctx->cfg, (1 * 1024 * 1024) /* (QUIC_MAX_STREAMS/2) * H3_STREAM_WINDOW_SIZE */); quiche_config_set_initial_max_streams_bidi(ctx->cfg, QUIC_MAX_STREAMS); quiche_config_set_initial_max_streams_uni(ctx->cfg, QUIC_MAX_STREAMS); quiche_config_set_initial_max_stream_data_bidi_local(ctx->cfg, H3_STREAM_WINDOW_SIZE); quiche_config_set_initial_max_stream_data_bidi_remote(ctx->cfg, H3_STREAM_WINDOW_SIZE); quiche_config_set_initial_max_stream_data_uni(ctx->cfg, H3_STREAM_WINDOW_SIZE); quiche_config_set_disable_active_migration(ctx->cfg, TRUE); quiche_config_set_max_connection_window(ctx->cfg, 10 * QUIC_MAX_STREAMS * H3_STREAM_WINDOW_SIZE); quiche_config_set_max_stream_window(ctx->cfg, 10 * H3_STREAM_WINDOW_SIZE); quiche_config_set_application_protos(ctx->cfg, (uint8_t *) QUICHE_H3_APPLICATION_PROTOCOL, sizeof(QUICHE_H3_APPLICATION_PROTOCOL) - 1); DEBUGASSERT(!ctx->ssl); DEBUGASSERT(!ctx->sslctx); result = quic_ssl_setup(cf, data); if(result) return result; result = Curl_rand(data, ctx->scid, sizeof(ctx->scid)); if(result) return result; Curl_cf_socket_peek(cf->next, data, &ctx->q.sockfd, &sockaddr, NULL, NULL, NULL, NULL); ctx->q.local_addrlen = sizeof(ctx->q.local_addr); rv = getsockname(ctx->q.sockfd, (struct sockaddr *)&ctx->q.local_addr, &ctx->q.local_addrlen); if(rv == -1) return CURLE_QUIC_CONNECT_ERROR; ctx->qconn = quiche_conn_new_with_tls((const uint8_t *)ctx->scid, sizeof(ctx->scid), NULL, 0, (struct sockaddr *)&ctx->q.local_addr, ctx->q.local_addrlen, &sockaddr->sa_addr, sockaddr->addrlen, ctx->cfg, ctx->ssl, false); if(!ctx->qconn) { failf(data, "can't create quiche connection"); return CURLE_OUT_OF_MEMORY; } /* Known to not work on Windows */ #if !defined(_WIN32) && defined(HAVE_QUICHE_CONN_SET_QLOG_FD) { int qfd; (void)Curl_qlogdir(data, ctx->scid, sizeof(ctx->scid), &qfd); if(qfd != -1) quiche_conn_set_qlog_fd(ctx->qconn, qfd, "qlog title", "curl qlog"); } #endif result = cf_flush_egress(cf, data); if(result) return result; { unsigned char alpn_protocols[] = QUICHE_H3_APPLICATION_PROTOCOL; unsigned alpn_len, offset = 0; /* Replace each ALPN length prefix by a comma. */ while(offset < sizeof(alpn_protocols) - 1) { alpn_len = alpn_protocols[offset]; alpn_protocols[offset] = ','; offset += 1 + alpn_len; } CURL_TRC_CF(data, cf, "Sent QUIC client Initial, ALPN: %s", alpn_protocols + 1); } return CURLE_OK; } static CURLcode cf_quiche_connect(struct Curl_cfilter *cf, struct Curl_easy *data, bool blocking, bool *done) { struct cf_quiche_ctx *ctx = cf->ctx; CURLcode result = CURLE_OK; if(cf->connected) { *done = TRUE; return CURLE_OK; } /* Connect the UDP filter first */ if(!cf->next->connected) { result = Curl_conn_cf_connect(cf->next, data, blocking, done); if(result || !*done) return result; } *done = FALSE; vquic_ctx_update_time(&ctx->q); if(ctx->reconnect_at.tv_sec && Curl_timediff(ctx->q.last_op, ctx->reconnect_at) < 0) { /* Not time yet to attempt the next connect */ CURL_TRC_CF(data, cf, "waiting for reconnect time"); goto out; } if(!ctx->qconn) { result = cf_connect_start(cf, data); if(result) goto out; ctx->started_at = ctx->q.last_op; result = cf_flush_egress(cf, data); /* we do not expect to be able to recv anything yet */ goto out; } result = cf_process_ingress(cf, data); if(result) goto out; result = cf_flush_egress(cf, data); if(result) goto out; if(quiche_conn_is_established(ctx->qconn)) { ctx->handshake_at = ctx->q.last_op; CURL_TRC_CF(data, cf, "handshake complete after %dms", (int)Curl_timediff(ctx->handshake_at, ctx->started_at)); result = cf_verify_peer(cf, data); if(!result) { CURL_TRC_CF(data, cf, "peer verified"); cf->connected = TRUE; cf->conn->alpn = CURL_HTTP_VERSION_3; *done = TRUE; connkeep(cf->conn, "HTTP/3 default"); } } else if(quiche_conn_is_draining(ctx->qconn)) { /* When a QUIC server instance is shutting down, it may send us a * CONNECTION_CLOSE right away. Our connection then enters the DRAINING * state. The CONNECT may work in the near future again. Indicate * that as a "weird" reply. */ result = CURLE_WEIRD_SERVER_REPLY; } out: #ifndef CURL_DISABLE_VERBOSE_STRINGS if(result && result != CURLE_AGAIN) { const char *r_ip; int r_port; Curl_cf_socket_peek(cf->next, data, NULL, NULL, &r_ip, &r_port, NULL, NULL); infof(data, "connect to %s port %u failed: %s", r_ip, r_port, curl_easy_strerror(result)); } #endif return result; } static void cf_quiche_close(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; if(ctx) { if(ctx->qconn) { vquic_ctx_update_time(&ctx->q); (void)quiche_conn_close(ctx->qconn, TRUE, 0, NULL, 0); /* flushing the egress is not a failsafe way to deliver all the outstanding packets, but we also don't want to get stuck here... */ (void)cf_flush_egress(cf, data); } cf_quiche_ctx_clear(ctx); } } static void cf_quiche_destroy(struct Curl_cfilter *cf, struct Curl_easy *data) { struct cf_quiche_ctx *ctx = cf->ctx; (void)data; cf_quiche_ctx_clear(ctx); free(ctx); cf->ctx = NULL; } static CURLcode cf_quiche_query(struct Curl_cfilter *cf, struct Curl_easy *data, int query, int *pres1, void *pres2) { struct cf_quiche_ctx *ctx = cf->ctx; switch(query) { case CF_QUERY_MAX_CONCURRENT: { uint64_t max_streams = CONN_INUSE(cf->conn); if(!ctx->goaway) { max_streams += quiche_conn_peer_streams_left_bidi(ctx->qconn); } *pres1 = (max_streams > INT_MAX)? INT_MAX : (int)max_streams; CURL_TRC_CF(data, cf, "query: MAX_CONCURRENT -> %d", *pres1); return CURLE_OK; } case CF_QUERY_CONNECT_REPLY_MS: if(ctx->got_first_byte) { timediff_t ms = Curl_timediff(ctx->first_byte_at, ctx->started_at); *pres1 = (ms < INT_MAX)? (int)ms : INT_MAX; } else *pres1 = -1; return CURLE_OK; case CF_QUERY_TIMER_CONNECT: { struct curltime *when = pres2; if(ctx->got_first_byte) *when = ctx->first_byte_at; return CURLE_OK; } case CF_QUERY_TIMER_APPCONNECT: { struct curltime *when = pres2; if(cf->connected) *when = ctx->handshake_at; return CURLE_OK; } default: break; } return cf->next? cf->next->cft->query(cf->next, data, query, pres1, pres2) : CURLE_UNKNOWN_OPTION; } static bool cf_quiche_conn_is_alive(struct Curl_cfilter *cf, struct Curl_easy *data, bool *input_pending) { struct cf_quiche_ctx *ctx = cf->ctx; bool alive = TRUE; *input_pending = FALSE; if(!ctx->qconn) return FALSE; /* Both sides of the QUIC connection announce they max idle times in * the transport parameters. Look at the minimum of both and if * we exceed this, regard the connection as dead. The other side * may have completely purged it and will no longer respond * to any packets from us. */ { quiche_transport_params qpeerparams; timediff_t idletime; uint64_t idle_ms = ctx->max_idle_ms; if(quiche_conn_peer_transport_params(ctx->qconn, &qpeerparams) && qpeerparams.peer_max_idle_timeout && qpeerparams.peer_max_idle_timeout < idle_ms) idle_ms = qpeerparams.peer_max_idle_timeout; idletime = Curl_timediff(Curl_now(), cf->conn->lastused); if(idletime > 0 && (uint64_t)idletime > idle_ms) return FALSE; } if(!cf->next || !cf->next->cft->is_alive(cf->next, data, input_pending)) return FALSE; if(*input_pending) { /* This happens before we've sent off a request and the connection is not in use by any other transfer, there shouldn't be any data here, only "protocol frames" */ *input_pending = FALSE; if(cf_process_ingress(cf, data)) alive = FALSE; else { alive = TRUE; } } return alive; } struct Curl_cftype Curl_cft_http3 = { "HTTP/3", CF_TYPE_IP_CONNECT | CF_TYPE_SSL | CF_TYPE_MULTIPLEX, 0, cf_quiche_destroy, cf_quiche_connect, cf_quiche_close, Curl_cf_def_get_host, cf_quiche_adjust_pollset, cf_quiche_data_pending, cf_quiche_send, cf_quiche_recv, cf_quiche_data_event, cf_quiche_conn_is_alive, Curl_cf_def_conn_keep_alive, cf_quiche_query, }; CURLcode Curl_cf_quiche_create(struct Curl_cfilter **pcf, struct Curl_easy *data, struct connectdata *conn, const struct Curl_addrinfo *ai) { struct cf_quiche_ctx *ctx = NULL; struct Curl_cfilter *cf = NULL, *udp_cf = NULL; CURLcode result; (void)data; (void)conn; ctx = calloc(1, sizeof(*ctx)); if(!ctx) { result = CURLE_OUT_OF_MEMORY; goto out; } result = Curl_cf_create(&cf, &Curl_cft_http3, ctx); if(result) goto out; result = Curl_cf_udp_create(&udp_cf, data, conn, ai, TRNSPRT_QUIC); if(result) goto out; udp_cf->conn = cf->conn; udp_cf->sockindex = cf->sockindex; cf->next = udp_cf; out: *pcf = (!result)? cf : NULL; if(result) { if(udp_cf) Curl_conn_cf_discard_sub(cf, udp_cf, data, TRUE); Curl_safefree(cf); Curl_safefree(ctx); } return result; } bool Curl_conn_is_quiche(const struct Curl_easy *data, const struct connectdata *conn, int sockindex) { struct Curl_cfilter *cf = conn? conn->cfilter[sockindex] : NULL; (void)data; for(; cf; cf = cf->next) { if(cf->cft == &Curl_cft_http3) return TRUE; if(cf->cft->flags & CF_TYPE_IP_CONNECT) return FALSE; } return FALSE; } #endif