iw7-mod/deps/sol2/include/sol/stack.hpp
2024-08-13 05:15:34 -04:00

366 lines
14 KiB
C++

// sol2
// The MIT License (MIT)
// Copyright (c) 2013-2022 Rapptz, ThePhD and contributors
// Permission is hereby granted, free of charge, to any person obtaining a copy of
// this software and associated documentation files (the "Software"), to deal in
// the Software without restriction, including without limitation the rights to
// use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software is furnished to do so,
// subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
// FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
// IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#ifndef SOL_STACK_HPP
#define SOL_STACK_HPP
#include <sol/trampoline.hpp>
#include <sol/stack_core.hpp>
#include <sol/stack_reference.hpp>
#include <sol/stack_check.hpp>
#include <sol/stack_get.hpp>
#include <sol/stack_check_get.hpp>
#include <sol/stack_push.hpp>
#include <sol/stack_pop.hpp>
#include <sol/stack_field.hpp>
#include <sol/stack_probe.hpp>
#include <sol/assert.hpp>
#include <cstring>
#include <array>
namespace sol {
namespace detail {
using typical_chunk_name_t = char[SOL_ID_SIZE_I_];
using typical_file_chunk_name_t = char[SOL_FILE_ID_SIZE_I_];
inline const std::string& default_chunk_name() {
static const std::string name = "";
return name;
}
template <std::size_t N>
const char* make_chunk_name(const string_view& code, const std::string& chunkname, char (&basechunkname)[N]) {
if (chunkname.empty()) {
auto it = code.cbegin();
auto e = code.cend();
std::size_t i = 0;
static const std::size_t n = N - 4;
for (i = 0; i < n && it != e; ++i, ++it) {
basechunkname[i] = *it;
}
if (it != e) {
for (std::size_t c = 0; c < 3; ++i, ++c) {
basechunkname[i] = '.';
}
}
basechunkname[i] = '\0';
return &basechunkname[0];
}
else {
return chunkname.c_str();
}
}
inline void clear_entries(stack_reference r) {
stack::push(r.lua_state(), lua_nil);
while (lua_next(r.lua_state(), -2)) {
absolute_index key(r.lua_state(), -2);
auto pn = stack::pop_n(r.lua_state(), 1);
stack::set_field<false, true>(r.lua_state(), key, lua_nil, r.stack_index());
}
}
inline void clear_entries(const reference& registry_reference) {
auto pp = stack::push_pop(registry_reference);
stack_reference ref(registry_reference.lua_state(), -1);
clear_entries(ref);
}
} // namespace detail
namespace stack {
namespace stack_detail {
template <typename T>
inline int push_as_upvalues(lua_State* L, T& item) {
typedef std::decay_t<T> TValue;
static const std::size_t itemsize = sizeof(TValue);
static const std::size_t voidsize = sizeof(void*);
static const std::size_t voidsizem1 = voidsize - 1;
static const std::size_t data_t_count = (sizeof(TValue) + voidsizem1) / voidsize;
typedef std::array<void*, data_t_count> data_t;
data_t data { {} };
std::memcpy(&data[0], std::addressof(item), itemsize);
int pushcount = 0;
for (const auto& v : data) {
lua_pushlightuserdata(L, v);
pushcount += 1;
}
return pushcount;
}
template <typename T>
inline std::pair<T, int> get_as_upvalues(lua_State* L, int index = 2) {
static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
data_t voiddata { {} };
for (std::size_t i = 0, d = 0; d < sizeof(T); ++i, d += sizeof(void*)) {
voiddata[i] = lua_touserdata(L, upvalue_index(index++));
}
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
template <typename T>
inline std::pair<T, int> get_as_upvalues_using_function(lua_State* L, int function_index = -1) {
static const std::size_t data_t_count = (sizeof(T) + (sizeof(void*) - 1)) / sizeof(void*);
typedef std::array<void*, data_t_count> data_t;
function_index = lua_absindex(L, function_index);
int index = 0;
data_t voiddata { {} };
for (std::size_t d = 0; d < sizeof(T); d += sizeof(void*)) {
// first upvalue is nullptr to respect environment shenanigans
// So +2 instead of +1
const char* upvalue_name = lua_getupvalue(L, function_index, index + 2);
if (upvalue_name == nullptr) {
// We should freak out here...
break;
}
voiddata[index] = lua_touserdata(L, -1);
++index;
}
lua_pop(L, index);
return std::pair<T, int>(*reinterpret_cast<T*>(static_cast<void*>(voiddata.data())), index);
}
template <bool checked, typename Handler, typename Fx, typename... Args>
static decltype(auto) eval(types<>, std::index_sequence<>, lua_State*, int, Handler&&, record&, Fx&& fx, Args&&... args) {
return std::forward<Fx>(fx)(std::forward<Args>(args)...);
}
template <bool checked, typename Arg, typename... Args, std::size_t I, std::size_t... Is, typename Handler, typename Fx, typename... FxArgs>
static decltype(auto) eval(types<Arg, Args...>, std::index_sequence<I, Is...>, lua_State* L_, int start_index_, Handler&& handler_,
record& tracking_, Fx&& fx_, FxArgs&&... fxargs_) {
#if 0 && SOL_IS_ON(SOL_PROPAGATE_EXCEPTIONS)
// NOTE: THIS IS TERMPORARILY TURNED OFF BECAUSE IT IMPACTS ACTUAL SEMANTICS W.R.T. THINGS LIKE LUAJIT,
// SO IT MUST REMAIN OFF UNTIL WE CAN ESTABLISH SIMILAR BEHAVIOR IN MODES WHERE `checked == false`!
// We can save performance/time by letting errors unwind produced arguments
// rather than checking everything once, and then potentially re-doing work
if constexpr (checked) {
return eval<checked>(types<Args...>(),
std::index_sequence<Is...>(),
L_,
start_index_,
std::forward<Handler>(handler_),
tracking_,
std::forward<Fx>(fx_),
std::forward<FxArgs>(fxargs_)...,
*stack_detail::check_get_arg<Arg>(L_, start_index_ + tracking_.used, handler_, tracking_));
}
else
#endif
{
return eval<checked>(types<Args...>(),
std::index_sequence<Is...>(),
L_,
start_index_,
std::forward<Handler>(handler_),
tracking_,
std::forward<Fx>(fx_),
std::forward<FxArgs>(fxargs_)...,
stack_detail::unchecked_get_arg<Arg>(L_, start_index_ + tracking_.used, tracking_));
}
}
template <bool checkargs = detail::default_safe_function_calls, std::size_t... I, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R>, types<Args...> argument_types_, std::index_sequence<I...> argument_indices_, lua_State* L_,
int start_index_, Fx&& fx_, FxArgs&&... args_) {
static_assert(meta::all_v<meta::is_not_move_only<Args>...>,
"One of the arguments being bound is a move-only type, and it is not being taken by reference: this will break your code. Please take "
"a reference and std::move it manually if this was your intention.");
argument_handler<types<R, Args...>> handler {};
record tracking {};
#if SOL_IS_OFF(SOL_PROPAGATE_EXCEPTIONS)
if constexpr (checkargs) {
multi_check<Args...>(L_, start_index_, handler);
}
#endif
if constexpr (std::is_void_v<R>) {
eval<checkargs>(
argument_types_, argument_indices_, L_, start_index_, handler, tracking, std::forward<Fx>(fx_), std::forward<FxArgs>(args_)...);
}
else {
return eval<checkargs>(
argument_types_, argument_indices_, L_, start_index_, handler, tracking, std::forward<Fx>(fx_), std::forward<FxArgs>(args_)...);
}
}
template <typename T>
void raw_table_set(lua_State* L, T&& arg, int tableindex = -2) {
int push_count = push(L, std::forward<T>(arg));
SOL_ASSERT(push_count == 1);
std::size_t unique_index = static_cast<std::size_t>(luaL_len(L, tableindex) + 1u);
lua_rawseti(L, tableindex, static_cast<int>(unique_index));
}
} // namespace stack_detail
template <typename T>
int set_ref(lua_State* L, T&& arg, int tableindex = -2) {
int push_count = push(L, std::forward<T>(arg));
SOL_ASSERT(push_count == 1);
return luaL_ref(L, tableindex);
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... args) {
using args_indices = std::make_index_sequence<sizeof...(Args)>;
if constexpr (std::is_void_v<R>) {
stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
else {
return stack_detail::call<check_args>(tr, ta, args_indices(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
if constexpr (std::is_void_v<R>) {
call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
else {
return call<check_args>(tr, ta, L, 1, std::forward<Fx>(fx), std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, typename R, typename... Args, typename Fx, typename... FxArgs>
inline decltype(auto) call_from_top(types<R> tr, types<Args...> ta, lua_State* L, Fx&& fx, FxArgs&&... args) {
using expected_count_t = meta::count_for_pack<lua_size, Args...>;
if constexpr (std::is_void_v<R>) {
call<check_args>(tr,
ta,
L,
(std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
std::forward<Fx>(fx),
std::forward<FxArgs>(args)...);
}
else {
return call<check_args>(tr,
ta,
L,
(std::max)(static_cast<int>(lua_gettop(L) - expected_count_t::value), static_cast<int>(0)),
std::forward<Fx>(fx),
std::forward<FxArgs>(args)...);
}
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Ret0, typename... Ret, typename... Args,
typename Fx, typename... FxArgs>
inline int call_into_lua(types<Ret0, Ret...> tr, types<Args...> ta, lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
if constexpr (std::is_void_v<Ret0>) {
call<check_args>(tr, ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
if constexpr (clean_stack) {
lua_settop(L, 0);
}
return 0;
}
else {
(void)tr;
decltype(auto) r
= call<check_args>(types<meta::return_type_t<Ret0, Ret...>>(), ta, L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
using R = meta::unqualified_t<decltype(r)>;
using is_stack = meta::any<is_stack_based<R>, std::is_same<R, absolute_index>, std::is_same<R, ref_index>, std::is_same<R, raw_index>>;
if constexpr (clean_stack && !is_stack::value) {
lua_settop(L, 0);
}
return push_reference(L, std::forward<decltype(r)>(r));
}
}
template <bool check_args = detail::default_safe_function_calls, bool clean_stack = true, typename Fx, typename... FxArgs>
inline int call_lua(lua_State* L, int start, Fx&& fx, FxArgs&&... fxargs) {
using traits_type = lua_bind_traits<meta::unqualified_t<Fx>>;
using args_list = typename traits_type::args_list;
using returns_list = typename traits_type::returns_list;
return call_into_lua<check_args, clean_stack>(returns_list(), args_list(), L, start, std::forward<Fx>(fx), std::forward<FxArgs>(fxargs)...);
}
inline call_syntax get_call_syntax(lua_State* L, const string_view& key, int index) {
if (lua_gettop(L) < 1) {
return call_syntax::dot;
}
luaL_getmetatable(L, key.data());
auto pn = pop_n(L, 1);
if (lua_compare(L, -1, index, LUA_OPEQ) != 1) {
return call_syntax::dot;
}
return call_syntax::colon;
}
inline void script(
lua_State* L, lua_Reader reader, void* data, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name("lua_Reader", chunkname, basechunkname);
if (lua_load(L, reader, data, chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void script(
lua_State* L, const string_view& code, const std::string& chunkname = detail::default_chunk_name(), load_mode mode = load_mode::any) {
detail::typical_chunk_name_t basechunkname = {};
const char* chunknametarget = detail::make_chunk_name(code, chunkname, basechunkname);
if (luaL_loadbufferx(L, code.data(), code.size(), chunknametarget, to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void script_file(lua_State* L, const std::string& filename, load_mode mode = load_mode::any) {
if (luaL_loadfilex(L, filename.c_str(), to_string(mode).c_str()) || lua_pcall(L, 0, LUA_MULTRET, 0)) {
lua_error(L);
}
}
inline void luajit_exception_handler(lua_State* L, int (*handler)(lua_State*, lua_CFunction) = detail::c_trampoline) {
#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE)
if (L == nullptr) {
return;
}
#if SOL_IS_ON(SOL_SAFE_STACK_CHECK)
luaL_checkstack(L, 1, detail::not_enough_stack_space_generic);
#endif // make sure stack doesn't overflow
lua_pushlightuserdata(L, (void*)handler);
auto pn = pop_n(L, 1);
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_ON);
#else
(void)L;
(void)handler;
#endif
}
inline void luajit_exception_off(lua_State* L) {
#if SOL_IS_ON(SOL_USE_LUAJIT_EXCEPTION_TRAMPOLINE)
if (L == nullptr) {
return;
}
luaJIT_setmode(L, -1, LUAJIT_MODE_WRAPCFUNC | LUAJIT_MODE_OFF);
#else
(void)L;
#endif
}
} // namespace stack
} // namespace sol
#endif // SOL_STACK_HPP