iw7-mod/deps/zstd/contrib/largeNbDicts/largeNbDicts.c
2024-08-13 05:15:34 -04:00

1086 lines
37 KiB
C

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* largeNbDicts
* This is a benchmark test tool
* dedicated to the specific case of dictionary decompression
* using a very large nb of dictionaries
* thus suffering latency from lots of cache misses.
* It's created in a bid to investigate performance and find optimizations. */
/*--- Dependencies ---*/
#include <stddef.h> /* size_t */
#include <stdlib.h> /* malloc, free, abort, qsort*/
#include <stdio.h> /* fprintf */
#include <limits.h> /* UINT_MAX */
#include <assert.h> /* assert */
#include "util.h"
#include "benchfn.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
#include "zdict.h"
/*--- Constants --- */
#define KB *(1<<10)
#define MB *(1<<20)
#define BLOCKSIZE_DEFAULT 0 /* no slicing into blocks */
#define DICTSIZE (4 KB)
#define CLEVEL_DEFAULT 3
#define DICT_LOAD_METHOD ZSTD_dlm_byCopy
#define BENCH_TIME_DEFAULT_S 6
#define RUN_TIME_DEFAULT_MS 1000
#define BENCH_TIME_DEFAULT_MS (BENCH_TIME_DEFAULT_S * RUN_TIME_DEFAULT_MS)
#define DISPLAY_LEVEL_DEFAULT 3
#define BENCH_SIZE_MAX (1200 MB)
/*--- Macros ---*/
#define CONTROL(c) { if (!(c)) abort(); }
#undef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
/*--- Display Macros ---*/
#define DISPLAY(...) fprintf(stdout, __VA_ARGS__)
#define DISPLAYLEVEL(l, ...) { if (g_displayLevel>=l) { DISPLAY(__VA_ARGS__); } }
static int g_displayLevel = DISPLAY_LEVEL_DEFAULT; /* 0 : no display, 1: errors, 2 : + result + interaction + warnings, 3 : + progression, 4 : + information */
/*--- buffer_t ---*/
typedef struct {
void* ptr;
size_t size;
size_t capacity;
} buffer_t;
static const buffer_t kBuffNull = { NULL, 0, 0 };
/* @return : kBuffNull if any error */
static buffer_t createBuffer(size_t capacity)
{
assert(capacity > 0);
void* const ptr = malloc(capacity);
if (ptr==NULL) return kBuffNull;
buffer_t buffer;
buffer.ptr = ptr;
buffer.capacity = capacity;
buffer.size = 0;
return buffer;
}
static void freeBuffer(buffer_t buff)
{
free(buff.ptr);
}
static void fillBuffer_fromHandle(buffer_t* buff, FILE* f)
{
size_t const readSize = fread(buff->ptr, 1, buff->capacity, f);
buff->size = readSize;
}
/* @return : kBuffNull if any error */
static buffer_t createBuffer_fromFile(const char* fileName)
{
U64 const fileSize = UTIL_getFileSize(fileName);
size_t const bufferSize = (size_t) fileSize;
if (fileSize == UTIL_FILESIZE_UNKNOWN) return kBuffNull;
assert((U64)bufferSize == fileSize); /* check overflow */
{ FILE* const f = fopen(fileName, "rb");
if (f == NULL) return kBuffNull;
buffer_t buff = createBuffer(bufferSize);
CONTROL(buff.ptr != NULL);
fillBuffer_fromHandle(&buff, f);
CONTROL(buff.size == buff.capacity);
fclose(f); /* do nothing specific if fclose() fails */
return buff;
}
}
/* @return : kBuffNull if any error */
static buffer_t
createDictionaryBuffer(const char* dictionaryName,
const void* srcBuffer,
const size_t* srcBlockSizes, size_t nbBlocks,
size_t requestedDictSize)
{
if (dictionaryName) {
DISPLAYLEVEL(3, "loading dictionary %s \n", dictionaryName);
return createBuffer_fromFile(dictionaryName); /* note : result might be kBuffNull */
} else {
DISPLAYLEVEL(3, "creating dictionary, of target size %u bytes \n",
(unsigned)requestedDictSize);
void* const dictBuffer = malloc(requestedDictSize);
CONTROL(dictBuffer != NULL);
assert(nbBlocks <= UINT_MAX);
size_t const dictSize = ZDICT_trainFromBuffer(dictBuffer, requestedDictSize,
srcBuffer,
srcBlockSizes, (unsigned)nbBlocks);
CONTROL(!ZSTD_isError(dictSize));
buffer_t result;
result.ptr = dictBuffer;
result.capacity = requestedDictSize;
result.size = dictSize;
return result;
}
}
/*! BMK_loadFiles() :
* Loads `buffer`, with content from files listed within `fileNamesTable`.
* Fills `buffer` entirely.
* @return : 0 on success, !=0 on error */
static int loadFiles(void* buffer, size_t bufferSize,
size_t* fileSizes,
const char* const * fileNamesTable, unsigned nbFiles)
{
size_t pos = 0, totalSize = 0;
for (unsigned n=0; n<nbFiles; n++) {
U64 fileSize = UTIL_getFileSize(fileNamesTable[n]);
if (UTIL_isDirectory(fileNamesTable[n])) {
fileSizes[n] = 0;
continue;
}
if (fileSize == UTIL_FILESIZE_UNKNOWN) {
fileSizes[n] = 0;
continue;
}
FILE* const f = fopen(fileNamesTable[n], "rb");
assert(f!=NULL);
assert(pos <= bufferSize);
assert(fileSize <= bufferSize - pos);
{ size_t const readSize = fread(((char*)buffer)+pos, 1, (size_t)fileSize, f);
assert(readSize == fileSize);
pos += readSize;
}
fileSizes[n] = (size_t)fileSize;
totalSize += (size_t)fileSize;
fclose(f);
}
assert(totalSize == bufferSize);
return 0;
}
/*--- slice_collection_t ---*/
typedef struct {
void** slicePtrs;
size_t* capacities;
size_t nbSlices;
} slice_collection_t;
static const slice_collection_t kNullCollection = { NULL, NULL, 0 };
static void freeSliceCollection(slice_collection_t collection)
{
free(collection.slicePtrs);
free(collection.capacities);
}
/* shrinkSizes() :
* downsizes sizes of slices within collection, according to `newSizes`.
* every `newSizes` entry must be <= than its corresponding collection size */
void shrinkSizes(slice_collection_t collection,
const size_t* newSizes) /* presumed same size as collection */
{
size_t const nbSlices = collection.nbSlices;
for (size_t blockNb = 0; blockNb < nbSlices; blockNb++) {
assert(newSizes[blockNb] <= collection.capacities[blockNb]);
collection.capacities[blockNb] = newSizes[blockNb];
}
}
/* splitSlices() :
* nbSlices : if == 0, nbSlices is automatically determined from srcSlices and blockSize.
* otherwise, creates exactly nbSlices slices,
* by either truncating input (when smaller)
* or repeating input from beginning */
static slice_collection_t
splitSlices(slice_collection_t srcSlices, size_t blockSize, size_t nbSlices)
{
if (blockSize==0) blockSize = (size_t)(-1); /* means "do not cut" */
size_t nbSrcBlocks = 0;
for (size_t ssnb=0; ssnb < srcSlices.nbSlices; ssnb++) {
size_t pos = 0;
while (pos <= srcSlices.capacities[ssnb]) {
nbSrcBlocks++;
pos += blockSize;
}
}
if (nbSlices == 0) nbSlices = nbSrcBlocks;
void** const sliceTable = (void**)malloc(nbSlices * sizeof(*sliceTable));
size_t* const capacities = (size_t*)malloc(nbSlices * sizeof(*capacities));
if (sliceTable == NULL || capacities == NULL) {
free(sliceTable);
free(capacities);
return kNullCollection;
}
size_t ssnb = 0;
for (size_t sliceNb=0; sliceNb < nbSlices; ) {
ssnb = (ssnb + 1) % srcSlices.nbSlices;
size_t pos = 0;
char* const ptr = (char*)srcSlices.slicePtrs[ssnb];
while (pos < srcSlices.capacities[ssnb] && sliceNb < nbSlices) {
size_t const size = MIN(blockSize, srcSlices.capacities[ssnb] - pos);
sliceTable[sliceNb] = ptr + pos;
capacities[sliceNb] = size;
sliceNb++;
pos += blockSize;
}
}
slice_collection_t result;
result.nbSlices = nbSlices;
result.slicePtrs = sliceTable;
result.capacities = capacities;
return result;
}
static size_t sliceCollection_totalCapacity(slice_collection_t sc)
{
size_t totalSize = 0;
for (size_t n=0; n<sc.nbSlices; n++)
totalSize += sc.capacities[n];
return totalSize;
}
/* --- buffer collection --- */
typedef struct {
buffer_t buffer;
slice_collection_t slices;
} buffer_collection_t;
static void freeBufferCollection(buffer_collection_t bc)
{
freeBuffer(bc.buffer);
freeSliceCollection(bc.slices);
}
static buffer_collection_t
createBufferCollection_fromSliceCollectionSizes(slice_collection_t sc)
{
size_t const bufferSize = sliceCollection_totalCapacity(sc);
buffer_t buffer = createBuffer(bufferSize);
CONTROL(buffer.ptr != NULL);
size_t const nbSlices = sc.nbSlices;
void** const slices = (void**)malloc(nbSlices * sizeof(*slices));
CONTROL(slices != NULL);
size_t* const capacities = (size_t*)malloc(nbSlices * sizeof(*capacities));
CONTROL(capacities != NULL);
char* const ptr = (char*)buffer.ptr;
size_t pos = 0;
for (size_t n=0; n < nbSlices; n++) {
capacities[n] = sc.capacities[n];
slices[n] = ptr + pos;
pos += capacities[n];
}
buffer_collection_t result;
result.buffer = buffer;
result.slices.nbSlices = nbSlices;
result.slices.capacities = capacities;
result.slices.slicePtrs = slices;
return result;
}
static buffer_collection_t
createBufferCollection_fromSliceCollection(slice_collection_t sc)
{
size_t const bufferSize = sliceCollection_totalCapacity(sc);
buffer_t buffer = createBuffer(bufferSize);
CONTROL(buffer.ptr != NULL);
size_t const nbSlices = sc.nbSlices;
void** const slices = (void**)malloc(nbSlices * sizeof(*slices));
CONTROL(slices != NULL);
size_t* const capacities = (size_t*)malloc(nbSlices * sizeof(*capacities));
CONTROL(capacities != NULL);
char* const ptr = (char*)buffer.ptr;
size_t pos = 0;
for (size_t n=0; n < nbSlices; n++) {
capacities[n] = sc.capacities[n];
slices[n] = ptr + pos;
pos += capacities[n];
}
for (size_t i = 0; i < nbSlices; i++) {
memcpy(slices[i], sc.slicePtrs[i], sc.capacities[i]);
capacities[i] = sc.capacities[i];
}
buffer_collection_t result;
result.buffer = buffer;
result.slices.nbSlices = nbSlices;
result.slices.capacities = capacities;
result.slices.slicePtrs = slices;
return result;
}
/* @return : kBuffNull if any error */
static buffer_collection_t
createBufferCollection_fromFiles(const char* const * fileNamesTable, unsigned nbFiles)
{
U64 const totalSizeToLoad = UTIL_getTotalFileSize(fileNamesTable, nbFiles);
assert(totalSizeToLoad != UTIL_FILESIZE_UNKNOWN);
assert(totalSizeToLoad <= BENCH_SIZE_MAX);
size_t const loadedSize = (size_t)totalSizeToLoad;
assert(loadedSize > 0);
void* const srcBuffer = malloc(loadedSize);
assert(srcBuffer != NULL);
assert(nbFiles > 0);
size_t* const fileSizes = (size_t*)calloc(nbFiles, sizeof(*fileSizes));
assert(fileSizes != NULL);
/* Load input buffer */
int const errorCode = loadFiles(srcBuffer, loadedSize,
fileSizes,
fileNamesTable, nbFiles);
assert(errorCode == 0);
void** sliceTable = (void**)malloc(nbFiles * sizeof(*sliceTable));
assert(sliceTable != NULL);
char* const ptr = (char*)srcBuffer;
size_t pos = 0;
unsigned fileNb = 0;
for ( ; (pos < loadedSize) && (fileNb < nbFiles); fileNb++) {
sliceTable[fileNb] = ptr + pos;
pos += fileSizes[fileNb];
}
assert(pos == loadedSize);
assert(fileNb == nbFiles);
buffer_t buffer;
buffer.ptr = srcBuffer;
buffer.capacity = loadedSize;
buffer.size = loadedSize;
slice_collection_t slices;
slices.slicePtrs = sliceTable;
slices.capacities = fileSizes;
slices.nbSlices = nbFiles;
buffer_collection_t bc;
bc.buffer = buffer;
bc.slices = slices;
return bc;
}
/*--- ddict_collection_t ---*/
typedef struct {
ZSTD_DDict** ddicts;
size_t nbDDict;
} ddict_collection_t;
typedef struct {
ZSTD_CDict** cdicts;
size_t nbCDict;
} cdict_collection_t;
static const cdict_collection_t kNullCDictCollection = { NULL, 0 };
static void freeCDictCollection(cdict_collection_t cdictc)
{
for (size_t dictNb=0; dictNb < cdictc.nbCDict; dictNb++) {
ZSTD_freeCDict(cdictc.cdicts[dictNb]);
}
free(cdictc.cdicts);
}
/* returns .buffers=NULL if operation fails */
static cdict_collection_t createCDictCollection(const void* dictBuffer, size_t dictSize, size_t nbCDict, ZSTD_dictContentType_e dictContentType, ZSTD_CCtx_params* cctxParams)
{
ZSTD_CDict** const cdicts = malloc(nbCDict * sizeof(ZSTD_CDict*));
if (cdicts==NULL) return kNullCDictCollection;
for (size_t dictNb=0; dictNb < nbCDict; dictNb++) {
cdicts[dictNb] = ZSTD_createCDict_advanced2(dictBuffer, dictSize, DICT_LOAD_METHOD, dictContentType, cctxParams, ZSTD_defaultCMem);
CONTROL(cdicts[dictNb] != NULL);
}
cdict_collection_t cdictc;
cdictc.cdicts = cdicts;
cdictc.nbCDict = nbCDict;
return cdictc;
}
static const ddict_collection_t kNullDDictCollection = { NULL, 0 };
static void freeDDictCollection(ddict_collection_t ddictc)
{
for (size_t dictNb=0; dictNb < ddictc.nbDDict; dictNb++) {
ZSTD_freeDDict(ddictc.ddicts[dictNb]);
}
free(ddictc.ddicts);
}
/* returns .buffers=NULL if operation fails */
static ddict_collection_t createDDictCollection(const void* dictBuffer, size_t dictSize, size_t nbDDict)
{
ZSTD_DDict** const ddicts = malloc(nbDDict * sizeof(ZSTD_DDict*));
assert(ddicts != NULL);
if (ddicts==NULL) return kNullDDictCollection;
for (size_t dictNb=0; dictNb < nbDDict; dictNb++) {
ddicts[dictNb] = ZSTD_createDDict(dictBuffer, dictSize);
assert(ddicts[dictNb] != NULL);
}
ddict_collection_t ddictc;
ddictc.ddicts = ddicts;
ddictc.nbDDict = nbDDict;
return ddictc;
}
/* mess with addresses, so that linear scanning dictionaries != linear address scanning */
void shuffleCDictionaries(cdict_collection_t dicts)
{
size_t const nbDicts = dicts.nbCDict;
for (size_t r=0; r<nbDicts; r++) {
size_t const d = (size_t)rand() % nbDicts;
ZSTD_CDict* tmpd = dicts.cdicts[d];
dicts.cdicts[d] = dicts.cdicts[r];
dicts.cdicts[r] = tmpd;
}
for (size_t r=0; r<nbDicts; r++) {
size_t const d1 = (size_t)rand() % nbDicts;
size_t const d2 = (size_t)rand() % nbDicts;
ZSTD_CDict* tmpd = dicts.cdicts[d1];
dicts.cdicts[d1] = dicts.cdicts[d2];
dicts.cdicts[d2] = tmpd;
}
}
/* mess with addresses, so that linear scanning dictionaries != linear address scanning */
void shuffleDDictionaries(ddict_collection_t dicts)
{
size_t const nbDicts = dicts.nbDDict;
for (size_t r=0; r<nbDicts; r++) {
size_t const d = (size_t)rand() % nbDicts;
ZSTD_DDict* tmpd = dicts.ddicts[d];
dicts.ddicts[d] = dicts.ddicts[r];
dicts.ddicts[r] = tmpd;
}
for (size_t r=0; r<nbDicts; r++) {
size_t const d1 = (size_t)rand() % nbDicts;
size_t const d2 = (size_t)rand() % nbDicts;
ZSTD_DDict* tmpd = dicts.ddicts[d1];
dicts.ddicts[d1] = dicts.ddicts[d2];
dicts.ddicts[d2] = tmpd;
}
}
/* --- Compression --- */
/* compressBlocks() :
* @return : total compressed size of all blocks,
* or 0 if error.
*/
static size_t compressBlocks(size_t* cSizes, /* optional (can be NULL). If present, must contain at least nbBlocks fields */
slice_collection_t dstBlockBuffers,
slice_collection_t srcBlockBuffers,
ZSTD_CDict* cdict, int cLevel)
{
size_t const nbBlocks = srcBlockBuffers.nbSlices;
assert(dstBlockBuffers.nbSlices == srcBlockBuffers.nbSlices);
ZSTD_CCtx* const cctx = ZSTD_createCCtx();
assert(cctx != NULL);
size_t totalCSize = 0;
for (size_t blockNb=0; blockNb < nbBlocks; blockNb++) {
size_t cBlockSize;
if (cdict == NULL) {
cBlockSize = ZSTD_compressCCtx(cctx,
dstBlockBuffers.slicePtrs[blockNb], dstBlockBuffers.capacities[blockNb],
srcBlockBuffers.slicePtrs[blockNb], srcBlockBuffers.capacities[blockNb],
cLevel);
} else {
cBlockSize = ZSTD_compress_usingCDict(cctx,
dstBlockBuffers.slicePtrs[blockNb], dstBlockBuffers.capacities[blockNb],
srcBlockBuffers.slicePtrs[blockNb], srcBlockBuffers.capacities[blockNb],
cdict);
}
CONTROL(!ZSTD_isError(cBlockSize));
if (cSizes) cSizes[blockNb] = cBlockSize;
totalCSize += cBlockSize;
}
return totalCSize;
}
/* --- Benchmark --- */
typedef struct {
ZSTD_CCtx* cctx;
size_t nbDicts;
size_t dictNb;
cdict_collection_t dictionaries;
} compressInstructions;
compressInstructions createCompressInstructions(cdict_collection_t dictionaries, ZSTD_CCtx_params* cctxParams)
{
compressInstructions ci;
ci.cctx = ZSTD_createCCtx();
CONTROL(ci.cctx != NULL);
if (cctxParams)
ZSTD_CCtx_setParametersUsingCCtxParams(ci.cctx, cctxParams);
ci.nbDicts = dictionaries.nbCDict;
ci.dictNb = 0;
ci.dictionaries = dictionaries;
return ci;
}
void freeCompressInstructions(compressInstructions ci)
{
ZSTD_freeCCtx(ci.cctx);
}
typedef struct {
ZSTD_DCtx* dctx;
size_t nbDicts;
size_t dictNb;
ddict_collection_t dictionaries;
} decompressInstructions;
decompressInstructions createDecompressInstructions(ddict_collection_t dictionaries)
{
decompressInstructions di;
di.dctx = ZSTD_createDCtx();
assert(di.dctx != NULL);
di.nbDicts = dictionaries.nbDDict;
di.dictNb = 0;
di.dictionaries = dictionaries;
return di;
}
void freeDecompressInstructions(decompressInstructions di)
{
ZSTD_freeDCtx(di.dctx);
}
/* benched function */
size_t compress(const void* src, size_t srcSize, void* dst, size_t dstCapacity, void* payload)
{
compressInstructions* const ci = (compressInstructions*) payload;
(void)dstCapacity;
ZSTD_CCtx_refCDict(ci->cctx, ci->dictionaries.cdicts[ci->dictNb]);
ZSTD_compress2(ci->cctx,
dst, srcSize,
src, srcSize);
ci->dictNb = ci->dictNb + 1;
if (ci->dictNb >= ci->nbDicts) ci->dictNb = 0;
return srcSize;
}
/* benched function */
size_t decompress(const void* src, size_t srcSize, void* dst, size_t dstCapacity, void* payload)
{
decompressInstructions* const di = (decompressInstructions*) payload;
size_t const result = ZSTD_decompress_usingDDict(di->dctx,
dst, dstCapacity,
src, srcSize,
di->dictionaries.ddicts[di->dictNb]);
di->dictNb = di->dictNb + 1;
if (di->dictNb >= di->nbDicts) di->dictNb = 0;
return result;
}
typedef enum {
fastest = 0,
median = 1,
} metricAggregatePref_e;
/* compareFunction() :
* Sort input in decreasing order when used with qsort() */
int compareFunction(const void *a, const void *b)
{
double x = *(const double *)a;
double y = *(const double *)b;
if (x < y)
return 1;
else if (x > y)
return -1;
return 0;
}
double aggregateData(double *data, size_t size,
metricAggregatePref_e metricAggregatePref)
{
qsort(data, size, sizeof(*data), compareFunction);
if (metricAggregatePref == fastest)
return data[0];
else /* median */
return (data[(size - 1) / 2] + data[size / 2]) / 2;
}
static int benchMem(slice_collection_t dstBlocks, slice_collection_t srcBlocks,
ddict_collection_t ddictionaries,
cdict_collection_t cdictionaries, unsigned nbRounds,
int benchCompression, const char *exeName,
ZSTD_CCtx_params *cctxParams,
metricAggregatePref_e metricAggregatePref)
{
assert(dstBlocks.nbSlices == srcBlocks.nbSlices);
if (benchCompression) assert(cctxParams);
unsigned const ms_per_round = RUN_TIME_DEFAULT_MS;
unsigned const total_time_ms = nbRounds * ms_per_round;
double *const speedPerRound = (double *)malloc(nbRounds * sizeof(double));
BMK_timedFnState_t* const benchState =
BMK_createTimedFnState(total_time_ms, ms_per_round);
decompressInstructions di = createDecompressInstructions(ddictionaries);
compressInstructions ci =
createCompressInstructions(cdictionaries, cctxParams);
void* payload = benchCompression ? (void*)&ci : (void*)&di;
BMK_benchParams_t const bp = {
.benchFn = benchCompression ? compress : decompress,
.benchPayload = payload,
.initFn = NULL,
.initPayload = NULL,
.errorFn = ZSTD_isError,
.blockCount = dstBlocks.nbSlices,
.srcBuffers = (const void* const*) srcBlocks.slicePtrs,
.srcSizes = srcBlocks.capacities,
.dstBuffers = dstBlocks.slicePtrs,
.dstCapacities = dstBlocks.capacities,
.blockResults = NULL
};
size_t roundNb = 0;
for (;;) {
BMK_runOutcome_t const outcome = BMK_benchTimedFn(benchState, bp);
CONTROL(BMK_isSuccessful_runOutcome(outcome));
BMK_runTime_t const result = BMK_extract_runTime(outcome);
double const dTime_ns = result.nanoSecPerRun;
double const dTime_sec = (double)dTime_ns / 1000000000;
size_t const srcSize = result.sumOfReturn;
double const speed_MBps = (double)srcSize / dTime_sec / (1 MB);
speedPerRound[roundNb] = speed_MBps;
if (benchCompression)
DISPLAY("Compression Speed : %.1f MB/s \r", speed_MBps);
else
DISPLAY("Decompression Speed : %.1f MB/s \r", speed_MBps);
fflush(stdout);
if (BMK_isCompleted_TimedFn(benchState)) break;
roundNb++;
}
DISPLAY("\n");
/* BMK_benchTimedFn may not run exactly nbRounds iterations */
double speedAggregated =
aggregateData(speedPerRound, roundNb + 1, metricAggregatePref);
if (metricAggregatePref == fastest)
DISPLAY("Fastest Speed : %.1f MB/s \n", speedAggregated);
else
DISPLAY("Median Speed : %.1f MB/s \n", speedAggregated);
char* csvFileName = malloc(strlen(exeName) + 5);
strcpy(csvFileName, exeName);
strcat(csvFileName, ".csv");
FILE* csvFile = fopen(csvFileName, "r");
if (!csvFile) {
csvFile = fopen(csvFileName, "wt");
assert(csvFile);
fprintf(csvFile, "%s\n", exeName);
/* Print table headers */
fprintf(
csvFile,
"Compression/Decompression,Level,nbDicts,dictAttachPref,metricAggregatePref,Speed\n");
} else {
fclose(csvFile);
csvFile = fopen(csvFileName, "at");
assert(csvFile);
}
int cLevel = -1;
int dictAttachPref = -1;
if (benchCompression) {
ZSTD_CCtxParams_getParameter(cctxParams, ZSTD_c_compressionLevel,
&cLevel);
ZSTD_CCtxParams_getParameter(cctxParams, ZSTD_c_forceAttachDict,
&dictAttachPref);
}
fprintf(csvFile, "%s,%d,%ld,%d,%d,%.1f\n",
benchCompression ? "Compression" : "Decompression", cLevel,
benchCompression ? ci.nbDicts : di.nbDicts, dictAttachPref,
metricAggregatePref, speedAggregated);
fclose(csvFile);
free(csvFileName);
freeDecompressInstructions(di);
freeCompressInstructions(ci);
BMK_freeTimedFnState(benchState);
return 0; /* success */
}
/*! bench() :
* fileName : file to load for benchmarking purpose
* dictionary : optional (can be NULL), file to load as dictionary,
* if none provided : will be calculated on the fly by the program.
* @return : 0 is success, 1+ otherwise */
int bench(const char **fileNameTable, unsigned nbFiles, const char *dictionary,
size_t blockSize, int clevel, unsigned nbDictMax, unsigned nbBlocks,
unsigned nbRounds, int benchCompression,
ZSTD_dictContentType_e dictContentType, ZSTD_CCtx_params *cctxParams,
const char *exeName, metricAggregatePref_e metricAggregatePref)
{
int result = 0;
DISPLAYLEVEL(3, "loading %u files... \n", nbFiles);
buffer_collection_t const srcs = createBufferCollection_fromFiles(fileNameTable, nbFiles);
CONTROL(srcs.buffer.ptr != NULL);
buffer_t srcBuffer = srcs.buffer;
size_t const srcSize = srcBuffer.size;
DISPLAYLEVEL(3, "created src buffer of size %.1f MB \n",
(double)srcSize / (1 MB));
slice_collection_t const srcSlices = splitSlices(srcs.slices, blockSize, nbBlocks);
nbBlocks = (unsigned)(srcSlices.nbSlices);
DISPLAYLEVEL(3, "split input into %u blocks ", nbBlocks);
if (blockSize)
DISPLAYLEVEL(3, "of max size %u bytes ", (unsigned)blockSize);
DISPLAYLEVEL(3, "\n");
size_t const totalSrcSlicesSize = sliceCollection_totalCapacity(srcSlices);
size_t* const dstCapacities = malloc(nbBlocks * sizeof(*dstCapacities));
CONTROL(dstCapacities != NULL);
size_t dstBufferCapacity = 0;
for (size_t bnb=0; bnb<nbBlocks; bnb++) {
dstCapacities[bnb] = ZSTD_compressBound(srcSlices.capacities[bnb]);
dstBufferCapacity += dstCapacities[bnb];
}
buffer_t dstBuffer = createBuffer(dstBufferCapacity);
CONTROL(dstBuffer.ptr != NULL);
void** const sliceTable = malloc(nbBlocks * sizeof(*sliceTable));
CONTROL(sliceTable != NULL);
{ char* const ptr = dstBuffer.ptr;
size_t pos = 0;
for (size_t snb=0; snb < nbBlocks; snb++) {
sliceTable[snb] = ptr + pos;
pos += dstCapacities[snb];
} }
slice_collection_t dstSlices;
dstSlices.capacities = dstCapacities;
dstSlices.slicePtrs = sliceTable;
dstSlices.nbSlices = nbBlocks;
/* dictionary determination */
buffer_t const dictBuffer = createDictionaryBuffer(dictionary,
srcs.buffer.ptr,
srcSlices.capacities, srcSlices.nbSlices,
DICTSIZE);
CONTROL(dictBuffer.ptr != NULL);
ZSTD_CDict* const cdict = ZSTD_createCDict_advanced2(dictBuffer.ptr, dictBuffer.size, DICT_LOAD_METHOD, dictContentType, cctxParams, ZSTD_defaultCMem);
CONTROL(cdict != NULL);
size_t const cTotalSizeNoDict = compressBlocks(NULL, dstSlices, srcSlices, NULL, clevel);
CONTROL(cTotalSizeNoDict != 0);
DISPLAYLEVEL(3, "compressing at level %u without dictionary : Ratio=%.2f (%u bytes) \n",
clevel,
(double)totalSrcSlicesSize / (double)cTotalSizeNoDict, (unsigned)cTotalSizeNoDict);
size_t* const cSizes = malloc(nbBlocks * sizeof(size_t));
CONTROL(cSizes != NULL);
size_t const cTotalSize = compressBlocks(cSizes, dstSlices, srcSlices, cdict, clevel);
CONTROL(cTotalSize != 0);
DISPLAYLEVEL(3, "compressed using a %u bytes dictionary : Ratio=%.2f (%u bytes) \n",
(unsigned)dictBuffer.size,
(double)totalSrcSlicesSize / (double)cTotalSize, (unsigned)cTotalSize);
/* now dstSlices contain the real compressed size of each block, instead of the maximum capacity */
shrinkSizes(dstSlices, cSizes);
unsigned const nbDicts = nbDictMax ? nbDictMax : nbBlocks;
cdict_collection_t const cdictionaries = createCDictCollection(dictBuffer.ptr, dictBuffer.size, nbDicts, dictContentType, cctxParams);
CONTROL(cdictionaries.cdicts != NULL);
ddict_collection_t const ddictionaries = createDDictCollection(dictBuffer.ptr, dictBuffer.size, nbDicts);
CONTROL(ddictionaries.ddicts != NULL);
if (benchCompression) {
size_t const dictMem = ZSTD_sizeof_CDict(cdictionaries.cdicts[0]);
size_t const allDictMem = dictMem * nbDicts;
DISPLAYLEVEL(3, "generating %u dictionaries, using %.1f MB of memory \n",
nbDicts, (double)allDictMem / (1 MB));
shuffleCDictionaries(cdictionaries);
buffer_collection_t resultCollection = createBufferCollection_fromSliceCollection(srcSlices);
CONTROL(resultCollection.buffer.ptr != NULL);
result = benchMem(dstSlices, resultCollection.slices, ddictionaries,
cdictionaries, nbRounds, benchCompression, exeName,
cctxParams, metricAggregatePref);
freeBufferCollection(resultCollection);
} else {
size_t const dictMem = ZSTD_estimateDDictSize(dictBuffer.size, DICT_LOAD_METHOD);
size_t const allDictMem = dictMem * nbDicts;
DISPLAYLEVEL(3, "generating %u dictionaries, using %.1f MB of memory \n",
nbDicts, (double)allDictMem / (1 MB));
shuffleDDictionaries(ddictionaries);
buffer_collection_t resultCollection = createBufferCollection_fromSliceCollectionSizes(srcSlices);
CONTROL(resultCollection.buffer.ptr != NULL);
result = benchMem(resultCollection.slices, dstSlices, ddictionaries,
cdictionaries, nbRounds, benchCompression, exeName,
NULL, metricAggregatePref);
freeBufferCollection(resultCollection);
}
/* free all heap objects in reverse order */
freeCDictCollection(cdictionaries);
freeDDictCollection(ddictionaries);
free(cSizes);
ZSTD_freeCDict(cdict);
freeBuffer(dictBuffer);
freeSliceCollection(dstSlices);
freeBuffer(dstBuffer);
freeSliceCollection(srcSlices);
freeBufferCollection(srcs);
return result;
}
/* --- Command Line --- */
/*! readU32FromChar() :
* @return : unsigned integer value read from input in `char` format.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* Note : function will exit() program if digit sequence overflows */
static unsigned readU32FromChar(const char** stringPtr)
{
unsigned result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
unsigned const max = (((unsigned)(-1)) / 10) - 1;
assert(result <= max); /* check overflow */
result *= 10, result += (unsigned)**stringPtr - '0', (*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M')) {
unsigned const maxK = ((unsigned)(-1)) >> 10;
assert(result <= maxK); /* check overflow */
result <<= 10;
if (**stringPtr=='M') {
assert(result <= maxK); /* check overflow */
result <<= 10;
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
/** longCommandWArg() :
* check if *stringPtr is the same as longCommand.
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
* @return 0 and doesn't modify *stringPtr otherwise.
*/
static int longCommandWArg(const char** stringPtr, const char* longCommand)
{
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
int usage(const char* exeName)
{
DISPLAY (" \n");
DISPLAY (" %s [Options] filename(s) \n", exeName);
DISPLAY (" \n");
DISPLAY ("Options : \n");
DISPLAY ("-z : benchmark compression (default) \n");
DISPLAY ("-d : benchmark decompression \n");
DISPLAY ("-r : recursively load all files in subdirectories (default: off) \n");
DISPLAY ("-B# : split input into blocks of size # (default: no split) \n");
DISPLAY ("-# : use compression level # (default: %u) \n", CLEVEL_DEFAULT);
DISPLAY ("-D # : use # as a dictionary (default: create one) \n");
DISPLAY ("-i# : nb benchmark rounds (default: %u) \n", BENCH_TIME_DEFAULT_S);
DISPLAY ("-p# : print speed for all rounds 0=fastest 1=median (default: 0) \n");
DISPLAY ("--nbBlocks=#: use # blocks for bench (default: one per file) \n");
DISPLAY ("--nbDicts=# : create # dictionaries for bench (default: one per block) \n");
DISPLAY ("-h : help (this text) \n");
DISPLAY (" \n");
DISPLAY ("Advanced Options (see zstd.h for documentation) : \n");
DISPLAY ("--dedicated-dict-search\n");
DISPLAY ("--dict-content-type=#\n");
DISPLAY ("--dict-attach-pref=#\n");
return 0;
}
int bad_usage(const char* exeName)
{
DISPLAY (" bad usage : \n");
usage(exeName);
return 1;
}
int main (int argc, const char** argv)
{
int recursiveMode = 0;
int benchCompression = 1;
int dedicatedDictSearch = 0;
unsigned nbRounds = BENCH_TIME_DEFAULT_S;
const char* const exeName = argv[0];
if (argc < 2) return bad_usage(exeName);
const char** nameTable = (const char**)malloc((size_t)argc * sizeof(const char*));
assert(nameTable != NULL);
unsigned nameIdx = 0;
const char* dictionary = NULL;
int cLevel = CLEVEL_DEFAULT;
size_t blockSize = BLOCKSIZE_DEFAULT;
unsigned nbDicts = 0; /* determine nbDicts automatically: 1 dictionary per block */
unsigned nbBlocks = 0; /* determine nbBlocks automatically, from source and blockSize */
ZSTD_dictContentType_e dictContentType = ZSTD_dct_auto;
ZSTD_dictAttachPref_e dictAttachPref = ZSTD_dictDefaultAttach;
ZSTD_paramSwitch_e prefetchCDictTables = ZSTD_ps_auto;
metricAggregatePref_e metricAggregatePref = fastest;
for (int argNb = 1; argNb < argc ; argNb++) {
const char* argument = argv[argNb];
if (!strcmp(argument, "-h")) { free(nameTable); return usage(exeName); }
if (!strcmp(argument, "-d")) { benchCompression = 0; continue; }
if (!strcmp(argument, "-z")) { benchCompression = 1; continue; }
if (!strcmp(argument, "-r")) { recursiveMode = 1; continue; }
if (!strcmp(argument, "-D")) { argNb++; assert(argNb < argc); dictionary = argv[argNb]; continue; }
if (longCommandWArg(&argument, "-i")) { nbRounds = readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "-p")) { metricAggregatePref = (int)readU32FromChar(&argument); continue;}
if (longCommandWArg(&argument, "--dictionary=")) { dictionary = argument; continue; }
if (longCommandWArg(&argument, "-B")) { blockSize = readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "--blockSize=")) { blockSize = readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "--nbDicts=")) { nbDicts = readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "--nbBlocks=")) { nbBlocks = readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "--clevel=")) { cLevel = (int)readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "--dedicated-dict-search")) { dedicatedDictSearch = 1; continue; }
if (longCommandWArg(&argument, "--dict-content-type=")) { dictContentType = (int)readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "--dict-attach-pref=")) { dictAttachPref = (int)readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "--prefetch-cdict-tables=")) { prefetchCDictTables = (int)readU32FromChar(&argument); continue; }
if (longCommandWArg(&argument, "-")) { cLevel = (int)readU32FromChar(&argument); continue; }
/* anything that's not a command is a filename */
nameTable[nameIdx++] = argument;
}
FileNamesTable* filenameTable;
if (recursiveMode) {
#ifndef UTIL_HAS_CREATEFILELIST
assert(0); /* missing capability, do not run */
#endif
filenameTable = UTIL_createExpandedFNT(nameTable, nameIdx, 1 /* follow_links */);
} else {
filenameTable = UTIL_assembleFileNamesTable(nameTable, nameIdx, NULL);
nameTable = NULL; /* UTIL_createFileNamesTable() takes ownership of nameTable */
}
ZSTD_CCtx_params* cctxParams = ZSTD_createCCtxParams();
ZSTD_CCtxParams_init(cctxParams, cLevel);
ZSTD_CCtxParams_setParameter(cctxParams, ZSTD_c_enableDedicatedDictSearch, dedicatedDictSearch);
ZSTD_CCtxParams_setParameter(cctxParams, ZSTD_c_nbWorkers, 0);
ZSTD_CCtxParams_setParameter(cctxParams, ZSTD_c_forceAttachDict, dictAttachPref);
ZSTD_CCtxParams_setParameter(cctxParams, ZSTD_c_prefetchCDictTables, prefetchCDictTables);
int result =
bench(filenameTable->fileNames, (unsigned)filenameTable->tableSize,
dictionary, blockSize, cLevel, nbDicts, nbBlocks, nbRounds,
benchCompression, dictContentType, cctxParams, exeName,
metricAggregatePref);
UTIL_freeFileNamesTable(filenameTable);
free(nameTable);
ZSTD_freeCCtxParams(cctxParams);
return result;
}