// sol2 // The MIT License (MIT) // Copyright (c) 2013-2022 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_INHERITANCE_HPP #define SOL_INHERITANCE_HPP #include <sol/types.hpp> #include <sol/usertype_traits.hpp> #include <sol/unique_usertype_traits.hpp> namespace sol { template <typename... Args> struct base_list { }; template <typename... Args> using bases = base_list<Args...>; typedef bases<> base_classes_tag; const auto base_classes = base_classes_tag(); template <typename... Args> struct is_to_stringable<base_list<Args...>> : std::false_type { }; namespace detail { inline decltype(auto) base_class_check_key() { static const auto& key = "class_check"; return key; } inline decltype(auto) base_class_cast_key() { static const auto& key = "class_cast"; return key; } inline decltype(auto) base_class_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.index"; return key; } inline decltype(auto) base_class_new_index_propogation_key() { static const auto& key = u8"\xF0\x9F\x8C\xB2.new_index"; return key; } template <typename T> struct inheritance { typedef typename base<T>::type bases_t; static bool type_check_bases(types<>, const string_view&) { return false; } template <typename Base, typename... Args> static bool type_check_bases(types<Base, Args...>, const string_view& ti) { return ti == usertype_traits<Base>::qualified_name() || type_check_bases(types<Args...>(), ti); } static bool type_check(const string_view& ti) { return ti == usertype_traits<T>::qualified_name() || type_check_bases(bases_t(), ti); } template <typename... Bases> static bool type_check_with(const string_view& ti) { return ti == usertype_traits<T>::qualified_name() || type_check_bases(types<Bases...>(), ti); } static void* type_cast_bases(types<>, T*, const string_view&) { return nullptr; } template <typename Base, typename... Args> static void* type_cast_bases(types<Base, Args...>, T* data, const string_view& ti) { // Make sure to convert to T first, and then dynamic cast to the proper type return ti != usertype_traits<Base>::qualified_name() ? type_cast_bases(types<Args...>(), data, ti) : static_cast<void*>(static_cast<Base*>(data)); } static void* type_cast(void* voiddata, const string_view& ti) { T* data = static_cast<T*>(voiddata); return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(bases_t(), data, ti) : data); } template <typename... Bases> static void* type_cast_with(void* voiddata, const string_view& ti) { T* data = static_cast<T*>(voiddata); return static_cast<void*>(ti != usertype_traits<T>::qualified_name() ? type_cast_bases(types<Bases...>(), data, ti) : data); } template <typename U> static bool type_unique_cast_bases(types<>, void*, void*, const string_view&) { return 0; } template <typename U, typename Base, typename... Args> static int type_unique_cast_bases(types<Base, Args...>, void* source_data, void* target_data, const string_view& ti) { using uu_traits = unique_usertype_traits<U>; using base_ptr = typename uu_traits::template rebind_actual_type<Base>; string_view base_ti = usertype_traits<Base>::qualified_name(); if (base_ti == ti) { if (target_data != nullptr) { U* source = static_cast<U*>(source_data); base_ptr* target = static_cast<base_ptr*>(target_data); // perform proper derived -> base conversion *target = *source; } return 2; } return type_unique_cast_bases<U>(types<Args...>(), source_data, target_data, ti); } template <typename U> static int type_unique_cast(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) { if constexpr (is_actual_type_rebindable_for_v<U>) { using rebound_actual_type = unique_usertype_rebind_actual_t<U>; using maybe_bases_or_empty = meta::conditional_t<std::is_void_v<rebound_actual_type>, types<>, bases_t>; string_view this_rebind_ti = usertype_traits<rebound_actual_type>::qualified_name(); if (rebind_ti != this_rebind_ti) { // this is not even of the same unique type return 0; } string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(maybe_bases_or_empty(), source_data, target_data, ti); } else { (void)rebind_ti; string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti); } } template <typename U, typename... Bases> static int type_unique_cast_with(void* source_data, void* target_data, const string_view& ti, const string_view& rebind_ti) { using uc_bases_t = types<Bases...>; if constexpr (is_actual_type_rebindable_for_v<U>) { using rebound_actual_type = unique_usertype_rebind_actual_t<U>; using cond_bases_t = meta::conditional_t<std::is_void_v<rebound_actual_type>, types<>, uc_bases_t>; string_view this_rebind_ti = usertype_traits<rebound_actual_type>::qualified_name(); if (rebind_ti != this_rebind_ti) { // this is not even of the same unique type return 0; } string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(cond_bases_t(), source_data, target_data, ti); } else { (void)rebind_ti; string_view this_ti = usertype_traits<T>::qualified_name(); if (ti == this_ti) { // direct match, return 1 return 1; } return type_unique_cast_bases<U>(types<>(), source_data, target_data, ti); } } }; using inheritance_check_function = decltype(&inheritance<void>::type_check); using inheritance_cast_function = decltype(&inheritance<void>::type_cast); using inheritance_unique_cast_function = decltype(&inheritance<void>::type_unique_cast<void>); } // namespace detail } // namespace sol #endif // SOL_INHERITANCE_HPP