/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under both the BSD-style license (found in the * LICENSE file in the root directory of this source tree) and the GPLv2 (found * in the COPYING file in the root directory of this source tree). * You may select, at your option, one of the above-listed licenses. */ /* ************************************* * Compiler Options ***************************************/ #ifdef _MSC_VER /* Visual */ # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ # pragma warning(disable : 4204) /* non-constant aggregate initializer */ #endif #if defined(__MINGW32__) && !defined(_POSIX_SOURCE) # define _POSIX_SOURCE 1 /* disable %llu warnings with MinGW on Windows */ #endif /*-************************************* * Includes ***************************************/ #include "platform.h" /* Large Files support, SET_BINARY_MODE */ #include "util.h" /* UTIL_getFileSize, UTIL_isRegularFile, UTIL_isSameFile */ #include /* fprintf, open, fdopen, fread, _fileno, stdin, stdout */ #include /* malloc, free */ #include /* strcmp, strlen */ #include /* clock_t, to measure process time */ #include /* O_WRONLY */ #include #include /* errno */ #include /* INT_MAX */ #include #include "timefn.h" /* UTIL_getTime, UTIL_clockSpanMicro */ #if defined (_MSC_VER) # include # include #endif #include "fileio.h" #include "fileio_asyncio.h" #include "fileio_common.h" FIO_display_prefs_t g_display_prefs = {2, FIO_ps_auto}; UTIL_time_t g_displayClock = UTIL_TIME_INITIALIZER; #define ZSTD_STATIC_LINKING_ONLY /* ZSTD_magicNumber, ZSTD_frameHeaderSize_max */ #include "../lib/zstd.h" #include "../lib/zstd_errors.h" /* ZSTD_error_frameParameter_windowTooLarge */ #if defined(ZSTD_GZCOMPRESS) || defined(ZSTD_GZDECOMPRESS) # include # if !defined(z_const) # define z_const # endif #endif #if defined(ZSTD_LZMACOMPRESS) || defined(ZSTD_LZMADECOMPRESS) # include #endif #define LZ4_MAGICNUMBER 0x184D2204 #if defined(ZSTD_LZ4COMPRESS) || defined(ZSTD_LZ4DECOMPRESS) # define LZ4F_ENABLE_OBSOLETE_ENUMS # include # include #endif char const* FIO_zlibVersion(void) { #if defined(ZSTD_GZCOMPRESS) || defined(ZSTD_GZDECOMPRESS) return zlibVersion(); #else return "Unsupported"; #endif } char const* FIO_lz4Version(void) { #if defined(ZSTD_LZ4COMPRESS) || defined(ZSTD_LZ4DECOMPRESS) /* LZ4_versionString() added in v1.7.3 */ # if LZ4_VERSION_NUMBER >= 10703 return LZ4_versionString(); # else # define ZSTD_LZ4_VERSION LZ4_VERSION_MAJOR.LZ4_VERSION_MINOR.LZ4_VERSION_RELEASE # define ZSTD_LZ4_VERSION_STRING ZSTD_EXPAND_AND_QUOTE(ZSTD_LZ4_VERSION) return ZSTD_LZ4_VERSION_STRING; # endif #else return "Unsupported"; #endif } char const* FIO_lzmaVersion(void) { #if defined(ZSTD_LZMACOMPRESS) || defined(ZSTD_LZMADECOMPRESS) return lzma_version_string(); #else return "Unsupported"; #endif } /*-************************************* * Constants ***************************************/ #define ADAPT_WINDOWLOG_DEFAULT 23 /* 8 MB */ #define DICTSIZE_MAX (32 MB) /* protection against large input (attack scenario) */ #define FNSPACE 30 /* Default file permissions 0666 (modulated by umask) */ /* Temporary restricted file permissions are used when we're going to * chmod/chown at the end of the operation. */ #if !defined(_WIN32) /* These macros aren't defined on windows. */ #define DEFAULT_FILE_PERMISSIONS (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH) #define TEMPORARY_FILE_PERMISSIONS (S_IRUSR|S_IWUSR) #else #define DEFAULT_FILE_PERMISSIONS (0666) #define TEMPORARY_FILE_PERMISSIONS (0600) #endif /*-************************************ * Signal (Ctrl-C trapping) **************************************/ static const char* g_artefact = NULL; static void INThandler(int sig) { assert(sig==SIGINT); (void)sig; #if !defined(_MSC_VER) signal(sig, SIG_IGN); /* this invocation generates a buggy warning in Visual Studio */ #endif if (g_artefact) { assert(UTIL_isRegularFile(g_artefact)); remove(g_artefact); } DISPLAY("\n"); exit(2); } static void addHandler(char const* dstFileName) { if (UTIL_isRegularFile(dstFileName)) { g_artefact = dstFileName; signal(SIGINT, INThandler); } else { g_artefact = NULL; } } /* Idempotent */ static void clearHandler(void) { if (g_artefact) signal(SIGINT, SIG_DFL); g_artefact = NULL; } /*-********************************************************* * Termination signal trapping (Print debug stack trace) ***********************************************************/ #if defined(__has_feature) && !defined(BACKTRACE_ENABLE) /* Clang compiler */ # if (__has_feature(address_sanitizer)) # define BACKTRACE_ENABLE 0 # endif /* __has_feature(address_sanitizer) */ #elif defined(__SANITIZE_ADDRESS__) && !defined(BACKTRACE_ENABLE) /* GCC compiler */ # define BACKTRACE_ENABLE 0 #endif #if !defined(BACKTRACE_ENABLE) /* automatic detector : backtrace enabled by default on linux+glibc and osx */ # if (defined(__linux__) && (defined(__GLIBC__) && !defined(__UCLIBC__))) \ || (defined(__APPLE__) && defined(__MACH__)) # define BACKTRACE_ENABLE 1 # else # define BACKTRACE_ENABLE 0 # endif #endif /* note : after this point, BACKTRACE_ENABLE is necessarily defined */ #if BACKTRACE_ENABLE #include /* backtrace, backtrace_symbols */ #define MAX_STACK_FRAMES 50 static void ABRThandler(int sig) { const char* name; void* addrlist[MAX_STACK_FRAMES]; char** symbollist; int addrlen, i; switch (sig) { case SIGABRT: name = "SIGABRT"; break; case SIGFPE: name = "SIGFPE"; break; case SIGILL: name = "SIGILL"; break; case SIGINT: name = "SIGINT"; break; case SIGSEGV: name = "SIGSEGV"; break; default: name = "UNKNOWN"; } DISPLAY("Caught %s signal, printing stack:\n", name); /* Retrieve current stack addresses. */ addrlen = backtrace(addrlist, MAX_STACK_FRAMES); if (addrlen == 0) { DISPLAY("\n"); return; } /* Create readable strings to each frame. */ symbollist = backtrace_symbols(addrlist, addrlen); /* Print the stack trace, excluding calls handling the signal. */ for (i = ZSTD_START_SYMBOLLIST_FRAME; i < addrlen; i++) { DISPLAY("%s\n", symbollist[i]); } free(symbollist); /* Reset and raise the signal so default handler runs. */ signal(sig, SIG_DFL); raise(sig); } #endif void FIO_addAbortHandler(void) { #if BACKTRACE_ENABLE signal(SIGABRT, ABRThandler); signal(SIGFPE, ABRThandler); signal(SIGILL, ABRThandler); signal(SIGSEGV, ABRThandler); signal(SIGBUS, ABRThandler); #endif } /*-************************************* * Parameters: FIO_ctx_t ***************************************/ /* typedef'd to FIO_ctx_t within fileio.h */ struct FIO_ctx_s { /* file i/o info */ int nbFilesTotal; int hasStdinInput; int hasStdoutOutput; /* file i/o state */ int currFileIdx; int nbFilesProcessed; size_t totalBytesInput; size_t totalBytesOutput; }; static int FIO_shouldDisplayFileSummary(FIO_ctx_t const* fCtx) { return fCtx->nbFilesTotal <= 1 || g_display_prefs.displayLevel >= 3; } static int FIO_shouldDisplayMultipleFileSummary(FIO_ctx_t const* fCtx) { int const shouldDisplay = (fCtx->nbFilesProcessed >= 1 && fCtx->nbFilesTotal > 1); assert(shouldDisplay || FIO_shouldDisplayFileSummary(fCtx) || fCtx->nbFilesProcessed == 0); return shouldDisplay; } /*-************************************* * Parameters: Initialization ***************************************/ #define FIO_OVERLAP_LOG_NOTSET 9999 #define FIO_LDM_PARAM_NOTSET 9999 FIO_prefs_t* FIO_createPreferences(void) { FIO_prefs_t* const ret = (FIO_prefs_t*)malloc(sizeof(FIO_prefs_t)); if (!ret) EXM_THROW(21, "Allocation error : not enough memory"); ret->compressionType = FIO_zstdCompression; ret->overwrite = 0; ret->sparseFileSupport = ZSTD_SPARSE_DEFAULT; ret->dictIDFlag = 1; ret->checksumFlag = 1; ret->removeSrcFile = 0; ret->memLimit = 0; ret->nbWorkers = 1; ret->blockSize = 0; ret->overlapLog = FIO_OVERLAP_LOG_NOTSET; ret->adaptiveMode = 0; ret->rsyncable = 0; ret->minAdaptLevel = -50; /* initializing this value requires a constant, so ZSTD_minCLevel() doesn't work */ ret->maxAdaptLevel = 22; /* initializing this value requires a constant, so ZSTD_maxCLevel() doesn't work */ ret->ldmFlag = 0; ret->ldmHashLog = 0; ret->ldmMinMatch = 0; ret->ldmBucketSizeLog = FIO_LDM_PARAM_NOTSET; ret->ldmHashRateLog = FIO_LDM_PARAM_NOTSET; ret->streamSrcSize = 0; ret->targetCBlockSize = 0; ret->srcSizeHint = 0; ret->testMode = 0; ret->literalCompressionMode = ZSTD_ps_auto; ret->excludeCompressedFiles = 0; ret->allowBlockDevices = 0; ret->asyncIO = AIO_supported(); ret->passThrough = -1; return ret; } FIO_ctx_t* FIO_createContext(void) { FIO_ctx_t* const ret = (FIO_ctx_t*)malloc(sizeof(FIO_ctx_t)); if (!ret) EXM_THROW(21, "Allocation error : not enough memory"); ret->currFileIdx = 0; ret->hasStdinInput = 0; ret->hasStdoutOutput = 0; ret->nbFilesTotal = 1; ret->nbFilesProcessed = 0; ret->totalBytesInput = 0; ret->totalBytesOutput = 0; return ret; } void FIO_freePreferences(FIO_prefs_t* const prefs) { free(prefs); } void FIO_freeContext(FIO_ctx_t* const fCtx) { free(fCtx); } /*-************************************* * Parameters: Display Options ***************************************/ void FIO_setNotificationLevel(int level) { g_display_prefs.displayLevel=level; } void FIO_setProgressSetting(FIO_progressSetting_e setting) { g_display_prefs.progressSetting = setting; } /*-************************************* * Parameters: Setters ***************************************/ /* FIO_prefs_t functions */ void FIO_setCompressionType(FIO_prefs_t* const prefs, FIO_compressionType_t compressionType) { prefs->compressionType = compressionType; } void FIO_overwriteMode(FIO_prefs_t* const prefs) { prefs->overwrite = 1; } void FIO_setSparseWrite(FIO_prefs_t* const prefs, int sparse) { prefs->sparseFileSupport = sparse; } void FIO_setDictIDFlag(FIO_prefs_t* const prefs, int dictIDFlag) { prefs->dictIDFlag = dictIDFlag; } void FIO_setChecksumFlag(FIO_prefs_t* const prefs, int checksumFlag) { prefs->checksumFlag = checksumFlag; } void FIO_setRemoveSrcFile(FIO_prefs_t* const prefs, int flag) { prefs->removeSrcFile = (flag!=0); } void FIO_setMemLimit(FIO_prefs_t* const prefs, unsigned memLimit) { prefs->memLimit = memLimit; } void FIO_setNbWorkers(FIO_prefs_t* const prefs, int nbWorkers) { #ifndef ZSTD_MULTITHREAD if (nbWorkers > 0) DISPLAYLEVEL(2, "Note : multi-threading is disabled \n"); #endif prefs->nbWorkers = nbWorkers; } void FIO_setExcludeCompressedFile(FIO_prefs_t* const prefs, int excludeCompressedFiles) { prefs->excludeCompressedFiles = excludeCompressedFiles; } void FIO_setAllowBlockDevices(FIO_prefs_t* const prefs, int allowBlockDevices) { prefs->allowBlockDevices = allowBlockDevices; } void FIO_setBlockSize(FIO_prefs_t* const prefs, int blockSize) { if (blockSize && prefs->nbWorkers==0) DISPLAYLEVEL(2, "Setting block size is useless in single-thread mode \n"); prefs->blockSize = blockSize; } void FIO_setOverlapLog(FIO_prefs_t* const prefs, int overlapLog){ if (overlapLog && prefs->nbWorkers==0) DISPLAYLEVEL(2, "Setting overlapLog is useless in single-thread mode \n"); prefs->overlapLog = overlapLog; } void FIO_setAdaptiveMode(FIO_prefs_t* const prefs, int adapt) { if ((adapt>0) && (prefs->nbWorkers==0)) EXM_THROW(1, "Adaptive mode is not compatible with single thread mode \n"); prefs->adaptiveMode = adapt; } void FIO_setUseRowMatchFinder(FIO_prefs_t* const prefs, int useRowMatchFinder) { prefs->useRowMatchFinder = useRowMatchFinder; } void FIO_setRsyncable(FIO_prefs_t* const prefs, int rsyncable) { if ((rsyncable>0) && (prefs->nbWorkers==0)) EXM_THROW(1, "Rsyncable mode is not compatible with single thread mode \n"); prefs->rsyncable = rsyncable; } void FIO_setStreamSrcSize(FIO_prefs_t* const prefs, size_t streamSrcSize) { prefs->streamSrcSize = streamSrcSize; } void FIO_setTargetCBlockSize(FIO_prefs_t* const prefs, size_t targetCBlockSize) { prefs->targetCBlockSize = targetCBlockSize; } void FIO_setSrcSizeHint(FIO_prefs_t* const prefs, size_t srcSizeHint) { prefs->srcSizeHint = (int)MIN((size_t)INT_MAX, srcSizeHint); } void FIO_setTestMode(FIO_prefs_t* const prefs, int testMode) { prefs->testMode = (testMode!=0); } void FIO_setLiteralCompressionMode( FIO_prefs_t* const prefs, ZSTD_paramSwitch_e mode) { prefs->literalCompressionMode = mode; } void FIO_setAdaptMin(FIO_prefs_t* const prefs, int minCLevel) { #ifndef ZSTD_NOCOMPRESS assert(minCLevel >= ZSTD_minCLevel()); #endif prefs->minAdaptLevel = minCLevel; } void FIO_setAdaptMax(FIO_prefs_t* const prefs, int maxCLevel) { prefs->maxAdaptLevel = maxCLevel; } void FIO_setLdmFlag(FIO_prefs_t* const prefs, unsigned ldmFlag) { prefs->ldmFlag = (ldmFlag>0); } void FIO_setLdmHashLog(FIO_prefs_t* const prefs, int ldmHashLog) { prefs->ldmHashLog = ldmHashLog; } void FIO_setLdmMinMatch(FIO_prefs_t* const prefs, int ldmMinMatch) { prefs->ldmMinMatch = ldmMinMatch; } void FIO_setLdmBucketSizeLog(FIO_prefs_t* const prefs, int ldmBucketSizeLog) { prefs->ldmBucketSizeLog = ldmBucketSizeLog; } void FIO_setLdmHashRateLog(FIO_prefs_t* const prefs, int ldmHashRateLog) { prefs->ldmHashRateLog = ldmHashRateLog; } void FIO_setPatchFromMode(FIO_prefs_t* const prefs, int value) { prefs->patchFromMode = value != 0; } void FIO_setContentSize(FIO_prefs_t* const prefs, int value) { prefs->contentSize = value != 0; } void FIO_setAsyncIOFlag(FIO_prefs_t* const prefs, int value) { #ifdef ZSTD_MULTITHREAD prefs->asyncIO = value; #else (void) prefs; (void) value; DISPLAYLEVEL(2, "Note : asyncio is disabled (lack of multithreading support) \n"); #endif } void FIO_setPassThroughFlag(FIO_prefs_t* const prefs, int value) { prefs->passThrough = (value != 0); } void FIO_setMMapDict(FIO_prefs_t* const prefs, ZSTD_paramSwitch_e value) { prefs->mmapDict = value; } /* FIO_ctx_t functions */ void FIO_setHasStdoutOutput(FIO_ctx_t* const fCtx, int value) { fCtx->hasStdoutOutput = value; } void FIO_setNbFilesTotal(FIO_ctx_t* const fCtx, int value) { fCtx->nbFilesTotal = value; } void FIO_determineHasStdinInput(FIO_ctx_t* const fCtx, const FileNamesTable* const filenames) { size_t i = 0; for ( ; i < filenames->tableSize; ++i) { if (!strcmp(stdinmark, filenames->fileNames[i])) { fCtx->hasStdinInput = 1; return; } } } /*-************************************* * Functions ***************************************/ /** FIO_removeFile() : * @result : Unlink `fileName`, even if it's read-only */ static int FIO_removeFile(const char* path) { stat_t statbuf; if (!UTIL_stat(path, &statbuf)) { DISPLAYLEVEL(2, "zstd: Failed to stat %s while trying to remove it\n", path); return 0; } if (!UTIL_isRegularFileStat(&statbuf)) { DISPLAYLEVEL(2, "zstd: Refusing to remove non-regular file %s\n", path); return 0; } #if defined(_WIN32) /* windows doesn't allow remove read-only files, * so try to make it writable first */ if (!(statbuf.st_mode & _S_IWRITE)) { UTIL_chmod(path, &statbuf, _S_IWRITE); } #endif return remove(path); } /** FIO_openSrcFile() : * condition : `srcFileName` must be non-NULL. `prefs` may be NULL. * @result : FILE* to `srcFileName`, or NULL if it fails */ static FILE* FIO_openSrcFile(const FIO_prefs_t* const prefs, const char* srcFileName, stat_t* statbuf) { int allowBlockDevices = prefs != NULL ? prefs->allowBlockDevices : 0; assert(srcFileName != NULL); assert(statbuf != NULL); if (!strcmp (srcFileName, stdinmark)) { DISPLAYLEVEL(4,"Using stdin for input \n"); SET_BINARY_MODE(stdin); return stdin; } if (!UTIL_stat(srcFileName, statbuf)) { DISPLAYLEVEL(1, "zstd: can't stat %s : %s -- ignored \n", srcFileName, strerror(errno)); return NULL; } if (!UTIL_isRegularFileStat(statbuf) && !UTIL_isFIFOStat(statbuf) && !(allowBlockDevices && UTIL_isBlockDevStat(statbuf)) ) { DISPLAYLEVEL(1, "zstd: %s is not a regular file -- ignored \n", srcFileName); return NULL; } { FILE* const f = fopen(srcFileName, "rb"); if (f == NULL) DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno)); return f; } } /** FIO_openDstFile() : * condition : `dstFileName` must be non-NULL. * @result : FILE* to `dstFileName`, or NULL if it fails */ static FILE* FIO_openDstFile(FIO_ctx_t* fCtx, FIO_prefs_t* const prefs, const char* srcFileName, const char* dstFileName, const int mode) { int isDstRegFile; if (prefs->testMode) return NULL; /* do not open file in test mode */ assert(dstFileName != NULL); if (!strcmp (dstFileName, stdoutmark)) { DISPLAYLEVEL(4,"Using stdout for output \n"); SET_BINARY_MODE(stdout); if (prefs->sparseFileSupport == 1) { prefs->sparseFileSupport = 0; DISPLAYLEVEL(4, "Sparse File Support is automatically disabled on stdout ; try --sparse \n"); } return stdout; } /* ensure dst is not the same as src */ if (srcFileName != NULL && UTIL_isSameFile(srcFileName, dstFileName)) { DISPLAYLEVEL(1, "zstd: Refusing to open an output file which will overwrite the input file \n"); return NULL; } isDstRegFile = UTIL_isRegularFile(dstFileName); /* invoke once */ if (prefs->sparseFileSupport == 1) { prefs->sparseFileSupport = ZSTD_SPARSE_DEFAULT; if (!isDstRegFile) { prefs->sparseFileSupport = 0; DISPLAYLEVEL(4, "Sparse File Support is disabled when output is not a file \n"); } } if (isDstRegFile) { /* Check if destination file already exists */ #if !defined(_WIN32) /* this test does not work on Windows : * `NUL` and `nul` are detected as regular files */ if (!strcmp(dstFileName, nulmark)) { EXM_THROW(40, "%s is unexpectedly categorized as a regular file", dstFileName); } #endif if (!prefs->overwrite) { if (g_display_prefs.displayLevel <= 1) { /* No interaction possible */ DISPLAYLEVEL(1, "zstd: %s already exists; not overwritten \n", dstFileName); return NULL; } DISPLAY("zstd: %s already exists; ", dstFileName); if (UTIL_requireUserConfirmation("overwrite (y/n) ? ", "Not overwritten \n", "yY", fCtx->hasStdinInput)) return NULL; } /* need to unlink */ FIO_removeFile(dstFileName); } { #if defined(_WIN32) /* Windows requires opening the file as a "binary" file to avoid * mangling. This macro doesn't exist on unix. */ const int openflags = O_WRONLY|O_CREAT|O_TRUNC|O_BINARY; const int fd = _open(dstFileName, openflags, mode); FILE* f = NULL; if (fd != -1) { f = _fdopen(fd, "wb"); } #else const int openflags = O_WRONLY|O_CREAT|O_TRUNC; const int fd = open(dstFileName, openflags, mode); FILE* f = NULL; if (fd != -1) { f = fdopen(fd, "wb"); } #endif if (f == NULL) { DISPLAYLEVEL(1, "zstd: %s: %s\n", dstFileName, strerror(errno)); } else { /* An increased buffer size can provide a significant performance * boost on some platforms. Note that providing a NULL buf with a * size that's not 0 is not defined in ANSI C, but is defined in an * extension. There are three possibilities here: * 1. Libc supports the extended version and everything is good. * 2. Libc ignores the size when buf is NULL, in which case * everything will continue as if we didn't call `setvbuf()`. * 3. We fail the call and execution continues but a warning * message might be shown. * In all cases due execution continues. For now, I believe that * this is a more cost-effective solution than managing the buffers * allocations ourselves (will require an API change). */ if (setvbuf(f, NULL, _IOFBF, 1 MB)) { DISPLAYLEVEL(2, "Warning: setvbuf failed for %s\n", dstFileName); } } return f; } } /* FIO_getDictFileStat() : */ static void FIO_getDictFileStat(const char* fileName, stat_t* dictFileStat) { assert(dictFileStat != NULL); if (fileName == NULL) return; if (!UTIL_stat(fileName, dictFileStat)) { EXM_THROW(31, "Stat failed on dictionary file %s: %s", fileName, strerror(errno)); } if (!UTIL_isRegularFileStat(dictFileStat)) { EXM_THROW(32, "Dictionary %s must be a regular file.", fileName); } } /* FIO_setDictBufferMalloc() : * allocates a buffer, pointed by `dict->dictBuffer`, * loads `filename` content into it, up to DICTSIZE_MAX bytes. * @return : loaded size * if fileName==NULL, returns 0 and a NULL pointer */ static size_t FIO_setDictBufferMalloc(FIO_Dict_t* dict, const char* fileName, FIO_prefs_t* const prefs, stat_t* dictFileStat) { FILE* fileHandle; U64 fileSize; void** bufferPtr = &dict->dictBuffer; assert(bufferPtr != NULL); assert(dictFileStat != NULL); *bufferPtr = NULL; if (fileName == NULL) return 0; DISPLAYLEVEL(4,"Loading %s as dictionary \n", fileName); fileHandle = fopen(fileName, "rb"); if (fileHandle == NULL) { EXM_THROW(33, "Couldn't open dictionary %s: %s", fileName, strerror(errno)); } fileSize = UTIL_getFileSizeStat(dictFileStat); { size_t const dictSizeMax = prefs->patchFromMode ? prefs->memLimit : DICTSIZE_MAX; if (fileSize > dictSizeMax) { EXM_THROW(34, "Dictionary file %s is too large (> %u bytes)", fileName, (unsigned)dictSizeMax); /* avoid extreme cases */ } } *bufferPtr = malloc((size_t)fileSize); if (*bufferPtr==NULL) EXM_THROW(34, "%s", strerror(errno)); { size_t const readSize = fread(*bufferPtr, 1, (size_t)fileSize, fileHandle); if (readSize != fileSize) { EXM_THROW(35, "Error reading dictionary file %s : %s", fileName, strerror(errno)); } } fclose(fileHandle); return (size_t)fileSize; } #if (PLATFORM_POSIX_VERSION > 0) #include static void FIO_munmap(FIO_Dict_t* dict) { munmap(dict->dictBuffer, dict->dictBufferSize); dict->dictBuffer = NULL; dict->dictBufferSize = 0; } static size_t FIO_setDictBufferMMap(FIO_Dict_t* dict, const char* fileName, FIO_prefs_t* const prefs, stat_t* dictFileStat) { int fileHandle; U64 fileSize; void** bufferPtr = &dict->dictBuffer; assert(bufferPtr != NULL); assert(dictFileStat != NULL); *bufferPtr = NULL; if (fileName == NULL) return 0; DISPLAYLEVEL(4,"Loading %s as dictionary \n", fileName); fileHandle = open(fileName, O_RDONLY); if (fileHandle == -1) { EXM_THROW(33, "Couldn't open dictionary %s: %s", fileName, strerror(errno)); } fileSize = UTIL_getFileSizeStat(dictFileStat); { size_t const dictSizeMax = prefs->patchFromMode ? prefs->memLimit : DICTSIZE_MAX; if (fileSize > dictSizeMax) { EXM_THROW(34, "Dictionary file %s is too large (> %u bytes)", fileName, (unsigned)dictSizeMax); /* avoid extreme cases */ } } *bufferPtr = mmap(NULL, (size_t)fileSize, PROT_READ, MAP_PRIVATE, fileHandle, 0); if (*bufferPtr==NULL) EXM_THROW(34, "%s", strerror(errno)); close(fileHandle); return (size_t)fileSize; } #elif defined(_MSC_VER) || defined(_WIN32) #include static void FIO_munmap(FIO_Dict_t* dict) { UnmapViewOfFile(dict->dictBuffer); CloseHandle(dict->dictHandle); dict->dictBuffer = NULL; dict->dictBufferSize = 0; } static size_t FIO_setDictBufferMMap(FIO_Dict_t* dict, const char* fileName, FIO_prefs_t* const prefs, stat_t* dictFileStat) { HANDLE fileHandle, mapping; U64 fileSize; void** bufferPtr = &dict->dictBuffer; assert(bufferPtr != NULL); assert(dictFileStat != NULL); *bufferPtr = NULL; if (fileName == NULL) return 0; DISPLAYLEVEL(4,"Loading %s as dictionary \n", fileName); fileHandle = CreateFileA(fileName, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_READONLY, NULL); if (fileHandle == INVALID_HANDLE_VALUE) { EXM_THROW(33, "Couldn't open dictionary %s: %s", fileName, strerror(errno)); } fileSize = UTIL_getFileSizeStat(dictFileStat); { size_t const dictSizeMax = prefs->patchFromMode ? prefs->memLimit : DICTSIZE_MAX; if (fileSize > dictSizeMax) { EXM_THROW(34, "Dictionary file %s is too large (> %u bytes)", fileName, (unsigned)dictSizeMax); /* avoid extreme cases */ } } mapping = CreateFileMapping(fileHandle, NULL, PAGE_READONLY, 0, 0, NULL); if (mapping == NULL) { EXM_THROW(35, "Couldn't map dictionary %s: %s", fileName, strerror(errno)); } *bufferPtr = MapViewOfFile(mapping, FILE_MAP_READ, 0, 0, (DWORD)fileSize); /* we can only cast to DWORD here because dictSize <= 2GB */ if (*bufferPtr==NULL) EXM_THROW(36, "%s", strerror(errno)); dict->dictHandle = fileHandle; return (size_t)fileSize; } #else static size_t FIO_setDictBufferMMap(FIO_Dict_t* dict, const char* fileName, FIO_prefs_t* const prefs, stat_t* dictFileStat) { return FIO_setDictBufferMalloc(dict, fileName, prefs, dictFileStat); } static void FIO_munmap(FIO_Dict_t* dict) { free(dict->dictBuffer); dict->dictBuffer = NULL; dict->dictBufferSize = 0; } #endif static void FIO_freeDict(FIO_Dict_t* dict) { if (dict->dictBufferType == FIO_mallocDict) { free(dict->dictBuffer); dict->dictBuffer = NULL; dict->dictBufferSize = 0; } else if (dict->dictBufferType == FIO_mmapDict) { FIO_munmap(dict); } else { assert(0); /* Should not reach this case */ } } static void FIO_initDict(FIO_Dict_t* dict, const char* fileName, FIO_prefs_t* const prefs, stat_t* dictFileStat, FIO_dictBufferType_t dictBufferType) { dict->dictBufferType = dictBufferType; if (dict->dictBufferType == FIO_mallocDict) { dict->dictBufferSize = FIO_setDictBufferMalloc(dict, fileName, prefs, dictFileStat); } else if (dict->dictBufferType == FIO_mmapDict) { dict->dictBufferSize = FIO_setDictBufferMMap(dict, fileName, prefs, dictFileStat); } else { assert(0); /* Should not reach this case */ } } /* FIO_checkFilenameCollisions() : * Checks for and warns if there are any files that would have the same output path */ int FIO_checkFilenameCollisions(const char** filenameTable, unsigned nbFiles) { const char **filenameTableSorted, *prevElem, *filename; unsigned u; filenameTableSorted = (const char**) malloc(sizeof(char*) * nbFiles); if (!filenameTableSorted) { DISPLAYLEVEL(1, "Allocation error during filename collision checking \n"); return 1; } for (u = 0; u < nbFiles; ++u) { filename = strrchr(filenameTable[u], PATH_SEP); if (filename == NULL) { filenameTableSorted[u] = filenameTable[u]; } else { filenameTableSorted[u] = filename+1; } } qsort((void*)filenameTableSorted, nbFiles, sizeof(char*), UTIL_compareStr); prevElem = filenameTableSorted[0]; for (u = 1; u < nbFiles; ++u) { if (strcmp(prevElem, filenameTableSorted[u]) == 0) { DISPLAYLEVEL(2, "WARNING: Two files have same filename: %s\n", prevElem); } prevElem = filenameTableSorted[u]; } free((void*)filenameTableSorted); return 0; } static const char* extractFilename(const char* path, char separator) { const char* search = strrchr(path, separator); if (search == NULL) return path; return search+1; } /* FIO_createFilename_fromOutDir() : * Takes a source file name and specified output directory, and * allocates memory for and returns a pointer to final path. * This function never returns an error (it may abort() in case of pb) */ static char* FIO_createFilename_fromOutDir(const char* path, const char* outDirName, const size_t suffixLen) { const char* filenameStart; char separator; char* result; #if defined(_MSC_VER) || defined(__MINGW32__) || defined (__MSVCRT__) /* windows support */ separator = '\\'; #else separator = '/'; #endif filenameStart = extractFilename(path, separator); #if defined(_MSC_VER) || defined(__MINGW32__) || defined (__MSVCRT__) /* windows support */ filenameStart = extractFilename(filenameStart, '/'); /* sometimes, '/' separator is also used on Windows (mingw+msys2) */ #endif result = (char*) calloc(1, strlen(outDirName) + 1 + strlen(filenameStart) + suffixLen + 1); if (!result) { EXM_THROW(30, "zstd: FIO_createFilename_fromOutDir: %s", strerror(errno)); } memcpy(result, outDirName, strlen(outDirName)); if (outDirName[strlen(outDirName)-1] == separator) { memcpy(result + strlen(outDirName), filenameStart, strlen(filenameStart)); } else { memcpy(result + strlen(outDirName), &separator, 1); memcpy(result + strlen(outDirName) + 1, filenameStart, strlen(filenameStart)); } return result; } /* FIO_highbit64() : * gives position of highest bit. * note : only works for v > 0 ! */ static unsigned FIO_highbit64(unsigned long long v) { unsigned count = 0; assert(v != 0); v >>= 1; while (v) { v >>= 1; count++; } return count; } static void FIO_adjustMemLimitForPatchFromMode(FIO_prefs_t* const prefs, unsigned long long const dictSize, unsigned long long const maxSrcFileSize) { unsigned long long maxSize = MAX(prefs->memLimit, MAX(dictSize, maxSrcFileSize)); unsigned const maxWindowSize = (1U << ZSTD_WINDOWLOG_MAX); if (maxSize == UTIL_FILESIZE_UNKNOWN) EXM_THROW(42, "Using --patch-from with stdin requires --stream-size"); assert(maxSize != UTIL_FILESIZE_UNKNOWN); if (maxSize > maxWindowSize) EXM_THROW(42, "Can't handle files larger than %u GB\n", maxWindowSize/(1 GB)); FIO_setMemLimit(prefs, (unsigned)maxSize); } /* FIO_multiFilesConcatWarning() : * This function handles logic when processing multiple files with -o or -c, displaying the appropriate warnings/prompts. * Returns 1 if the console should abort, 0 if console should proceed. * * If output is stdout or test mode is active, check that `--rm` disabled. * * If there is just 1 file to process, zstd will proceed as usual. * If each file get processed into its own separate destination file, proceed as usual. * * When multiple files are processed into a single output, * display a warning message, then disable --rm if it's set. * * If -f is specified or if output is stdout, just proceed. * If output is set with -o, prompt for confirmation. */ static int FIO_multiFilesConcatWarning(const FIO_ctx_t* fCtx, FIO_prefs_t* prefs, const char* outFileName, int displayLevelCutoff) { if (fCtx->hasStdoutOutput) { if (prefs->removeSrcFile) /* this should not happen ; hard fail, to protect user's data * note: this should rather be an assert(), but we want to be certain that user's data will not be wiped out in case it nonetheless happen */ EXM_THROW(43, "It's not allowed to remove input files when processed output is piped to stdout. " "This scenario is not supposed to be possible. " "This is a programming error. File an issue for it to be fixed."); } if (prefs->testMode) { if (prefs->removeSrcFile) /* this should not happen ; hard fail, to protect user's data * note: this should rather be an assert(), but we want to be certain that user's data will not be wiped out in case it nonetheless happen */ EXM_THROW(43, "Test mode shall not remove input files! " "This scenario is not supposed to be possible. " "This is a programming error. File an issue for it to be fixed."); return 0; } if (fCtx->nbFilesTotal == 1) return 0; assert(fCtx->nbFilesTotal > 1); if (!outFileName) return 0; if (fCtx->hasStdoutOutput) { DISPLAYLEVEL(2, "zstd: WARNING: all input files will be processed and concatenated into stdout. \n"); } else { DISPLAYLEVEL(2, "zstd: WARNING: all input files will be processed and concatenated into a single output file: %s \n", outFileName); } DISPLAYLEVEL(2, "The concatenated output CANNOT regenerate original file names nor directory structure. \n") /* multi-input into single output : --rm is not allowed */ if (prefs->removeSrcFile) { DISPLAYLEVEL(2, "Since it's a destructive operation, input files will not be removed. \n"); prefs->removeSrcFile = 0; } if (fCtx->hasStdoutOutput) return 0; if (prefs->overwrite) return 0; /* multiple files concatenated into single destination file using -o without -f */ if (g_display_prefs.displayLevel <= displayLevelCutoff) { /* quiet mode => no prompt => fail automatically */ DISPLAYLEVEL(1, "Concatenating multiple processed inputs into a single output loses file metadata. \n"); DISPLAYLEVEL(1, "Aborting. \n"); return 1; } /* normal mode => prompt */ return UTIL_requireUserConfirmation("Proceed? (y/n): ", "Aborting...", "yY", fCtx->hasStdinInput); } static ZSTD_inBuffer setInBuffer(const void* buf, size_t s, size_t pos) { ZSTD_inBuffer i; i.src = buf; i.size = s; i.pos = pos; return i; } static ZSTD_outBuffer setOutBuffer(void* buf, size_t s, size_t pos) { ZSTD_outBuffer o; o.dst = buf; o.size = s; o.pos = pos; return o; } #ifndef ZSTD_NOCOMPRESS /* ********************************************************************** * Compression ************************************************************************/ typedef struct { FIO_Dict_t dict; const char* dictFileName; stat_t dictFileStat; ZSTD_CStream* cctx; WritePoolCtx_t *writeCtx; ReadPoolCtx_t *readCtx; } cRess_t; /** ZSTD_cycleLog() : * condition for correct operation : hashLog > 1 */ static U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat) { U32 const btScale = ((U32)strat >= (U32)ZSTD_btlazy2); assert(hashLog > 1); return hashLog - btScale; } static void FIO_adjustParamsForPatchFromMode(FIO_prefs_t* const prefs, ZSTD_compressionParameters* comprParams, unsigned long long const dictSize, unsigned long long const maxSrcFileSize, int cLevel) { unsigned const fileWindowLog = FIO_highbit64(maxSrcFileSize) + 1; ZSTD_compressionParameters const cParams = ZSTD_getCParams(cLevel, (size_t)maxSrcFileSize, (size_t)dictSize); FIO_adjustMemLimitForPatchFromMode(prefs, dictSize, maxSrcFileSize); if (fileWindowLog > ZSTD_WINDOWLOG_MAX) DISPLAYLEVEL(1, "Max window log exceeded by file (compression ratio will suffer)\n"); comprParams->windowLog = MAX(ZSTD_WINDOWLOG_MIN, MIN(ZSTD_WINDOWLOG_MAX, fileWindowLog)); if (fileWindowLog > ZSTD_cycleLog(cParams.chainLog, cParams.strategy)) { if (!prefs->ldmFlag) DISPLAYLEVEL(2, "long mode automatically triggered\n"); FIO_setLdmFlag(prefs, 1); } if (cParams.strategy >= ZSTD_btopt) { DISPLAYLEVEL(3, "[Optimal parser notes] Consider the following to improve patch size at the cost of speed:\n"); DISPLAYLEVEL(3, "- Use --single-thread mode in the zstd cli\n"); DISPLAYLEVEL(3, "- Set a larger targetLength (e.g. --zstd=targetLength=4096)\n"); DISPLAYLEVEL(3, "- Set a larger chainLog (e.g. --zstd=chainLog=%u)\n", ZSTD_CHAINLOG_MAX); DISPLAYLEVEL(3, "Also consider playing around with searchLog and hashLog\n"); } } static cRess_t FIO_createCResources(FIO_prefs_t* const prefs, const char* dictFileName, unsigned long long const maxSrcFileSize, int cLevel, ZSTD_compressionParameters comprParams) { int useMMap = prefs->mmapDict == ZSTD_ps_enable; int forceNoUseMMap = prefs->mmapDict == ZSTD_ps_disable; FIO_dictBufferType_t dictBufferType; cRess_t ress; memset(&ress, 0, sizeof(ress)); DISPLAYLEVEL(6, "FIO_createCResources \n"); ress.cctx = ZSTD_createCCtx(); if (ress.cctx == NULL) EXM_THROW(30, "allocation error (%s): can't create ZSTD_CCtx", strerror(errno)); FIO_getDictFileStat(dictFileName, &ress.dictFileStat); /* need to update memLimit before calling createDictBuffer * because of memLimit check inside it */ if (prefs->patchFromMode) { U64 const dictSize = UTIL_getFileSizeStat(&ress.dictFileStat); unsigned long long const ssSize = (unsigned long long)prefs->streamSrcSize; useMMap |= dictSize > prefs->memLimit; FIO_adjustParamsForPatchFromMode(prefs, &comprParams, dictSize, ssSize > 0 ? ssSize : maxSrcFileSize, cLevel); } dictBufferType = (useMMap && !forceNoUseMMap) ? FIO_mmapDict : FIO_mallocDict; FIO_initDict(&ress.dict, dictFileName, prefs, &ress.dictFileStat, dictBufferType); /* works with dictFileName==NULL */ ress.writeCtx = AIO_WritePool_create(prefs, ZSTD_CStreamOutSize()); ress.readCtx = AIO_ReadPool_create(prefs, ZSTD_CStreamInSize()); /* Advanced parameters, including dictionary */ if (dictFileName && (ress.dict.dictBuffer==NULL)) EXM_THROW(32, "allocation error : can't create dictBuffer"); ress.dictFileName = dictFileName; if (prefs->adaptiveMode && !prefs->ldmFlag && !comprParams.windowLog) comprParams.windowLog = ADAPT_WINDOWLOG_DEFAULT; CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_contentSizeFlag, prefs->contentSize) ); /* always enable content size when available (note: supposed to be default) */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_dictIDFlag, prefs->dictIDFlag) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_checksumFlag, prefs->checksumFlag) ); /* compression level */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_compressionLevel, cLevel) ); /* max compressed block size */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_targetCBlockSize, (int)prefs->targetCBlockSize) ); /* source size hint */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_srcSizeHint, (int)prefs->srcSizeHint) ); /* long distance matching */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_enableLongDistanceMatching, prefs->ldmFlag) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmHashLog, prefs->ldmHashLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmMinMatch, prefs->ldmMinMatch) ); if (prefs->ldmBucketSizeLog != FIO_LDM_PARAM_NOTSET) { CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmBucketSizeLog, prefs->ldmBucketSizeLog) ); } if (prefs->ldmHashRateLog != FIO_LDM_PARAM_NOTSET) { CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_ldmHashRateLog, prefs->ldmHashRateLog) ); } CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_useRowMatchFinder, prefs->useRowMatchFinder)); /* compression parameters */ CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_windowLog, (int)comprParams.windowLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_chainLog, (int)comprParams.chainLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_hashLog, (int)comprParams.hashLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_searchLog, (int)comprParams.searchLog) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_minMatch, (int)comprParams.minMatch) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_targetLength, (int)comprParams.targetLength) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_strategy, (int)comprParams.strategy) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_literalCompressionMode, (int)prefs->literalCompressionMode) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_enableDedicatedDictSearch, 1) ); /* multi-threading */ #ifdef ZSTD_MULTITHREAD DISPLAYLEVEL(5,"set nb workers = %u \n", prefs->nbWorkers); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_nbWorkers, prefs->nbWorkers) ); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_jobSize, prefs->blockSize) ); if (prefs->overlapLog != FIO_OVERLAP_LOG_NOTSET) { DISPLAYLEVEL(3,"set overlapLog = %u \n", prefs->overlapLog); CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_overlapLog, prefs->overlapLog) ); } CHECK( ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_rsyncable, prefs->rsyncable) ); #endif /* dictionary */ if (prefs->patchFromMode) { CHECK( ZSTD_CCtx_refPrefix(ress.cctx, ress.dict.dictBuffer, ress.dict.dictBufferSize) ); } else { CHECK( ZSTD_CCtx_loadDictionary_byReference(ress.cctx, ress.dict.dictBuffer, ress.dict.dictBufferSize) ); } return ress; } static void FIO_freeCResources(cRess_t* const ress) { FIO_freeDict(&(ress->dict)); AIO_WritePool_free(ress->writeCtx); AIO_ReadPool_free(ress->readCtx); ZSTD_freeCStream(ress->cctx); /* never fails */ } #ifdef ZSTD_GZCOMPRESS static unsigned long long FIO_compressGzFrame(const cRess_t* ress, /* buffers & handlers are used, but not changed */ const char* srcFileName, U64 const srcFileSize, int compressionLevel, U64* readsize) { unsigned long long inFileSize = 0, outFileSize = 0; z_stream strm; IOJob_t *writeJob = NULL; if (compressionLevel > Z_BEST_COMPRESSION) compressionLevel = Z_BEST_COMPRESSION; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; { int const ret = deflateInit2(&strm, compressionLevel, Z_DEFLATED, 15 /* maxWindowLogSize */ + 16 /* gzip only */, 8, Z_DEFAULT_STRATEGY); /* see https://www.zlib.net/manual.html */ if (ret != Z_OK) { EXM_THROW(71, "zstd: %s: deflateInit2 error %d \n", srcFileName, ret); } } writeJob = AIO_WritePool_acquireJob(ress->writeCtx); strm.next_in = 0; strm.avail_in = 0; strm.next_out = (Bytef*)writeJob->buffer; strm.avail_out = (uInt)writeJob->bufferSize; while (1) { int ret; if (strm.avail_in == 0) { AIO_ReadPool_fillBuffer(ress->readCtx, ZSTD_CStreamInSize()); if (ress->readCtx->srcBufferLoaded == 0) break; inFileSize += ress->readCtx->srcBufferLoaded; strm.next_in = (z_const unsigned char*)ress->readCtx->srcBuffer; strm.avail_in = (uInt)ress->readCtx->srcBufferLoaded; } { size_t const availBefore = strm.avail_in; ret = deflate(&strm, Z_NO_FLUSH); AIO_ReadPool_consumeBytes(ress->readCtx, availBefore - strm.avail_in); } if (ret != Z_OK) EXM_THROW(72, "zstd: %s: deflate error %d \n", srcFileName, ret); { size_t const cSize = writeJob->bufferSize - strm.avail_out; if (cSize) { writeJob->usedBufferSize = cSize; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); outFileSize += cSize; strm.next_out = (Bytef*)writeJob->buffer; strm.avail_out = (uInt)writeJob->bufferSize; } } if (srcFileSize == UTIL_FILESIZE_UNKNOWN) { DISPLAYUPDATE_PROGRESS( "\rRead : %u MB ==> %.2f%% ", (unsigned)(inFileSize>>20), (double)outFileSize/(double)inFileSize*100) } else { DISPLAYUPDATE_PROGRESS( "\rRead : %u / %u MB ==> %.2f%% ", (unsigned)(inFileSize>>20), (unsigned)(srcFileSize>>20), (double)outFileSize/(double)inFileSize*100); } } while (1) { int const ret = deflate(&strm, Z_FINISH); { size_t const cSize = writeJob->bufferSize - strm.avail_out; if (cSize) { writeJob->usedBufferSize = cSize; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); outFileSize += cSize; strm.next_out = (Bytef*)writeJob->buffer; strm.avail_out = (uInt)writeJob->bufferSize; } } if (ret == Z_STREAM_END) break; if (ret != Z_BUF_ERROR) EXM_THROW(77, "zstd: %s: deflate error %d \n", srcFileName, ret); } { int const ret = deflateEnd(&strm); if (ret != Z_OK) { EXM_THROW(79, "zstd: %s: deflateEnd error %d \n", srcFileName, ret); } } *readsize = inFileSize; AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return outFileSize; } #endif #ifdef ZSTD_LZMACOMPRESS static unsigned long long FIO_compressLzmaFrame(cRess_t* ress, const char* srcFileName, U64 const srcFileSize, int compressionLevel, U64* readsize, int plain_lzma) { unsigned long long inFileSize = 0, outFileSize = 0; lzma_stream strm = LZMA_STREAM_INIT; lzma_action action = LZMA_RUN; lzma_ret ret; IOJob_t *writeJob = NULL; if (compressionLevel < 0) compressionLevel = 0; if (compressionLevel > 9) compressionLevel = 9; if (plain_lzma) { lzma_options_lzma opt_lzma; if (lzma_lzma_preset(&opt_lzma, compressionLevel)) EXM_THROW(81, "zstd: %s: lzma_lzma_preset error", srcFileName); ret = lzma_alone_encoder(&strm, &opt_lzma); /* LZMA */ if (ret != LZMA_OK) EXM_THROW(82, "zstd: %s: lzma_alone_encoder error %d", srcFileName, ret); } else { ret = lzma_easy_encoder(&strm, compressionLevel, LZMA_CHECK_CRC64); /* XZ */ if (ret != LZMA_OK) EXM_THROW(83, "zstd: %s: lzma_easy_encoder error %d", srcFileName, ret); } writeJob =AIO_WritePool_acquireJob(ress->writeCtx); strm.next_out = (BYTE*)writeJob->buffer; strm.avail_out = writeJob->bufferSize; strm.next_in = 0; strm.avail_in = 0; while (1) { if (strm.avail_in == 0) { size_t const inSize = AIO_ReadPool_fillBuffer(ress->readCtx, ZSTD_CStreamInSize()); if (ress->readCtx->srcBufferLoaded == 0) action = LZMA_FINISH; inFileSize += inSize; strm.next_in = (BYTE const*)ress->readCtx->srcBuffer; strm.avail_in = ress->readCtx->srcBufferLoaded; } { size_t const availBefore = strm.avail_in; ret = lzma_code(&strm, action); AIO_ReadPool_consumeBytes(ress->readCtx, availBefore - strm.avail_in); } if (ret != LZMA_OK && ret != LZMA_STREAM_END) EXM_THROW(84, "zstd: %s: lzma_code encoding error %d", srcFileName, ret); { size_t const compBytes = writeJob->bufferSize - strm.avail_out; if (compBytes) { writeJob->usedBufferSize = compBytes; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); outFileSize += compBytes; strm.next_out = (BYTE*)writeJob->buffer; strm.avail_out = writeJob->bufferSize; } } if (srcFileSize == UTIL_FILESIZE_UNKNOWN) DISPLAYUPDATE_PROGRESS("\rRead : %u MB ==> %.2f%%", (unsigned)(inFileSize>>20), (double)outFileSize/(double)inFileSize*100) else DISPLAYUPDATE_PROGRESS("\rRead : %u / %u MB ==> %.2f%%", (unsigned)(inFileSize>>20), (unsigned)(srcFileSize>>20), (double)outFileSize/(double)inFileSize*100); if (ret == LZMA_STREAM_END) break; } lzma_end(&strm); *readsize = inFileSize; AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return outFileSize; } #endif #ifdef ZSTD_LZ4COMPRESS #if LZ4_VERSION_NUMBER <= 10600 #define LZ4F_blockLinked blockLinked #define LZ4F_max64KB max64KB #endif static int FIO_LZ4_GetBlockSize_FromBlockId (int id) { return (1 << (8 + (2 * id))); } static unsigned long long FIO_compressLz4Frame(cRess_t* ress, const char* srcFileName, U64 const srcFileSize, int compressionLevel, int checksumFlag, U64* readsize) { const size_t blockSize = FIO_LZ4_GetBlockSize_FromBlockId(LZ4F_max64KB); unsigned long long inFileSize = 0, outFileSize = 0; LZ4F_preferences_t prefs; LZ4F_compressionContext_t ctx; IOJob_t* writeJob = AIO_WritePool_acquireJob(ress->writeCtx); LZ4F_errorCode_t const errorCode = LZ4F_createCompressionContext(&ctx, LZ4F_VERSION); if (LZ4F_isError(errorCode)) EXM_THROW(31, "zstd: failed to create lz4 compression context"); memset(&prefs, 0, sizeof(prefs)); assert(blockSize <= ress->readCtx->base.jobBufferSize); /* autoflush off to mitigate a bug in lz4<=1.9.3 for compression level 12 */ prefs.autoFlush = 0; prefs.compressionLevel = compressionLevel; prefs.frameInfo.blockMode = LZ4F_blockLinked; prefs.frameInfo.blockSizeID = LZ4F_max64KB; prefs.frameInfo.contentChecksumFlag = (contentChecksum_t)checksumFlag; #if LZ4_VERSION_NUMBER >= 10600 prefs.frameInfo.contentSize = (srcFileSize==UTIL_FILESIZE_UNKNOWN) ? 0 : srcFileSize; #endif assert(LZ4F_compressBound(blockSize, &prefs) <= writeJob->bufferSize); { size_t headerSize = LZ4F_compressBegin(ctx, writeJob->buffer, writeJob->bufferSize, &prefs); if (LZ4F_isError(headerSize)) EXM_THROW(33, "File header generation failed : %s", LZ4F_getErrorName(headerSize)); writeJob->usedBufferSize = headerSize; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); outFileSize += headerSize; /* Read first block */ inFileSize += AIO_ReadPool_fillBuffer(ress->readCtx, blockSize); /* Main Loop */ while (ress->readCtx->srcBufferLoaded) { size_t inSize = MIN(blockSize, ress->readCtx->srcBufferLoaded); size_t const outSize = LZ4F_compressUpdate(ctx, writeJob->buffer, writeJob->bufferSize, ress->readCtx->srcBuffer, inSize, NULL); if (LZ4F_isError(outSize)) EXM_THROW(35, "zstd: %s: lz4 compression failed : %s", srcFileName, LZ4F_getErrorName(outSize)); outFileSize += outSize; if (srcFileSize == UTIL_FILESIZE_UNKNOWN) { DISPLAYUPDATE_PROGRESS("\rRead : %u MB ==> %.2f%%", (unsigned)(inFileSize>>20), (double)outFileSize/(double)inFileSize*100) } else { DISPLAYUPDATE_PROGRESS("\rRead : %u / %u MB ==> %.2f%%", (unsigned)(inFileSize>>20), (unsigned)(srcFileSize>>20), (double)outFileSize/(double)inFileSize*100); } /* Write Block */ writeJob->usedBufferSize = outSize; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); /* Read next block */ AIO_ReadPool_consumeBytes(ress->readCtx, inSize); inFileSize += AIO_ReadPool_fillBuffer(ress->readCtx, blockSize); } /* End of Stream mark */ headerSize = LZ4F_compressEnd(ctx, writeJob->buffer, writeJob->bufferSize, NULL); if (LZ4F_isError(headerSize)) EXM_THROW(38, "zstd: %s: lz4 end of file generation failed : %s", srcFileName, LZ4F_getErrorName(headerSize)); writeJob->usedBufferSize = headerSize; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); outFileSize += headerSize; } *readsize = inFileSize; LZ4F_freeCompressionContext(ctx); AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return outFileSize; } #endif static unsigned long long FIO_compressZstdFrame(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, const cRess_t* ressPtr, const char* srcFileName, U64 fileSize, int compressionLevel, U64* readsize) { cRess_t const ress = *ressPtr; IOJob_t *writeJob = AIO_WritePool_acquireJob(ressPtr->writeCtx); U64 compressedfilesize = 0; ZSTD_EndDirective directive = ZSTD_e_continue; U64 pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* stats */ ZSTD_frameProgression previous_zfp_update = { 0, 0, 0, 0, 0, 0 }; ZSTD_frameProgression previous_zfp_correction = { 0, 0, 0, 0, 0, 0 }; typedef enum { noChange, slower, faster } speedChange_e; speedChange_e speedChange = noChange; unsigned flushWaiting = 0; unsigned inputPresented = 0; unsigned inputBlocked = 0; unsigned lastJobID = 0; UTIL_time_t lastAdaptTime = UTIL_getTime(); U64 const adaptEveryMicro = REFRESH_RATE; UTIL_HumanReadableSize_t const file_hrs = UTIL_makeHumanReadableSize(fileSize); DISPLAYLEVEL(6, "compression using zstd format \n"); /* init */ if (fileSize != UTIL_FILESIZE_UNKNOWN) { pledgedSrcSize = fileSize; CHECK(ZSTD_CCtx_setPledgedSrcSize(ress.cctx, fileSize)); } else if (prefs->streamSrcSize > 0) { /* unknown source size; use the declared stream size */ pledgedSrcSize = prefs->streamSrcSize; CHECK( ZSTD_CCtx_setPledgedSrcSize(ress.cctx, prefs->streamSrcSize) ); } { int windowLog; UTIL_HumanReadableSize_t windowSize; CHECK(ZSTD_CCtx_getParameter(ress.cctx, ZSTD_c_windowLog, &windowLog)); if (windowLog == 0) { if (prefs->ldmFlag) { /* If long mode is set without a window size libzstd will set this size internally */ windowLog = ZSTD_WINDOWLOG_LIMIT_DEFAULT; } else { const ZSTD_compressionParameters cParams = ZSTD_getCParams(compressionLevel, fileSize, 0); windowLog = (int)cParams.windowLog; } } windowSize = UTIL_makeHumanReadableSize(MAX(1ULL, MIN(1ULL << windowLog, pledgedSrcSize))); DISPLAYLEVEL(4, "Decompression will require %.*f%s of memory\n", windowSize.precision, windowSize.value, windowSize.suffix); } (void)srcFileName; /* Main compression loop */ do { size_t stillToFlush; /* Fill input Buffer */ size_t const inSize = AIO_ReadPool_fillBuffer(ress.readCtx, ZSTD_CStreamInSize()); ZSTD_inBuffer inBuff = setInBuffer( ress.readCtx->srcBuffer, ress.readCtx->srcBufferLoaded, 0 ); DISPLAYLEVEL(6, "fread %u bytes from source \n", (unsigned)inSize); *readsize += inSize; if ((ress.readCtx->srcBufferLoaded == 0) || (*readsize == fileSize)) directive = ZSTD_e_end; stillToFlush = 1; while ((inBuff.pos != inBuff.size) /* input buffer must be entirely ingested */ || (directive == ZSTD_e_end && stillToFlush != 0) ) { size_t const oldIPos = inBuff.pos; ZSTD_outBuffer outBuff = setOutBuffer( writeJob->buffer, writeJob->bufferSize, 0 ); size_t const toFlushNow = ZSTD_toFlushNow(ress.cctx); CHECK_V(stillToFlush, ZSTD_compressStream2(ress.cctx, &outBuff, &inBuff, directive)); AIO_ReadPool_consumeBytes(ress.readCtx, inBuff.pos - oldIPos); /* count stats */ inputPresented++; if (oldIPos == inBuff.pos) inputBlocked++; /* input buffer is full and can't take any more : input speed is faster than consumption rate */ if (!toFlushNow) flushWaiting = 1; /* Write compressed stream */ DISPLAYLEVEL(6, "ZSTD_compress_generic(end:%u) => input pos(%u)<=(%u)size ; output generated %u bytes \n", (unsigned)directive, (unsigned)inBuff.pos, (unsigned)inBuff.size, (unsigned)outBuff.pos); if (outBuff.pos) { writeJob->usedBufferSize = outBuff.pos; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); compressedfilesize += outBuff.pos; } /* adaptive mode : statistics measurement and speed correction */ if (prefs->adaptiveMode && UTIL_clockSpanMicro(lastAdaptTime) > adaptEveryMicro) { ZSTD_frameProgression const zfp = ZSTD_getFrameProgression(ress.cctx); lastAdaptTime = UTIL_getTime(); /* check output speed */ if (zfp.currentJobID > 1) { /* only possible if nbWorkers >= 1 */ unsigned long long newlyProduced = zfp.produced - previous_zfp_update.produced; unsigned long long newlyFlushed = zfp.flushed - previous_zfp_update.flushed; assert(zfp.produced >= previous_zfp_update.produced); assert(prefs->nbWorkers >= 1); /* test if compression is blocked * either because output is slow and all buffers are full * or because input is slow and no job can start while waiting for at least one buffer to be filled. * note : exclude starting part, since currentJobID > 1 */ if ( (zfp.consumed == previous_zfp_update.consumed) /* no data compressed : no data available, or no more buffer to compress to, OR compression is really slow (compression of a single block is slower than update rate)*/ && (zfp.nbActiveWorkers == 0) /* confirmed : no compression ongoing */ ) { DISPLAYLEVEL(6, "all buffers full : compression stopped => slow down \n") speedChange = slower; } previous_zfp_update = zfp; if ( (newlyProduced > (newlyFlushed * 9 / 8)) /* compression produces more data than output can flush (though production can be spiky, due to work unit : (N==4)*block sizes) */ && (flushWaiting == 0) /* flush speed was never slowed by lack of production, so it's operating at max capacity */ ) { DISPLAYLEVEL(6, "compression faster than flush (%llu > %llu), and flushed was never slowed down by lack of production => slow down \n", newlyProduced, newlyFlushed); speedChange = slower; } flushWaiting = 0; } /* course correct only if there is at least one new job completed */ if (zfp.currentJobID > lastJobID) { DISPLAYLEVEL(6, "compression level adaptation check \n") /* check input speed */ if (zfp.currentJobID > (unsigned)(prefs->nbWorkers+1)) { /* warm up period, to fill all workers */ if (inputBlocked <= 0) { DISPLAYLEVEL(6, "input is never blocked => input is slower than ingestion \n"); speedChange = slower; } else if (speedChange == noChange) { unsigned long long newlyIngested = zfp.ingested - previous_zfp_correction.ingested; unsigned long long newlyConsumed = zfp.consumed - previous_zfp_correction.consumed; unsigned long long newlyProduced = zfp.produced - previous_zfp_correction.produced; unsigned long long newlyFlushed = zfp.flushed - previous_zfp_correction.flushed; previous_zfp_correction = zfp; assert(inputPresented > 0); DISPLAYLEVEL(6, "input blocked %u/%u(%.2f) - ingested:%u vs %u:consumed - flushed:%u vs %u:produced \n", inputBlocked, inputPresented, (double)inputBlocked/inputPresented*100, (unsigned)newlyIngested, (unsigned)newlyConsumed, (unsigned)newlyFlushed, (unsigned)newlyProduced); if ( (inputBlocked > inputPresented / 8) /* input is waiting often, because input buffers is full : compression or output too slow */ && (newlyFlushed * 33 / 32 > newlyProduced) /* flush everything that is produced */ && (newlyIngested * 33 / 32 > newlyConsumed) /* input speed as fast or faster than compression speed */ ) { DISPLAYLEVEL(6, "recommend faster as in(%llu) >= (%llu)comp(%llu) <= out(%llu) \n", newlyIngested, newlyConsumed, newlyProduced, newlyFlushed); speedChange = faster; } } inputBlocked = 0; inputPresented = 0; } if (speedChange == slower) { DISPLAYLEVEL(6, "slower speed , higher compression \n") compressionLevel ++; if (compressionLevel > ZSTD_maxCLevel()) compressionLevel = ZSTD_maxCLevel(); if (compressionLevel > prefs->maxAdaptLevel) compressionLevel = prefs->maxAdaptLevel; compressionLevel += (compressionLevel == 0); /* skip 0 */ ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_compressionLevel, compressionLevel); } if (speedChange == faster) { DISPLAYLEVEL(6, "faster speed , lighter compression \n") compressionLevel --; if (compressionLevel < prefs->minAdaptLevel) compressionLevel = prefs->minAdaptLevel; compressionLevel -= (compressionLevel == 0); /* skip 0 */ ZSTD_CCtx_setParameter(ress.cctx, ZSTD_c_compressionLevel, compressionLevel); } speedChange = noChange; lastJobID = zfp.currentJobID; } /* if (zfp.currentJobID > lastJobID) */ } /* if (prefs->adaptiveMode && UTIL_clockSpanMicro(lastAdaptTime) > adaptEveryMicro) */ /* display notification */ if (SHOULD_DISPLAY_PROGRESS() && READY_FOR_UPDATE()) { ZSTD_frameProgression const zfp = ZSTD_getFrameProgression(ress.cctx); double const cShare = (double)zfp.produced / (double)(zfp.consumed + !zfp.consumed/*avoid div0*/) * 100; UTIL_HumanReadableSize_t const buffered_hrs = UTIL_makeHumanReadableSize(zfp.ingested - zfp.consumed); UTIL_HumanReadableSize_t const consumed_hrs = UTIL_makeHumanReadableSize(zfp.consumed); UTIL_HumanReadableSize_t const produced_hrs = UTIL_makeHumanReadableSize(zfp.produced); DELAY_NEXT_UPDATE(); /* display progress notifications */ DISPLAY_PROGRESS("\r%79s\r", ""); /* Clear out the current displayed line */ if (g_display_prefs.displayLevel >= 3) { /* Verbose progress update */ DISPLAY_PROGRESS( "(L%i) Buffered:%5.*f%s - Consumed:%5.*f%s - Compressed:%5.*f%s => %.2f%% ", compressionLevel, buffered_hrs.precision, buffered_hrs.value, buffered_hrs.suffix, consumed_hrs.precision, consumed_hrs.value, consumed_hrs.suffix, produced_hrs.precision, produced_hrs.value, produced_hrs.suffix, cShare ); } else { /* Require level 2 or forcibly displayed progress counter for summarized updates */ if (fCtx->nbFilesTotal > 1) { size_t srcFileNameSize = strlen(srcFileName); /* Ensure that the string we print is roughly the same size each time */ if (srcFileNameSize > 18) { const char* truncatedSrcFileName = srcFileName + srcFileNameSize - 15; DISPLAY_PROGRESS("Compress: %u/%u files. Current: ...%s ", fCtx->currFileIdx+1, fCtx->nbFilesTotal, truncatedSrcFileName); } else { DISPLAY_PROGRESS("Compress: %u/%u files. Current: %*s ", fCtx->currFileIdx+1, fCtx->nbFilesTotal, (int)(18-srcFileNameSize), srcFileName); } } DISPLAY_PROGRESS("Read:%6.*f%4s ", consumed_hrs.precision, consumed_hrs.value, consumed_hrs.suffix); if (fileSize != UTIL_FILESIZE_UNKNOWN) DISPLAY_PROGRESS("/%6.*f%4s", file_hrs.precision, file_hrs.value, file_hrs.suffix); DISPLAY_PROGRESS(" ==> %2.f%%", cShare); } } /* if (SHOULD_DISPLAY_PROGRESS() && READY_FOR_UPDATE()) */ } /* while ((inBuff.pos != inBuff.size) */ } while (directive != ZSTD_e_end); if (fileSize != UTIL_FILESIZE_UNKNOWN && *readsize != fileSize) { EXM_THROW(27, "Read error : Incomplete read : %llu / %llu B", (unsigned long long)*readsize, (unsigned long long)fileSize); } AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ressPtr->writeCtx); return compressedfilesize; } /*! FIO_compressFilename_internal() : * same as FIO_compressFilename_extRess(), with `ress.desFile` already opened. * @return : 0 : compression completed correctly, * 1 : missing or pb opening srcFileName */ static int FIO_compressFilename_internal(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, cRess_t ress, const char* dstFileName, const char* srcFileName, int compressionLevel) { UTIL_time_t const timeStart = UTIL_getTime(); clock_t const cpuStart = clock(); U64 readsize = 0; U64 compressedfilesize = 0; U64 const fileSize = UTIL_getFileSize(srcFileName); DISPLAYLEVEL(5, "%s: %llu bytes \n", srcFileName, (unsigned long long)fileSize); /* compression format selection */ switch (prefs->compressionType) { default: case FIO_zstdCompression: compressedfilesize = FIO_compressZstdFrame(fCtx, prefs, &ress, srcFileName, fileSize, compressionLevel, &readsize); break; case FIO_gzipCompression: #ifdef ZSTD_GZCOMPRESS compressedfilesize = FIO_compressGzFrame(&ress, srcFileName, fileSize, compressionLevel, &readsize); #else (void)compressionLevel; EXM_THROW(20, "zstd: %s: file cannot be compressed as gzip (zstd compiled without ZSTD_GZCOMPRESS) -- ignored \n", srcFileName); #endif break; case FIO_xzCompression: case FIO_lzmaCompression: #ifdef ZSTD_LZMACOMPRESS compressedfilesize = FIO_compressLzmaFrame(&ress, srcFileName, fileSize, compressionLevel, &readsize, prefs->compressionType==FIO_lzmaCompression); #else (void)compressionLevel; EXM_THROW(20, "zstd: %s: file cannot be compressed as xz/lzma (zstd compiled without ZSTD_LZMACOMPRESS) -- ignored \n", srcFileName); #endif break; case FIO_lz4Compression: #ifdef ZSTD_LZ4COMPRESS compressedfilesize = FIO_compressLz4Frame(&ress, srcFileName, fileSize, compressionLevel, prefs->checksumFlag, &readsize); #else (void)compressionLevel; EXM_THROW(20, "zstd: %s: file cannot be compressed as lz4 (zstd compiled without ZSTD_LZ4COMPRESS) -- ignored \n", srcFileName); #endif break; } /* Status */ fCtx->totalBytesInput += (size_t)readsize; fCtx->totalBytesOutput += (size_t)compressedfilesize; DISPLAY_PROGRESS("\r%79s\r", ""); if (FIO_shouldDisplayFileSummary(fCtx)) { UTIL_HumanReadableSize_t hr_isize = UTIL_makeHumanReadableSize((U64) readsize); UTIL_HumanReadableSize_t hr_osize = UTIL_makeHumanReadableSize((U64) compressedfilesize); if (readsize == 0) { DISPLAY_SUMMARY("%-20s : (%6.*f%s => %6.*f%s, %s) \n", srcFileName, hr_isize.precision, hr_isize.value, hr_isize.suffix, hr_osize.precision, hr_osize.value, hr_osize.suffix, dstFileName); } else { DISPLAY_SUMMARY("%-20s :%6.2f%% (%6.*f%s => %6.*f%s, %s) \n", srcFileName, (double)compressedfilesize / (double)readsize * 100, hr_isize.precision, hr_isize.value, hr_isize.suffix, hr_osize.precision, hr_osize.value, hr_osize.suffix, dstFileName); } } /* Elapsed Time and CPU Load */ { clock_t const cpuEnd = clock(); double const cpuLoad_s = (double)(cpuEnd - cpuStart) / CLOCKS_PER_SEC; U64 const timeLength_ns = UTIL_clockSpanNano(timeStart); double const timeLength_s = (double)timeLength_ns / 1000000000; double const cpuLoad_pct = (cpuLoad_s / timeLength_s) * 100; DISPLAYLEVEL(4, "%-20s : Completed in %.2f sec (cpu load : %.0f%%)\n", srcFileName, timeLength_s, cpuLoad_pct); } return 0; } /*! FIO_compressFilename_dstFile() : * open dstFileName, or pass-through if ress.file != NULL, * then start compression with FIO_compressFilename_internal(). * Manages source removal (--rm) and file permissions transfer. * note : ress.srcFile must be != NULL, * so reach this function through FIO_compressFilename_srcFile(). * @return : 0 : compression completed correctly, * 1 : pb */ static int FIO_compressFilename_dstFile(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, cRess_t ress, const char* dstFileName, const char* srcFileName, const stat_t* srcFileStat, int compressionLevel) { int closeDstFile = 0; int result; int transferStat = 0; int dstFd = -1; assert(AIO_ReadPool_getFile(ress.readCtx) != NULL); if (AIO_WritePool_getFile(ress.writeCtx) == NULL) { int dstFileInitialPermissions = DEFAULT_FILE_PERMISSIONS; if ( strcmp (srcFileName, stdinmark) && strcmp (dstFileName, stdoutmark) && UTIL_isRegularFileStat(srcFileStat) ) { transferStat = 1; dstFileInitialPermissions = TEMPORARY_FILE_PERMISSIONS; } closeDstFile = 1; DISPLAYLEVEL(6, "FIO_compressFilename_dstFile: opening dst: %s \n", dstFileName); { FILE *dstFile = FIO_openDstFile(fCtx, prefs, srcFileName, dstFileName, dstFileInitialPermissions); if (dstFile==NULL) return 1; /* could not open dstFileName */ dstFd = fileno(dstFile); AIO_WritePool_setFile(ress.writeCtx, dstFile); } /* Must only be added after FIO_openDstFile() succeeds. * Otherwise we may delete the destination file if it already exists, * and the user presses Ctrl-C when asked if they wish to overwrite. */ addHandler(dstFileName); } result = FIO_compressFilename_internal(fCtx, prefs, ress, dstFileName, srcFileName, compressionLevel); if (closeDstFile) { clearHandler(); if (transferStat) { UTIL_setFDStat(dstFd, dstFileName, srcFileStat); } DISPLAYLEVEL(6, "FIO_compressFilename_dstFile: closing dst: %s \n", dstFileName); if (AIO_WritePool_closeFile(ress.writeCtx)) { /* error closing file */ DISPLAYLEVEL(1, "zstd: %s: %s \n", dstFileName, strerror(errno)); result=1; } if (transferStat) { UTIL_utime(dstFileName, srcFileStat); } if ( (result != 0) /* operation failure */ && strcmp(dstFileName, stdoutmark) /* special case : don't remove() stdout */ ) { FIO_removeFile(dstFileName); /* remove compression artefact; note don't do anything special if remove() fails */ } } return result; } /* List used to compare file extensions (used with --exclude-compressed flag) * Different from the suffixList and should only apply to ZSTD compress operationResult */ static const char *compressedFileExtensions[] = { ZSTD_EXTENSION, TZSTD_EXTENSION, GZ_EXTENSION, TGZ_EXTENSION, LZMA_EXTENSION, XZ_EXTENSION, TXZ_EXTENSION, LZ4_EXTENSION, TLZ4_EXTENSION, NULL }; /*! FIO_compressFilename_srcFile() : * @return : 0 : compression completed correctly, * 1 : missing or pb opening srcFileName */ static int FIO_compressFilename_srcFile(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, cRess_t ress, const char* dstFileName, const char* srcFileName, int compressionLevel) { int result; FILE* srcFile; stat_t srcFileStat; U64 fileSize = UTIL_FILESIZE_UNKNOWN; DISPLAYLEVEL(6, "FIO_compressFilename_srcFile: %s \n", srcFileName); if (strcmp(srcFileName, stdinmark)) { if (UTIL_stat(srcFileName, &srcFileStat)) { /* failure to stat at all is handled during opening */ /* ensure src is not a directory */ if (UTIL_isDirectoryStat(&srcFileStat)) { DISPLAYLEVEL(1, "zstd: %s is a directory -- ignored \n", srcFileName); return 1; } /* ensure src is not the same as dict (if present) */ if (ress.dictFileName != NULL && UTIL_isSameFileStat(srcFileName, ress.dictFileName, &srcFileStat, &ress.dictFileStat)) { DISPLAYLEVEL(1, "zstd: cannot use %s as an input file and dictionary \n", srcFileName); return 1; } } } /* Check if "srcFile" is compressed. Only done if --exclude-compressed flag is used * YES => ZSTD will skip compression of the file and will return 0. * NO => ZSTD will resume with compress operation. */ if (prefs->excludeCompressedFiles == 1 && UTIL_isCompressedFile(srcFileName, compressedFileExtensions)) { DISPLAYLEVEL(4, "File is already compressed : %s \n", srcFileName); return 0; } srcFile = FIO_openSrcFile(prefs, srcFileName, &srcFileStat); if (srcFile == NULL) return 1; /* srcFile could not be opened */ /* Don't use AsyncIO for small files */ if (strcmp(srcFileName, stdinmark)) /* Stdin doesn't have stats */ fileSize = UTIL_getFileSizeStat(&srcFileStat); if(fileSize != UTIL_FILESIZE_UNKNOWN && fileSize < ZSTD_BLOCKSIZE_MAX * 3) { AIO_ReadPool_setAsync(ress.readCtx, 0); AIO_WritePool_setAsync(ress.writeCtx, 0); } else { AIO_ReadPool_setAsync(ress.readCtx, 1); AIO_WritePool_setAsync(ress.writeCtx, 1); } AIO_ReadPool_setFile(ress.readCtx, srcFile); result = FIO_compressFilename_dstFile( fCtx, prefs, ress, dstFileName, srcFileName, &srcFileStat, compressionLevel); AIO_ReadPool_closeFile(ress.readCtx); if ( prefs->removeSrcFile /* --rm */ && result == 0 /* success */ && strcmp(srcFileName, stdinmark) /* exception : don't erase stdin */ ) { /* We must clear the handler, since after this point calling it would * delete both the source and destination files. */ clearHandler(); if (FIO_removeFile(srcFileName)) EXM_THROW(1, "zstd: %s: %s", srcFileName, strerror(errno)); } return result; } static const char* checked_index(const char* options[], size_t length, size_t index) { assert(index < length); /* Necessary to avoid warnings since -O3 will omit the above `assert` */ (void) length; return options[index]; } #define INDEX(options, index) checked_index((options), sizeof(options) / sizeof(char*), (size_t)(index)) void FIO_displayCompressionParameters(const FIO_prefs_t* prefs) { static const char* formatOptions[5] = {ZSTD_EXTENSION, GZ_EXTENSION, XZ_EXTENSION, LZMA_EXTENSION, LZ4_EXTENSION}; static const char* sparseOptions[3] = {" --no-sparse", "", " --sparse"}; static const char* checkSumOptions[3] = {" --no-check", "", " --check"}; static const char* rowMatchFinderOptions[3] = {"", " --no-row-match-finder", " --row-match-finder"}; static const char* compressLiteralsOptions[3] = {"", " --compress-literals", " --no-compress-literals"}; assert(g_display_prefs.displayLevel >= 4); DISPLAY("--format=%s", formatOptions[prefs->compressionType]); DISPLAY("%s", INDEX(sparseOptions, prefs->sparseFileSupport)); DISPLAY("%s", prefs->dictIDFlag ? "" : " --no-dictID"); DISPLAY("%s", INDEX(checkSumOptions, prefs->checksumFlag)); DISPLAY(" --block-size=%d", prefs->blockSize); if (prefs->adaptiveMode) DISPLAY(" --adapt=min=%d,max=%d", prefs->minAdaptLevel, prefs->maxAdaptLevel); DISPLAY("%s", INDEX(rowMatchFinderOptions, prefs->useRowMatchFinder)); DISPLAY("%s", prefs->rsyncable ? " --rsyncable" : ""); if (prefs->streamSrcSize) DISPLAY(" --stream-size=%u", (unsigned) prefs->streamSrcSize); if (prefs->srcSizeHint) DISPLAY(" --size-hint=%d", prefs->srcSizeHint); if (prefs->targetCBlockSize) DISPLAY(" --target-compressed-block-size=%u", (unsigned) prefs->targetCBlockSize); DISPLAY("%s", INDEX(compressLiteralsOptions, prefs->literalCompressionMode)); DISPLAY(" --memory=%u", prefs->memLimit ? prefs->memLimit : 128 MB); DISPLAY(" --threads=%d", prefs->nbWorkers); DISPLAY("%s", prefs->excludeCompressedFiles ? " --exclude-compressed" : ""); DISPLAY(" --%scontent-size", prefs->contentSize ? "" : "no-"); DISPLAY("\n"); } #undef INDEX int FIO_compressFilename(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, const char* dstFileName, const char* srcFileName, const char* dictFileName, int compressionLevel, ZSTD_compressionParameters comprParams) { cRess_t ress = FIO_createCResources(prefs, dictFileName, UTIL_getFileSize(srcFileName), compressionLevel, comprParams); int const result = FIO_compressFilename_srcFile(fCtx, prefs, ress, dstFileName, srcFileName, compressionLevel); #define DISPLAY_LEVEL_DEFAULT 2 FIO_freeCResources(&ress); return result; } /* FIO_determineCompressedName() : * create a destination filename for compressed srcFileName. * @return a pointer to it. * This function never returns an error (it may abort() in case of pb) */ static const char* FIO_determineCompressedName(const char* srcFileName, const char* outDirName, const char* suffix) { static size_t dfnbCapacity = 0; static char* dstFileNameBuffer = NULL; /* using static allocation : this function cannot be multi-threaded */ char* outDirFilename = NULL; size_t sfnSize = strlen(srcFileName); size_t const srcSuffixLen = strlen(suffix); if(!strcmp(srcFileName, stdinmark)) { return stdoutmark; } if (outDirName) { outDirFilename = FIO_createFilename_fromOutDir(srcFileName, outDirName, srcSuffixLen); sfnSize = strlen(outDirFilename); assert(outDirFilename != NULL); } if (dfnbCapacity <= sfnSize+srcSuffixLen+1) { /* resize buffer for dstName */ free(dstFileNameBuffer); dfnbCapacity = sfnSize + srcSuffixLen + 30; dstFileNameBuffer = (char*)malloc(dfnbCapacity); if (!dstFileNameBuffer) { EXM_THROW(30, "zstd: %s", strerror(errno)); } } assert(dstFileNameBuffer != NULL); if (outDirFilename) { memcpy(dstFileNameBuffer, outDirFilename, sfnSize); free(outDirFilename); } else { memcpy(dstFileNameBuffer, srcFileName, sfnSize); } memcpy(dstFileNameBuffer+sfnSize, suffix, srcSuffixLen+1 /* Include terminating null */); return dstFileNameBuffer; } static unsigned long long FIO_getLargestFileSize(const char** inFileNames, unsigned nbFiles) { size_t i; unsigned long long fileSize, maxFileSize = 0; for (i = 0; i < nbFiles; i++) { fileSize = UTIL_getFileSize(inFileNames[i]); maxFileSize = fileSize > maxFileSize ? fileSize : maxFileSize; } return maxFileSize; } /* FIO_compressMultipleFilenames() : * compress nbFiles files * into either one destination (outFileName), * or into one file each (outFileName == NULL, but suffix != NULL), * or into a destination folder (specified with -O) */ int FIO_compressMultipleFilenames(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, const char** inFileNamesTable, const char* outMirroredRootDirName, const char* outDirName, const char* outFileName, const char* suffix, const char* dictFileName, int compressionLevel, ZSTD_compressionParameters comprParams) { int status; int error = 0; cRess_t ress = FIO_createCResources(prefs, dictFileName, FIO_getLargestFileSize(inFileNamesTable, (unsigned)fCtx->nbFilesTotal), compressionLevel, comprParams); /* init */ assert(outFileName != NULL || suffix != NULL); if (outFileName != NULL) { /* output into a single destination (stdout typically) */ FILE *dstFile; if (FIO_multiFilesConcatWarning(fCtx, prefs, outFileName, 1 /* displayLevelCutoff */)) { FIO_freeCResources(&ress); return 1; } dstFile = FIO_openDstFile(fCtx, prefs, NULL, outFileName, DEFAULT_FILE_PERMISSIONS); if (dstFile == NULL) { /* could not open outFileName */ error = 1; } else { AIO_WritePool_setFile(ress.writeCtx, dstFile); for (; fCtx->currFileIdx < fCtx->nbFilesTotal; ++fCtx->currFileIdx) { status = FIO_compressFilename_srcFile(fCtx, prefs, ress, outFileName, inFileNamesTable[fCtx->currFileIdx], compressionLevel); if (!status) fCtx->nbFilesProcessed++; error |= status; } if (AIO_WritePool_closeFile(ress.writeCtx)) EXM_THROW(29, "Write error (%s) : cannot properly close %s", strerror(errno), outFileName); } } else { if (outMirroredRootDirName) UTIL_mirrorSourceFilesDirectories(inFileNamesTable, (unsigned)fCtx->nbFilesTotal, outMirroredRootDirName); for (; fCtx->currFileIdx < fCtx->nbFilesTotal; ++fCtx->currFileIdx) { const char* const srcFileName = inFileNamesTable[fCtx->currFileIdx]; const char* dstFileName = NULL; if (outMirroredRootDirName) { char* validMirroredDirName = UTIL_createMirroredDestDirName(srcFileName, outMirroredRootDirName); if (validMirroredDirName) { dstFileName = FIO_determineCompressedName(srcFileName, validMirroredDirName, suffix); free(validMirroredDirName); } else { DISPLAYLEVEL(2, "zstd: --output-dir-mirror cannot compress '%s' into '%s' \n", srcFileName, outMirroredRootDirName); error=1; continue; } } else { dstFileName = FIO_determineCompressedName(srcFileName, outDirName, suffix); /* cannot fail */ } status = FIO_compressFilename_srcFile(fCtx, prefs, ress, dstFileName, srcFileName, compressionLevel); if (!status) fCtx->nbFilesProcessed++; error |= status; } if (outDirName) FIO_checkFilenameCollisions(inFileNamesTable , (unsigned)fCtx->nbFilesTotal); } if (FIO_shouldDisplayMultipleFileSummary(fCtx)) { UTIL_HumanReadableSize_t hr_isize = UTIL_makeHumanReadableSize((U64) fCtx->totalBytesInput); UTIL_HumanReadableSize_t hr_osize = UTIL_makeHumanReadableSize((U64) fCtx->totalBytesOutput); DISPLAY_PROGRESS("\r%79s\r", ""); if (fCtx->totalBytesInput == 0) { DISPLAY_SUMMARY("%3d files compressed : (%6.*f%4s => %6.*f%4s)\n", fCtx->nbFilesProcessed, hr_isize.precision, hr_isize.value, hr_isize.suffix, hr_osize.precision, hr_osize.value, hr_osize.suffix); } else { DISPLAY_SUMMARY("%3d files compressed : %.2f%% (%6.*f%4s => %6.*f%4s)\n", fCtx->nbFilesProcessed, (double)fCtx->totalBytesOutput/((double)fCtx->totalBytesInput)*100, hr_isize.precision, hr_isize.value, hr_isize.suffix, hr_osize.precision, hr_osize.value, hr_osize.suffix); } } FIO_freeCResources(&ress); return error; } #endif /* #ifndef ZSTD_NOCOMPRESS */ #ifndef ZSTD_NODECOMPRESS /* ************************************************************************** * Decompression ***************************************************************************/ typedef struct { FIO_Dict_t dict; ZSTD_DStream* dctx; WritePoolCtx_t *writeCtx; ReadPoolCtx_t *readCtx; } dRess_t; static dRess_t FIO_createDResources(FIO_prefs_t* const prefs, const char* dictFileName) { int useMMap = prefs->mmapDict == ZSTD_ps_enable; int forceNoUseMMap = prefs->mmapDict == ZSTD_ps_disable; stat_t statbuf; dRess_t ress; memset(&statbuf, 0, sizeof(statbuf)); memset(&ress, 0, sizeof(ress)); FIO_getDictFileStat(dictFileName, &statbuf); if (prefs->patchFromMode){ U64 const dictSize = UTIL_getFileSizeStat(&statbuf); useMMap |= dictSize > prefs->memLimit; FIO_adjustMemLimitForPatchFromMode(prefs, dictSize, 0 /* just use the dict size */); } /* Allocation */ ress.dctx = ZSTD_createDStream(); if (ress.dctx==NULL) EXM_THROW(60, "Error: %s : can't create ZSTD_DStream", strerror(errno)); CHECK( ZSTD_DCtx_setMaxWindowSize(ress.dctx, prefs->memLimit) ); CHECK( ZSTD_DCtx_setParameter(ress.dctx, ZSTD_d_forceIgnoreChecksum, !prefs->checksumFlag)); /* dictionary */ { FIO_dictBufferType_t dictBufferType = (useMMap && !forceNoUseMMap) ? FIO_mmapDict : FIO_mallocDict; FIO_initDict(&ress.dict, dictFileName, prefs, &statbuf, dictBufferType); CHECK(ZSTD_DCtx_reset(ress.dctx, ZSTD_reset_session_only) ); if (prefs->patchFromMode){ CHECK(ZSTD_DCtx_refPrefix(ress.dctx, ress.dict.dictBuffer, ress.dict.dictBufferSize)); } else { CHECK(ZSTD_DCtx_loadDictionary_byReference(ress.dctx, ress.dict.dictBuffer, ress.dict.dictBufferSize)); } } ress.writeCtx = AIO_WritePool_create(prefs, ZSTD_DStreamOutSize()); ress.readCtx = AIO_ReadPool_create(prefs, ZSTD_DStreamInSize()); return ress; } static void FIO_freeDResources(dRess_t ress) { FIO_freeDict(&(ress.dict)); CHECK( ZSTD_freeDStream(ress.dctx) ); AIO_WritePool_free(ress.writeCtx); AIO_ReadPool_free(ress.readCtx); } /* FIO_passThrough() : just copy input into output, for compatibility with gzip -df mode * @return : 0 (no error) */ static int FIO_passThrough(dRess_t *ress) { size_t const blockSize = MIN(MIN(64 KB, ZSTD_DStreamInSize()), ZSTD_DStreamOutSize()); IOJob_t *writeJob = AIO_WritePool_acquireJob(ress->writeCtx); AIO_ReadPool_fillBuffer(ress->readCtx, blockSize); while(ress->readCtx->srcBufferLoaded) { size_t writeSize; writeSize = MIN(blockSize, ress->readCtx->srcBufferLoaded); assert(writeSize <= writeJob->bufferSize); memcpy(writeJob->buffer, ress->readCtx->srcBuffer, writeSize); writeJob->usedBufferSize = writeSize; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); AIO_ReadPool_consumeBytes(ress->readCtx, writeSize); AIO_ReadPool_fillBuffer(ress->readCtx, blockSize); } assert(ress->readCtx->reachedEof); AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return 0; } /* FIO_zstdErrorHelp() : * detailed error message when requested window size is too large */ static void FIO_zstdErrorHelp(const FIO_prefs_t* const prefs, const dRess_t* ress, size_t err, const char* srcFileName) { ZSTD_frameHeader header; /* Help message only for one specific error */ if (ZSTD_getErrorCode(err) != ZSTD_error_frameParameter_windowTooLarge) return; /* Try to decode the frame header */ err = ZSTD_getFrameHeader(&header, ress->readCtx->srcBuffer, ress->readCtx->srcBufferLoaded); if (err == 0) { unsigned long long const windowSize = header.windowSize; unsigned const windowLog = FIO_highbit64(windowSize) + ((windowSize & (windowSize - 1)) != 0); assert(prefs->memLimit > 0); DISPLAYLEVEL(1, "%s : Window size larger than maximum : %llu > %u \n", srcFileName, windowSize, prefs->memLimit); if (windowLog <= ZSTD_WINDOWLOG_MAX) { unsigned const windowMB = (unsigned)((windowSize >> 20) + ((windowSize & ((1 MB) - 1)) != 0)); assert(windowSize < (U64)(1ULL << 52)); /* ensure now overflow for windowMB */ DISPLAYLEVEL(1, "%s : Use --long=%u or --memory=%uMB \n", srcFileName, windowLog, windowMB); return; } } DISPLAYLEVEL(1, "%s : Window log larger than ZSTD_WINDOWLOG_MAX=%u; not supported \n", srcFileName, ZSTD_WINDOWLOG_MAX); } /** FIO_decompressFrame() : * @return : size of decoded zstd frame, or an error code */ #define FIO_ERROR_FRAME_DECODING ((unsigned long long)(-2)) static unsigned long long FIO_decompressZstdFrame(FIO_ctx_t* const fCtx, dRess_t* ress, const FIO_prefs_t* const prefs, const char* srcFileName, U64 alreadyDecoded) /* for multi-frames streams */ { U64 frameSize = 0; IOJob_t *writeJob = AIO_WritePool_acquireJob(ress->writeCtx); /* display last 20 characters only */ { size_t const srcFileLength = strlen(srcFileName); if (srcFileLength>20) srcFileName += srcFileLength-20; } ZSTD_DCtx_reset(ress->dctx, ZSTD_reset_session_only); /* Header loading : ensures ZSTD_getFrameHeader() will succeed */ AIO_ReadPool_fillBuffer(ress->readCtx, ZSTD_FRAMEHEADERSIZE_MAX); /* Main decompression Loop */ while (1) { ZSTD_inBuffer inBuff = setInBuffer( ress->readCtx->srcBuffer, ress->readCtx->srcBufferLoaded, 0 ); ZSTD_outBuffer outBuff= setOutBuffer( writeJob->buffer, writeJob->bufferSize, 0 ); size_t const readSizeHint = ZSTD_decompressStream(ress->dctx, &outBuff, &inBuff); UTIL_HumanReadableSize_t const hrs = UTIL_makeHumanReadableSize(alreadyDecoded+frameSize); if (ZSTD_isError(readSizeHint)) { DISPLAYLEVEL(1, "%s : Decoding error (36) : %s \n", srcFileName, ZSTD_getErrorName(readSizeHint)); FIO_zstdErrorHelp(prefs, ress, readSizeHint, srcFileName); AIO_WritePool_releaseIoJob(writeJob); return FIO_ERROR_FRAME_DECODING; } /* Write block */ writeJob->usedBufferSize = outBuff.pos; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); frameSize += outBuff.pos; if (fCtx->nbFilesTotal > 1) { size_t srcFileNameSize = strlen(srcFileName); if (srcFileNameSize > 18) { const char* truncatedSrcFileName = srcFileName + srcFileNameSize - 15; DISPLAYUPDATE_PROGRESS( "\rDecompress: %2u/%2u files. Current: ...%s : %.*f%s... ", fCtx->currFileIdx+1, fCtx->nbFilesTotal, truncatedSrcFileName, hrs.precision, hrs.value, hrs.suffix); } else { DISPLAYUPDATE_PROGRESS("\rDecompress: %2u/%2u files. Current: %s : %.*f%s... ", fCtx->currFileIdx+1, fCtx->nbFilesTotal, srcFileName, hrs.precision, hrs.value, hrs.suffix); } } else { DISPLAYUPDATE_PROGRESS("\r%-20.20s : %.*f%s... ", srcFileName, hrs.precision, hrs.value, hrs.suffix); } AIO_ReadPool_consumeBytes(ress->readCtx, inBuff.pos); if (readSizeHint == 0) break; /* end of frame */ /* Fill input buffer */ { size_t const toDecode = MIN(readSizeHint, ZSTD_DStreamInSize()); /* support large skippable frames */ if (ress->readCtx->srcBufferLoaded < toDecode) { size_t const readSize = AIO_ReadPool_fillBuffer(ress->readCtx, toDecode); if (readSize==0) { DISPLAYLEVEL(1, "%s : Read error (39) : premature end \n", srcFileName); AIO_WritePool_releaseIoJob(writeJob); return FIO_ERROR_FRAME_DECODING; } } } } AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return frameSize; } #ifdef ZSTD_GZDECOMPRESS static unsigned long long FIO_decompressGzFrame(dRess_t* ress, const char* srcFileName) { unsigned long long outFileSize = 0; z_stream strm; int flush = Z_NO_FLUSH; int decodingError = 0; IOJob_t *writeJob = NULL; strm.zalloc = Z_NULL; strm.zfree = Z_NULL; strm.opaque = Z_NULL; strm.next_in = 0; strm.avail_in = 0; /* see https://www.zlib.net/manual.html */ if (inflateInit2(&strm, 15 /* maxWindowLogSize */ + 16 /* gzip only */) != Z_OK) return FIO_ERROR_FRAME_DECODING; writeJob = AIO_WritePool_acquireJob(ress->writeCtx); strm.next_out = (Bytef*)writeJob->buffer; strm.avail_out = (uInt)writeJob->bufferSize; strm.avail_in = (uInt)ress->readCtx->srcBufferLoaded; strm.next_in = (z_const unsigned char*)ress->readCtx->srcBuffer; for ( ; ; ) { int ret; if (strm.avail_in == 0) { AIO_ReadPool_consumeAndRefill(ress->readCtx); if (ress->readCtx->srcBufferLoaded == 0) flush = Z_FINISH; strm.next_in = (z_const unsigned char*)ress->readCtx->srcBuffer; strm.avail_in = (uInt)ress->readCtx->srcBufferLoaded; } ret = inflate(&strm, flush); if (ret == Z_BUF_ERROR) { DISPLAYLEVEL(1, "zstd: %s: premature gz end \n", srcFileName); decodingError = 1; break; } if (ret != Z_OK && ret != Z_STREAM_END) { DISPLAYLEVEL(1, "zstd: %s: inflate error %d \n", srcFileName, ret); decodingError = 1; break; } { size_t const decompBytes = writeJob->bufferSize - strm.avail_out; if (decompBytes) { writeJob->usedBufferSize = decompBytes; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); outFileSize += decompBytes; strm.next_out = (Bytef*)writeJob->buffer; strm.avail_out = (uInt)writeJob->bufferSize; } } if (ret == Z_STREAM_END) break; } AIO_ReadPool_consumeBytes(ress->readCtx, ress->readCtx->srcBufferLoaded - strm.avail_in); if ( (inflateEnd(&strm) != Z_OK) /* release resources ; error detected */ && (decodingError==0) ) { DISPLAYLEVEL(1, "zstd: %s: inflateEnd error \n", srcFileName); decodingError = 1; } AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return decodingError ? FIO_ERROR_FRAME_DECODING : outFileSize; } #endif #ifdef ZSTD_LZMADECOMPRESS static unsigned long long FIO_decompressLzmaFrame(dRess_t* ress, const char* srcFileName, int plain_lzma) { unsigned long long outFileSize = 0; lzma_stream strm = LZMA_STREAM_INIT; lzma_action action = LZMA_RUN; lzma_ret initRet; int decodingError = 0; IOJob_t *writeJob = NULL; strm.next_in = 0; strm.avail_in = 0; if (plain_lzma) { initRet = lzma_alone_decoder(&strm, UINT64_MAX); /* LZMA */ } else { initRet = lzma_stream_decoder(&strm, UINT64_MAX, 0); /* XZ */ } if (initRet != LZMA_OK) { DISPLAYLEVEL(1, "zstd: %s: %s error %d \n", plain_lzma ? "lzma_alone_decoder" : "lzma_stream_decoder", srcFileName, initRet); return FIO_ERROR_FRAME_DECODING; } writeJob = AIO_WritePool_acquireJob(ress->writeCtx); strm.next_out = (BYTE*)writeJob->buffer; strm.avail_out = writeJob->bufferSize; strm.next_in = (BYTE const*)ress->readCtx->srcBuffer; strm.avail_in = ress->readCtx->srcBufferLoaded; for ( ; ; ) { lzma_ret ret; if (strm.avail_in == 0) { AIO_ReadPool_consumeAndRefill(ress->readCtx); if (ress->readCtx->srcBufferLoaded == 0) action = LZMA_FINISH; strm.next_in = (BYTE const*)ress->readCtx->srcBuffer; strm.avail_in = ress->readCtx->srcBufferLoaded; } ret = lzma_code(&strm, action); if (ret == LZMA_BUF_ERROR) { DISPLAYLEVEL(1, "zstd: %s: premature lzma end \n", srcFileName); decodingError = 1; break; } if (ret != LZMA_OK && ret != LZMA_STREAM_END) { DISPLAYLEVEL(1, "zstd: %s: lzma_code decoding error %d \n", srcFileName, ret); decodingError = 1; break; } { size_t const decompBytes = writeJob->bufferSize - strm.avail_out; if (decompBytes) { writeJob->usedBufferSize = decompBytes; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); outFileSize += decompBytes; strm.next_out = (BYTE*)writeJob->buffer; strm.avail_out = writeJob->bufferSize; } } if (ret == LZMA_STREAM_END) break; } AIO_ReadPool_consumeBytes(ress->readCtx, ress->readCtx->srcBufferLoaded - strm.avail_in); lzma_end(&strm); AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return decodingError ? FIO_ERROR_FRAME_DECODING : outFileSize; } #endif #ifdef ZSTD_LZ4DECOMPRESS static unsigned long long FIO_decompressLz4Frame(dRess_t* ress, const char* srcFileName) { unsigned long long filesize = 0; LZ4F_errorCode_t nextToLoad = 4; LZ4F_decompressionContext_t dCtx; LZ4F_errorCode_t const errorCode = LZ4F_createDecompressionContext(&dCtx, LZ4F_VERSION); int decodingError = 0; IOJob_t *writeJob = NULL; if (LZ4F_isError(errorCode)) { DISPLAYLEVEL(1, "zstd: failed to create lz4 decompression context \n"); return FIO_ERROR_FRAME_DECODING; } writeJob = AIO_WritePool_acquireJob(ress->writeCtx); /* Main Loop */ for (;nextToLoad;) { size_t pos = 0; size_t decodedBytes = writeJob->bufferSize; int fullBufferDecoded = 0; /* Read input */ AIO_ReadPool_fillBuffer(ress->readCtx, nextToLoad); if(!ress->readCtx->srcBufferLoaded) break; /* reached end of file */ while ((pos < ress->readCtx->srcBufferLoaded) || fullBufferDecoded) { /* still to read, or still to flush */ /* Decode Input (at least partially) */ size_t remaining = ress->readCtx->srcBufferLoaded - pos; decodedBytes = writeJob->bufferSize; nextToLoad = LZ4F_decompress(dCtx, writeJob->buffer, &decodedBytes, (char*)(ress->readCtx->srcBuffer)+pos, &remaining, NULL); if (LZ4F_isError(nextToLoad)) { DISPLAYLEVEL(1, "zstd: %s: lz4 decompression error : %s \n", srcFileName, LZ4F_getErrorName(nextToLoad)); decodingError = 1; nextToLoad = 0; break; } pos += remaining; assert(pos <= ress->readCtx->srcBufferLoaded); fullBufferDecoded = decodedBytes == writeJob->bufferSize; /* Write Block */ if (decodedBytes) { UTIL_HumanReadableSize_t hrs; writeJob->usedBufferSize = decodedBytes; AIO_WritePool_enqueueAndReacquireWriteJob(&writeJob); filesize += decodedBytes; hrs = UTIL_makeHumanReadableSize(filesize); DISPLAYUPDATE_PROGRESS("\rDecompressed : %.*f%s ", hrs.precision, hrs.value, hrs.suffix); } if (!nextToLoad) break; } AIO_ReadPool_consumeBytes(ress->readCtx, pos); } if (nextToLoad!=0) { DISPLAYLEVEL(1, "zstd: %s: unfinished lz4 stream \n", srcFileName); decodingError=1; } LZ4F_freeDecompressionContext(dCtx); AIO_WritePool_releaseIoJob(writeJob); AIO_WritePool_sparseWriteEnd(ress->writeCtx); return decodingError ? FIO_ERROR_FRAME_DECODING : filesize; } #endif /** FIO_decompressFrames() : * Find and decode frames inside srcFile * srcFile presumed opened and valid * @return : 0 : OK * 1 : error */ static int FIO_decompressFrames(FIO_ctx_t* const fCtx, dRess_t ress, const FIO_prefs_t* const prefs, const char* dstFileName, const char* srcFileName) { unsigned readSomething = 0; unsigned long long filesize = 0; int passThrough = prefs->passThrough; if (passThrough == -1) { /* If pass-through mode is not explicitly enabled or disabled, * default to the legacy behavior of enabling it if we are writing * to stdout with the overwrite flag enabled. */ passThrough = prefs->overwrite && !strcmp(dstFileName, stdoutmark); } assert(passThrough == 0 || passThrough == 1); /* for each frame */ for ( ; ; ) { /* check magic number -> version */ size_t const toRead = 4; const BYTE* buf; AIO_ReadPool_fillBuffer(ress.readCtx, toRead); buf = (const BYTE*)ress.readCtx->srcBuffer; if (ress.readCtx->srcBufferLoaded==0) { if (readSomething==0) { /* srcFile is empty (which is invalid) */ DISPLAYLEVEL(1, "zstd: %s: unexpected end of file \n", srcFileName); return 1; } /* else, just reached frame boundary */ break; /* no more input */ } readSomething = 1; /* there is at least 1 byte in srcFile */ if (ress.readCtx->srcBufferLoaded < toRead) { /* not enough input to check magic number */ if (passThrough) { return FIO_passThrough(&ress); } DISPLAYLEVEL(1, "zstd: %s: unknown header \n", srcFileName); return 1; } if (ZSTD_isFrame(buf, ress.readCtx->srcBufferLoaded)) { unsigned long long const frameSize = FIO_decompressZstdFrame(fCtx, &ress, prefs, srcFileName, filesize); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; } else if (buf[0] == 31 && buf[1] == 139) { /* gz magic number */ #ifdef ZSTD_GZDECOMPRESS unsigned long long const frameSize = FIO_decompressGzFrame(&ress, srcFileName); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; #else DISPLAYLEVEL(1, "zstd: %s: gzip file cannot be uncompressed (zstd compiled without HAVE_ZLIB) -- ignored \n", srcFileName); return 1; #endif } else if ((buf[0] == 0xFD && buf[1] == 0x37) /* xz magic number */ || (buf[0] == 0x5D && buf[1] == 0x00)) { /* lzma header (no magic number) */ #ifdef ZSTD_LZMADECOMPRESS unsigned long long const frameSize = FIO_decompressLzmaFrame(&ress, srcFileName, buf[0] != 0xFD); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; #else DISPLAYLEVEL(1, "zstd: %s: xz/lzma file cannot be uncompressed (zstd compiled without HAVE_LZMA) -- ignored \n", srcFileName); return 1; #endif } else if (MEM_readLE32(buf) == LZ4_MAGICNUMBER) { #ifdef ZSTD_LZ4DECOMPRESS unsigned long long const frameSize = FIO_decompressLz4Frame(&ress, srcFileName); if (frameSize == FIO_ERROR_FRAME_DECODING) return 1; filesize += frameSize; #else DISPLAYLEVEL(1, "zstd: %s: lz4 file cannot be uncompressed (zstd compiled without HAVE_LZ4) -- ignored \n", srcFileName); return 1; #endif } else if (passThrough) { return FIO_passThrough(&ress); } else { DISPLAYLEVEL(1, "zstd: %s: unsupported format \n", srcFileName); return 1; } } /* for each frame */ /* Final Status */ fCtx->totalBytesOutput += (size_t)filesize; DISPLAY_PROGRESS("\r%79s\r", ""); if (FIO_shouldDisplayFileSummary(fCtx)) DISPLAY_SUMMARY("%-20s: %llu bytes \n", srcFileName, filesize); return 0; } /** FIO_decompressDstFile() : open `dstFileName`, or pass-through if writeCtx's file is already != 0, then start decompression process (FIO_decompressFrames()). @return : 0 : OK 1 : operation aborted */ static int FIO_decompressDstFile(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, dRess_t ress, const char* dstFileName, const char* srcFileName, const stat_t* srcFileStat) { int result; int releaseDstFile = 0; int transferStat = 0; int dstFd = 0; if ((AIO_WritePool_getFile(ress.writeCtx) == NULL) && (prefs->testMode == 0)) { FILE *dstFile; int dstFilePermissions = DEFAULT_FILE_PERMISSIONS; if ( strcmp(srcFileName, stdinmark) /* special case : don't transfer permissions from stdin */ && strcmp(dstFileName, stdoutmark) && UTIL_isRegularFileStat(srcFileStat) ) { transferStat = 1; dstFilePermissions = TEMPORARY_FILE_PERMISSIONS; } releaseDstFile = 1; dstFile = FIO_openDstFile(fCtx, prefs, srcFileName, dstFileName, dstFilePermissions); if (dstFile==NULL) return 1; dstFd = fileno(dstFile); AIO_WritePool_setFile(ress.writeCtx, dstFile); /* Must only be added after FIO_openDstFile() succeeds. * Otherwise we may delete the destination file if it already exists, * and the user presses Ctrl-C when asked if they wish to overwrite. */ addHandler(dstFileName); } result = FIO_decompressFrames(fCtx, ress, prefs, dstFileName, srcFileName); if (releaseDstFile) { clearHandler(); if (transferStat) { UTIL_setFDStat(dstFd, dstFileName, srcFileStat); } if (AIO_WritePool_closeFile(ress.writeCtx)) { DISPLAYLEVEL(1, "zstd: %s: %s \n", dstFileName, strerror(errno)); result = 1; } if (transferStat) { UTIL_utime(dstFileName, srcFileStat); } if ( (result != 0) /* operation failure */ && strcmp(dstFileName, stdoutmark) /* special case : don't remove() stdout */ ) { FIO_removeFile(dstFileName); /* remove decompression artefact; note: don't do anything special if remove() fails */ } } return result; } /** FIO_decompressSrcFile() : Open `srcFileName`, transfer control to decompressDstFile() @return : 0 : OK 1 : error */ static int FIO_decompressSrcFile(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, dRess_t ress, const char* dstFileName, const char* srcFileName) { FILE* srcFile; stat_t srcFileStat; int result; U64 fileSize = UTIL_FILESIZE_UNKNOWN; if (UTIL_isDirectory(srcFileName)) { DISPLAYLEVEL(1, "zstd: %s is a directory -- ignored \n", srcFileName); return 1; } srcFile = FIO_openSrcFile(prefs, srcFileName, &srcFileStat); if (srcFile==NULL) return 1; /* Don't use AsyncIO for small files */ if (strcmp(srcFileName, stdinmark)) /* Stdin doesn't have stats */ fileSize = UTIL_getFileSizeStat(&srcFileStat); if(fileSize != UTIL_FILESIZE_UNKNOWN && fileSize < ZSTD_BLOCKSIZE_MAX * 3) { AIO_ReadPool_setAsync(ress.readCtx, 0); AIO_WritePool_setAsync(ress.writeCtx, 0); } else { AIO_ReadPool_setAsync(ress.readCtx, 1); AIO_WritePool_setAsync(ress.writeCtx, 1); } AIO_ReadPool_setFile(ress.readCtx, srcFile); result = FIO_decompressDstFile(fCtx, prefs, ress, dstFileName, srcFileName, &srcFileStat); AIO_ReadPool_setFile(ress.readCtx, NULL); /* Close file */ if (fclose(srcFile)) { DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno)); /* error should not happen */ return 1; } if ( prefs->removeSrcFile /* --rm */ && (result==0) /* decompression successful */ && strcmp(srcFileName, stdinmark) ) /* not stdin */ { /* We must clear the handler, since after this point calling it would * delete both the source and destination files. */ clearHandler(); if (FIO_removeFile(srcFileName)) { /* failed to remove src file */ DISPLAYLEVEL(1, "zstd: %s: %s \n", srcFileName, strerror(errno)); return 1; } } return result; } int FIO_decompressFilename(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, const char* dstFileName, const char* srcFileName, const char* dictFileName) { dRess_t const ress = FIO_createDResources(prefs, dictFileName); int const decodingError = FIO_decompressSrcFile(fCtx, prefs, ress, dstFileName, srcFileName); FIO_freeDResources(ress); return decodingError; } static const char *suffixList[] = { ZSTD_EXTENSION, TZSTD_EXTENSION, #ifndef ZSTD_NODECOMPRESS ZSTD_ALT_EXTENSION, #endif #ifdef ZSTD_GZDECOMPRESS GZ_EXTENSION, TGZ_EXTENSION, #endif #ifdef ZSTD_LZMADECOMPRESS LZMA_EXTENSION, XZ_EXTENSION, TXZ_EXTENSION, #endif #ifdef ZSTD_LZ4DECOMPRESS LZ4_EXTENSION, TLZ4_EXTENSION, #endif NULL }; static const char *suffixListStr = ZSTD_EXTENSION "/" TZSTD_EXTENSION #ifdef ZSTD_GZDECOMPRESS "/" GZ_EXTENSION "/" TGZ_EXTENSION #endif #ifdef ZSTD_LZMADECOMPRESS "/" LZMA_EXTENSION "/" XZ_EXTENSION "/" TXZ_EXTENSION #endif #ifdef ZSTD_LZ4DECOMPRESS "/" LZ4_EXTENSION "/" TLZ4_EXTENSION #endif ; /* FIO_determineDstName() : * create a destination filename from a srcFileName. * @return a pointer to it. * @return == NULL if there is an error */ static const char* FIO_determineDstName(const char* srcFileName, const char* outDirName) { static size_t dfnbCapacity = 0; static char* dstFileNameBuffer = NULL; /* using static allocation : this function cannot be multi-threaded */ size_t dstFileNameEndPos; char* outDirFilename = NULL; const char* dstSuffix = ""; size_t dstSuffixLen = 0; size_t sfnSize = strlen(srcFileName); size_t srcSuffixLen; const char* const srcSuffix = strrchr(srcFileName, '.'); if(!strcmp(srcFileName, stdinmark)) { return stdoutmark; } if (srcSuffix == NULL) { DISPLAYLEVEL(1, "zstd: %s: unknown suffix (%s expected). " "Can't derive the output file name. " "Specify it with -o dstFileName. Ignoring.\n", srcFileName, suffixListStr); return NULL; } srcSuffixLen = strlen(srcSuffix); { const char** matchedSuffixPtr; for (matchedSuffixPtr = suffixList; *matchedSuffixPtr != NULL; matchedSuffixPtr++) { if (!strcmp(*matchedSuffixPtr, srcSuffix)) { break; } } /* check suffix is authorized */ if (sfnSize <= srcSuffixLen || *matchedSuffixPtr == NULL) { DISPLAYLEVEL(1, "zstd: %s: unknown suffix (%s expected). " "Can't derive the output file name. " "Specify it with -o dstFileName. Ignoring.\n", srcFileName, suffixListStr); return NULL; } if ((*matchedSuffixPtr)[1] == 't') { dstSuffix = ".tar"; dstSuffixLen = strlen(dstSuffix); } } if (outDirName) { outDirFilename = FIO_createFilename_fromOutDir(srcFileName, outDirName, 0); sfnSize = strlen(outDirFilename); assert(outDirFilename != NULL); } if (dfnbCapacity+srcSuffixLen <= sfnSize+1+dstSuffixLen) { /* allocate enough space to write dstFilename into it */ free(dstFileNameBuffer); dfnbCapacity = sfnSize + 20; dstFileNameBuffer = (char*)malloc(dfnbCapacity); if (dstFileNameBuffer==NULL) EXM_THROW(74, "%s : not enough memory for dstFileName", strerror(errno)); } /* return dst name == src name truncated from suffix */ assert(dstFileNameBuffer != NULL); dstFileNameEndPos = sfnSize - srcSuffixLen; if (outDirFilename) { memcpy(dstFileNameBuffer, outDirFilename, dstFileNameEndPos); free(outDirFilename); } else { memcpy(dstFileNameBuffer, srcFileName, dstFileNameEndPos); } /* The short tar extensions tzst, tgz, txz and tlz4 files should have "tar" * extension on decompression. Also writes terminating null. */ strcpy(dstFileNameBuffer + dstFileNameEndPos, dstSuffix); return dstFileNameBuffer; /* note : dstFileNameBuffer memory is not going to be free */ } int FIO_decompressMultipleFilenames(FIO_ctx_t* const fCtx, FIO_prefs_t* const prefs, const char** srcNamesTable, const char* outMirroredRootDirName, const char* outDirName, const char* outFileName, const char* dictFileName) { int status; int error = 0; dRess_t ress = FIO_createDResources(prefs, dictFileName); if (outFileName) { if (FIO_multiFilesConcatWarning(fCtx, prefs, outFileName, 1 /* displayLevelCutoff */)) { FIO_freeDResources(ress); return 1; } if (!prefs->testMode) { FILE* dstFile = FIO_openDstFile(fCtx, prefs, NULL, outFileName, DEFAULT_FILE_PERMISSIONS); if (dstFile == 0) EXM_THROW(19, "cannot open %s", outFileName); AIO_WritePool_setFile(ress.writeCtx, dstFile); } for (; fCtx->currFileIdx < fCtx->nbFilesTotal; fCtx->currFileIdx++) { status = FIO_decompressSrcFile(fCtx, prefs, ress, outFileName, srcNamesTable[fCtx->currFileIdx]); if (!status) fCtx->nbFilesProcessed++; error |= status; } if ((!prefs->testMode) && (AIO_WritePool_closeFile(ress.writeCtx))) EXM_THROW(72, "Write error : %s : cannot properly close output file", strerror(errno)); } else { if (outMirroredRootDirName) UTIL_mirrorSourceFilesDirectories(srcNamesTable, (unsigned)fCtx->nbFilesTotal, outMirroredRootDirName); for (; fCtx->currFileIdx < fCtx->nbFilesTotal; fCtx->currFileIdx++) { /* create dstFileName */ const char* const srcFileName = srcNamesTable[fCtx->currFileIdx]; const char* dstFileName = NULL; if (outMirroredRootDirName) { char* validMirroredDirName = UTIL_createMirroredDestDirName(srcFileName, outMirroredRootDirName); if (validMirroredDirName) { dstFileName = FIO_determineDstName(srcFileName, validMirroredDirName); free(validMirroredDirName); } else { DISPLAYLEVEL(2, "zstd: --output-dir-mirror cannot decompress '%s' into '%s'\n", srcFileName, outMirroredRootDirName); } } else { dstFileName = FIO_determineDstName(srcFileName, outDirName); } if (dstFileName == NULL) { error=1; continue; } status = FIO_decompressSrcFile(fCtx, prefs, ress, dstFileName, srcFileName); if (!status) fCtx->nbFilesProcessed++; error |= status; } if (outDirName) FIO_checkFilenameCollisions(srcNamesTable , (unsigned)fCtx->nbFilesTotal); } if (FIO_shouldDisplayMultipleFileSummary(fCtx)) { DISPLAY_PROGRESS("\r%79s\r", ""); DISPLAY_SUMMARY("%d files decompressed : %6llu bytes total \n", fCtx->nbFilesProcessed, (unsigned long long)fCtx->totalBytesOutput); } FIO_freeDResources(ress); return error; } /* ************************************************************************** * .zst file info (--list command) ***************************************************************************/ typedef struct { U64 decompressedSize; U64 compressedSize; U64 windowSize; int numActualFrames; int numSkippableFrames; int decompUnavailable; int usesCheck; BYTE checksum[4]; U32 nbFiles; unsigned dictID; } fileInfo_t; typedef enum { info_success=0, info_frame_error=1, info_not_zstd=2, info_file_error=3, info_truncated_input=4 } InfoError; #define ERROR_IF(c,n,...) { \ if (c) { \ DISPLAYLEVEL(1, __VA_ARGS__); \ DISPLAYLEVEL(1, " \n"); \ return n; \ } \ } static InfoError FIO_analyzeFrames(fileInfo_t* info, FILE* const srcFile) { /* begin analyzing frame */ for ( ; ; ) { BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX]; size_t const numBytesRead = fread(headerBuffer, 1, sizeof(headerBuffer), srcFile); if (numBytesRead < ZSTD_FRAMEHEADERSIZE_MIN(ZSTD_f_zstd1)) { if ( feof(srcFile) && (numBytesRead == 0) && (info->compressedSize > 0) && (info->compressedSize != UTIL_FILESIZE_UNKNOWN) ) { unsigned long long file_position = (unsigned long long) LONG_TELL(srcFile); unsigned long long file_size = (unsigned long long) info->compressedSize; ERROR_IF(file_position != file_size, info_truncated_input, "Error: seeked to position %llu, which is beyond file size of %llu\n", file_position, file_size); break; /* correct end of file => success */ } ERROR_IF(feof(srcFile), info_not_zstd, "Error: reached end of file with incomplete frame"); ERROR_IF(1, info_frame_error, "Error: did not reach end of file but ran out of frames"); } { U32 const magicNumber = MEM_readLE32(headerBuffer); /* Zstandard frame */ if (magicNumber == ZSTD_MAGICNUMBER) { ZSTD_frameHeader header; U64 const frameContentSize = ZSTD_getFrameContentSize(headerBuffer, numBytesRead); if ( frameContentSize == ZSTD_CONTENTSIZE_ERROR || frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN ) { info->decompUnavailable = 1; } else { info->decompressedSize += frameContentSize; } ERROR_IF(ZSTD_getFrameHeader(&header, headerBuffer, numBytesRead) != 0, info_frame_error, "Error: could not decode frame header"); if (info->dictID != 0 && info->dictID != header.dictID) { DISPLAY("WARNING: File contains multiple frames with different dictionary IDs. Showing dictID 0 instead"); info->dictID = 0; } else { info->dictID = header.dictID; } info->windowSize = header.windowSize; /* move to the end of the frame header */ { size_t const headerSize = ZSTD_frameHeaderSize(headerBuffer, numBytesRead); ERROR_IF(ZSTD_isError(headerSize), info_frame_error, "Error: could not determine frame header size"); ERROR_IF(fseek(srcFile, ((long)headerSize)-((long)numBytesRead), SEEK_CUR) != 0, info_frame_error, "Error: could not move to end of frame header"); } /* skip all blocks in the frame */ { int lastBlock = 0; do { BYTE blockHeaderBuffer[3]; ERROR_IF(fread(blockHeaderBuffer, 1, 3, srcFile) != 3, info_frame_error, "Error while reading block header"); { U32 const blockHeader = MEM_readLE24(blockHeaderBuffer); U32 const blockTypeID = (blockHeader >> 1) & 3; U32 const isRLE = (blockTypeID == 1); U32 const isWrongBlock = (blockTypeID == 3); long const blockSize = isRLE ? 1 : (long)(blockHeader >> 3); ERROR_IF(isWrongBlock, info_frame_error, "Error: unsupported block type"); lastBlock = blockHeader & 1; ERROR_IF(fseek(srcFile, blockSize, SEEK_CUR) != 0, info_frame_error, "Error: could not skip to end of block"); } } while (lastBlock != 1); } /* check if checksum is used */ { BYTE const frameHeaderDescriptor = headerBuffer[4]; int const contentChecksumFlag = (frameHeaderDescriptor & (1 << 2)) >> 2; if (contentChecksumFlag) { info->usesCheck = 1; ERROR_IF(fread(info->checksum, 1, 4, srcFile) != 4, info_frame_error, "Error: could not read checksum"); } } info->numActualFrames++; } /* Skippable frame */ else if ((magicNumber & ZSTD_MAGIC_SKIPPABLE_MASK) == ZSTD_MAGIC_SKIPPABLE_START) { U32 const frameSize = MEM_readLE32(headerBuffer + 4); long const seek = (long)(8 + frameSize - numBytesRead); ERROR_IF(LONG_SEEK(srcFile, seek, SEEK_CUR) != 0, info_frame_error, "Error: could not find end of skippable frame"); info->numSkippableFrames++; } /* unknown content */ else { return info_not_zstd; } } /* magic number analysis */ } /* end analyzing frames */ return info_success; } static InfoError getFileInfo_fileConfirmed(fileInfo_t* info, const char* inFileName) { InfoError status; stat_t srcFileStat; FILE* const srcFile = FIO_openSrcFile(NULL, inFileName, &srcFileStat); ERROR_IF(srcFile == NULL, info_file_error, "Error: could not open source file %s", inFileName); info->compressedSize = UTIL_getFileSizeStat(&srcFileStat); status = FIO_analyzeFrames(info, srcFile); fclose(srcFile); info->nbFiles = 1; return status; } /** getFileInfo() : * Reads information from file, stores in *info * @return : InfoError status */ static InfoError getFileInfo(fileInfo_t* info, const char* srcFileName) { ERROR_IF(!UTIL_isRegularFile(srcFileName), info_file_error, "Error : %s is not a file", srcFileName); return getFileInfo_fileConfirmed(info, srcFileName); } static void displayInfo(const char* inFileName, const fileInfo_t* info, int displayLevel) { UTIL_HumanReadableSize_t const window_hrs = UTIL_makeHumanReadableSize(info->windowSize); UTIL_HumanReadableSize_t const compressed_hrs = UTIL_makeHumanReadableSize(info->compressedSize); UTIL_HumanReadableSize_t const decompressed_hrs = UTIL_makeHumanReadableSize(info->decompressedSize); double const ratio = (info->compressedSize == 0) ? 0 : ((double)info->decompressedSize)/(double)info->compressedSize; const char* const checkString = (info->usesCheck ? "XXH64" : "None"); if (displayLevel <= 2) { if (!info->decompUnavailable) { DISPLAYOUT("%6d %5d %6.*f%4s %8.*f%4s %5.3f %5s %s\n", info->numSkippableFrames + info->numActualFrames, info->numSkippableFrames, compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix, decompressed_hrs.precision, decompressed_hrs.value, decompressed_hrs.suffix, ratio, checkString, inFileName); } else { DISPLAYOUT("%6d %5d %6.*f%4s %5s %s\n", info->numSkippableFrames + info->numActualFrames, info->numSkippableFrames, compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix, checkString, inFileName); } } else { DISPLAYOUT("%s \n", inFileName); DISPLAYOUT("# Zstandard Frames: %d\n", info->numActualFrames); if (info->numSkippableFrames) DISPLAYOUT("# Skippable Frames: %d\n", info->numSkippableFrames); DISPLAYOUT("DictID: %u\n", info->dictID); DISPLAYOUT("Window Size: %.*f%s (%llu B)\n", window_hrs.precision, window_hrs.value, window_hrs.suffix, (unsigned long long)info->windowSize); DISPLAYOUT("Compressed Size: %.*f%s (%llu B)\n", compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix, (unsigned long long)info->compressedSize); if (!info->decompUnavailable) { DISPLAYOUT("Decompressed Size: %.*f%s (%llu B)\n", decompressed_hrs.precision, decompressed_hrs.value, decompressed_hrs.suffix, (unsigned long long)info->decompressedSize); DISPLAYOUT("Ratio: %.4f\n", ratio); } if (info->usesCheck && info->numActualFrames == 1) { DISPLAYOUT("Check: %s %02x%02x%02x%02x\n", checkString, info->checksum[3], info->checksum[2], info->checksum[1], info->checksum[0] ); } else { DISPLAYOUT("Check: %s\n", checkString); } DISPLAYOUT("\n"); } } static fileInfo_t FIO_addFInfo(fileInfo_t fi1, fileInfo_t fi2) { fileInfo_t total; memset(&total, 0, sizeof(total)); total.numActualFrames = fi1.numActualFrames + fi2.numActualFrames; total.numSkippableFrames = fi1.numSkippableFrames + fi2.numSkippableFrames; total.compressedSize = fi1.compressedSize + fi2.compressedSize; total.decompressedSize = fi1.decompressedSize + fi2.decompressedSize; total.decompUnavailable = fi1.decompUnavailable | fi2.decompUnavailable; total.usesCheck = fi1.usesCheck & fi2.usesCheck; total.nbFiles = fi1.nbFiles + fi2.nbFiles; return total; } static int FIO_listFile(fileInfo_t* total, const char* inFileName, int displayLevel) { fileInfo_t info; memset(&info, 0, sizeof(info)); { InfoError const error = getFileInfo(&info, inFileName); switch (error) { case info_frame_error: /* display error, but provide output */ DISPLAYLEVEL(1, "Error while parsing \"%s\" \n", inFileName); break; case info_not_zstd: DISPLAYOUT("File \"%s\" not compressed by zstd \n", inFileName); if (displayLevel > 2) DISPLAYOUT("\n"); return 1; case info_file_error: /* error occurred while opening the file */ if (displayLevel > 2) DISPLAYOUT("\n"); return 1; case info_truncated_input: DISPLAYOUT("File \"%s\" is truncated \n", inFileName); if (displayLevel > 2) DISPLAYOUT("\n"); return 1; case info_success: default: break; } displayInfo(inFileName, &info, displayLevel); *total = FIO_addFInfo(*total, info); assert(error == info_success || error == info_frame_error); return (int)error; } } int FIO_listMultipleFiles(unsigned numFiles, const char** filenameTable, int displayLevel) { /* ensure no specified input is stdin (needs fseek() capability) */ { unsigned u; for (u=0; u 1 && displayLevel <= 2) { /* display total */ UTIL_HumanReadableSize_t const compressed_hrs = UTIL_makeHumanReadableSize(total.compressedSize); UTIL_HumanReadableSize_t const decompressed_hrs = UTIL_makeHumanReadableSize(total.decompressedSize); double const ratio = (total.compressedSize == 0) ? 0 : ((double)total.decompressedSize)/(double)total.compressedSize; const char* const checkString = (total.usesCheck ? "XXH64" : ""); DISPLAYOUT("----------------------------------------------------------------- \n"); if (total.decompUnavailable) { DISPLAYOUT("%6d %5d %6.*f%4s %5s %u files\n", total.numSkippableFrames + total.numActualFrames, total.numSkippableFrames, compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix, checkString, (unsigned)total.nbFiles); } else { DISPLAYOUT("%6d %5d %6.*f%4s %8.*f%4s %5.3f %5s %u files\n", total.numSkippableFrames + total.numActualFrames, total.numSkippableFrames, compressed_hrs.precision, compressed_hrs.value, compressed_hrs.suffix, decompressed_hrs.precision, decompressed_hrs.value, decompressed_hrs.suffix, ratio, checkString, (unsigned)total.nbFiles); } } return error; } } #endif /* #ifndef ZSTD_NODECOMPRESS */