Add dependencies locally
This commit is contained in:
70
deps/libtomcrypt/demos/CMakeLists.txt
vendored
Normal file
70
deps/libtomcrypt/demos/CMakeLists.txt
vendored
Normal file
@ -0,0 +1,70 @@
|
||||
#-----------------------------------------------------------------------------
|
||||
# Options
|
||||
#-----------------------------------------------------------------------------
|
||||
option(BUILD_USEFUL_DEMOS "Build useful demos (hashsum)" FALSE)
|
||||
option(BUILD_USABLE_DEMOS "Build usable demos (ltcrypt sizes constants)" FALSE)
|
||||
|
||||
#-----------------------------------------------------------------------------
|
||||
# Useful demos
|
||||
#-----------------------------------------------------------------------------
|
||||
|
||||
if(BUILD_USEFUL_DEMOS)
|
||||
|
||||
list(APPEND ALL_DEMOS_TARGETS hashsum)
|
||||
|
||||
# hashsum
|
||||
add_executable(hashsum
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/hashsum.c
|
||||
)
|
||||
|
||||
target_link_libraries(hashsum PRIVATE
|
||||
${PROJECT_NAME}
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
#-----------------------------------------------------------------------------
|
||||
# Usable demos
|
||||
#-----------------------------------------------------------------------------
|
||||
|
||||
if(BUILD_USABLE_DEMOS)
|
||||
|
||||
list(APPEND ALL_DEMOS_TARGETS ltcrypt sizes constants)
|
||||
|
||||
# ltcrypt
|
||||
add_executable(ltcrypt
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ltcrypt.c
|
||||
)
|
||||
|
||||
target_link_libraries(ltcrypt PRIVATE
|
||||
${PROJECT_NAME}
|
||||
)
|
||||
|
||||
# sizes
|
||||
add_executable(sizes
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sizes.c
|
||||
)
|
||||
|
||||
target_link_libraries(sizes PRIVATE
|
||||
${PROJECT_NAME}
|
||||
)
|
||||
|
||||
# constants
|
||||
add_executable(constants
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/constants.c
|
||||
)
|
||||
|
||||
target_link_libraries(constants PRIVATE
|
||||
${PROJECT_NAME}
|
||||
)
|
||||
|
||||
endif()
|
||||
|
||||
#-----------------------------------------------------------------------------
|
||||
# Install targets
|
||||
#-----------------------------------------------------------------------------
|
||||
install(TARGETS ${ALL_DEMOS_TARGETS}
|
||||
COMPONENT "runtime"
|
||||
EXPORT ${TARGETS_EXPORT_NAME}
|
||||
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
|
||||
)
|
150
deps/libtomcrypt/demos/aesgcm.c
vendored
Normal file
150
deps/libtomcrypt/demos/aesgcm.c
vendored
Normal file
@ -0,0 +1,150 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/**
|
||||
@file aesgcm.c
|
||||
AES128-GCM demo - file en-&decryption, Steffen Jaeckel
|
||||
Uses the format: |ciphertext|tag-16-bytes|
|
||||
*/
|
||||
|
||||
#define _GNU_SOURCE
|
||||
|
||||
#include <tomcrypt.h>
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <sys/stat.h>
|
||||
#include <sys/types.h>
|
||||
#include <dirent.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "gcm-file/gcm_filehandle.c"
|
||||
#include "gcm-file/gcm_file.c"
|
||||
|
||||
|
||||
static off_t fsize(const char *filename)
|
||||
{
|
||||
struct stat st;
|
||||
|
||||
if (stat(filename, &st) == 0) return st.st_size;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
#if defined(__linux__) && defined(__GLIBC_PREREQ)
|
||||
#if __GLIBC_PREREQ(2, 14)
|
||||
#define HAS_SYNCFS
|
||||
#endif
|
||||
#endif
|
||||
|
||||
static int mv(const char *old_name, const char *new_name)
|
||||
{
|
||||
int fd;
|
||||
if (rename(old_name, new_name) == -1) return -1;
|
||||
fd = open(new_name, 0);
|
||||
if (fd == -1) return -1;
|
||||
#if !defined(_WIN32)
|
||||
if (fsync(fd) != 0) goto OUT;
|
||||
#if defined(HAS_SYNCFS)
|
||||
syncfs(fd);
|
||||
#else
|
||||
sync();
|
||||
#endif
|
||||
OUT:
|
||||
#endif
|
||||
close(fd);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* https://stackoverflow.com/a/23898449 */
|
||||
static void scan_hex(const char* str, uint8_t* bytes, size_t blen)
|
||||
{
|
||||
uint8_t pos;
|
||||
uint8_t idx0;
|
||||
uint8_t idx1;
|
||||
|
||||
const uint8_t hashmap[] =
|
||||
{
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* 01234567 */
|
||||
0x08, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 89:;<=>? */
|
||||
0x00, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, /* @ABCDEFG */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* HIJKLMNO */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* PQRSTUVW */
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* XYZ[\]^_ */
|
||||
0x00, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, /* `abcdefg */
|
||||
};
|
||||
|
||||
for (pos = 0; ((pos < (blen*2)) && (pos < XSTRLEN(str))); pos += 2)
|
||||
{
|
||||
idx0 = (uint8_t)(str[pos+0] & 0x1F) ^ 0x10;
|
||||
idx1 = (uint8_t)(str[pos+1] & 0x1F) ^ 0x10;
|
||||
bytes[pos/2] = (uint8_t)(hashmap[idx0] << 4) | hashmap[idx1];
|
||||
}
|
||||
}
|
||||
|
||||
static void die(int ret)
|
||||
{
|
||||
fprintf(stderr, "Usage: aesgcm <-e|-d> <infile> <outfile> <88|96 char hex-string 'IV | key'>\n");
|
||||
exit(ret);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int ret = 0, err, arg, direction, res, tmp;
|
||||
size_t keylen;
|
||||
uint8_t keybuf[48] = {0};
|
||||
char *out = NULL;
|
||||
const char *mode, *in_file, *out_file, *key_string;
|
||||
unsigned long ivlen;
|
||||
|
||||
if (argc < 5) die(__LINE__);
|
||||
|
||||
arg = 1;
|
||||
mode = argv[arg++];
|
||||
in_file = argv[arg++];
|
||||
out_file = argv[arg++];
|
||||
key_string = argv[arg++];
|
||||
|
||||
if(strcmp(mode, "-d") == 0) direction = GCM_DECRYPT;
|
||||
else if(strcmp(mode, "-e") == 0) direction = GCM_ENCRYPT;
|
||||
else die(__LINE__);
|
||||
|
||||
if (fsize(in_file) <= 0) die(__LINE__);
|
||||
|
||||
keylen = XSTRLEN(key_string);
|
||||
if (keylen != 88 && keylen != 96) die(__LINE__);
|
||||
|
||||
scan_hex(key_string, keybuf, keylen/2);
|
||||
|
||||
register_all_ciphers();
|
||||
|
||||
if(asprintf(&out, "%s-XXXXXX", out_file) < 0) die(__LINE__);
|
||||
if((tmp = mkstemp(out)) == -1) {
|
||||
ret = __LINE__;
|
||||
goto cleanup;
|
||||
}
|
||||
close(tmp);
|
||||
ivlen = keylen/2 - 32;
|
||||
if((err = gcm_file(find_cipher("aes"), &keybuf[ivlen], 32, keybuf, ivlen, NULL, 0, in_file, out, 16, direction, &res)) != CRYPT_OK) {
|
||||
fprintf(stderr, "boooh %s\n", error_to_string(err));
|
||||
ret = __LINE__;
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
if(res != 1) {
|
||||
ret = __LINE__;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (mv(out, out_file) != 0) ret = __LINE__;
|
||||
}
|
||||
|
||||
cleanup:
|
||||
if(ret != 0) unlink(out);
|
||||
free(out);
|
||||
|
||||
|
||||
return ret;
|
||||
}
|
77
deps/libtomcrypt/demos/constants.c
vendored
Normal file
77
deps/libtomcrypt/demos/constants.c
vendored
Normal file
@ -0,0 +1,77 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
#include "tomcrypt.h"
|
||||
|
||||
#if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L
|
||||
#include <libgen.h>
|
||||
#else
|
||||
#define basename(x) x
|
||||
#endif
|
||||
|
||||
/**
|
||||
@file demo_crypt_constants.c
|
||||
|
||||
Demo how to get various constants to dynamic languages
|
||||
like Python
|
||||
|
||||
Larry Bugbee, February 2013
|
||||
*/
|
||||
|
||||
static void s_print_line(const char* cmd, const char* desc)
|
||||
{
|
||||
printf(" %-16s - %s\n", cmd, desc);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
if (argc == 1) {
|
||||
/* given a specific constant name, get and print its value */
|
||||
char name[] = "CTR_COUNTER_BIG_ENDIAN";
|
||||
int value;
|
||||
char *names_list;
|
||||
unsigned int names_list_len;
|
||||
|
||||
if (crypt_get_constant(name, &value) != 0) exit(EXIT_FAILURE);
|
||||
printf("\n %s is %d \n\n", name, value);
|
||||
|
||||
/* get and print the length of the names (and values) list */
|
||||
|
||||
if (crypt_list_all_constants(NULL, &names_list_len) != 0) exit(EXIT_FAILURE);
|
||||
printf(" need to allocate %u bytes \n\n", names_list_len);
|
||||
|
||||
/* get and print the names (and values) list */
|
||||
if ((names_list = malloc(names_list_len)) == NULL) exit(EXIT_FAILURE);
|
||||
if (crypt_list_all_constants(names_list, &names_list_len) != 0) exit(EXIT_FAILURE);
|
||||
printf(" supported constants:\n\n%s\n\n", names_list);
|
||||
free(names_list);
|
||||
} else if (argc == 2) {
|
||||
if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "--help") == 0) {
|
||||
char* base = strdup(basename(argv[0]));
|
||||
printf("Usage: %s [-a] [-s name]\n\n", base);
|
||||
s_print_line("<no argument>", "The old behavior of the demo");
|
||||
s_print_line("-a", "Only lists all constants");
|
||||
s_print_line("-s name", "List a single constant given as argument");
|
||||
s_print_line("-h", "The help you're looking at");
|
||||
free(base);
|
||||
} else if (strcmp(argv[1], "-a") == 0) {
|
||||
char *names_list;
|
||||
unsigned int names_list_len;
|
||||
/* get and print the length of the names (and values) list */
|
||||
if (crypt_list_all_constants(NULL, &names_list_len) != 0) exit(EXIT_FAILURE);
|
||||
/* get and print the names (and values) list */
|
||||
if ((names_list = malloc(names_list_len)) == NULL) exit(EXIT_FAILURE);
|
||||
if (crypt_list_all_constants(names_list, &names_list_len) != 0) exit(EXIT_FAILURE);
|
||||
printf("%s\n", names_list);
|
||||
free(names_list);
|
||||
}
|
||||
} else if (argc == 3) {
|
||||
if (strcmp(argv[1], "-s") == 0) {
|
||||
int value;
|
||||
if (crypt_get_constant(argv[2], &value) != 0) exit(EXIT_FAILURE);
|
||||
printf("%s,%u\n", argv[2], value);
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
309
deps/libtomcrypt/demos/demo_dynamic.py
vendored
Normal file
309
deps/libtomcrypt/demos/demo_dynamic.py
vendored
Normal file
@ -0,0 +1,309 @@
|
||||
|
||||
|
||||
"""
|
||||
demo_dynamic.py v2b
|
||||
|
||||
This program demonstrates Python's use of the dynamic
|
||||
language support additions to LTC, namely access to LTC
|
||||
constants, struct and union sizes, and the binding of a
|
||||
math package to LTC. Also provided are simple code
|
||||
fragments to illustrate how one might write a Python
|
||||
wrapper for LTC and how an app might call the wrapper.
|
||||
This or a similar model should work for Ruby and other
|
||||
dynamic languages.
|
||||
|
||||
This instance uses Python's ctypes and requires a single
|
||||
.dylib linking together LTC and a math library. Building
|
||||
a single .dylib is needed because LTC wants a fairly tight
|
||||
relationship between itself and the mathlib. (ctypes can
|
||||
load multiple .dylibs, but it does not support this level
|
||||
of tight coupling between otherwise independent libraries.)
|
||||
|
||||
My .dylib was created on OSX/macOS with the following:
|
||||
sudo make -j5 -f makefile.shared \
|
||||
CFLAGS="-DUSE_TFM -DTFM_DESC -I/usr/local/include" \
|
||||
EXTRALIBS=/usr/local/lib/libtfm.a install
|
||||
|
||||
For python 2.7.12 on Ubuntu Xenial the following worked for
|
||||
me (without MPI support):
|
||||
sudo make -f makefile.shared install PREFIX="/usr"
|
||||
|
||||
Reminder: you don't need to bind in a math library unless
|
||||
you are going to use LTC functions that need a
|
||||
mathlib. For example, public key crypto requires
|
||||
a mathlib; hashing and symmetric encryption do not.
|
||||
|
||||
------
|
||||
|
||||
This code was originally written for Python 2.7 with the
|
||||
ctypes standard library. This version is modified to run
|
||||
under both Python 2.7 and 3.6.
|
||||
|
||||
Arguably the biggest change for Python3 has to do with
|
||||
strings. Under Python2, native strings are ASCII bytes and
|
||||
passing them to LTC is natural and requires no conversion.
|
||||
Under Python3 all native strings are Unicode which requires
|
||||
they be converted to bytes before use by LTC.
|
||||
|
||||
Note the following for Python3.
|
||||
- ASCII keys, IVs and other string arguments must be
|
||||
'bytes'. Define them with a 'b' prefix or convert
|
||||
via the 'bytes()' function.
|
||||
- "strings" returned from LTC are bytes and conversion
|
||||
to Unicode might be necessary for proper printing.
|
||||
If so, use <string>.decode('utf-8').
|
||||
- The Python2 'print' statement becomes a function in
|
||||
Python3 which requires parenthesis, eg. 'print()'.
|
||||
|
||||
NB: Unicode is achieved under Python2 by either defining
|
||||
a Unicode string with a 'u' prefix or passing ASCII
|
||||
strings thru the 'unicode()' function.
|
||||
|
||||
Larry Bugbee
|
||||
March 2014 v1
|
||||
August 2017 v2b
|
||||
|
||||
"""
|
||||
|
||||
|
||||
import sys
|
||||
from ctypes import *
|
||||
from ctypes.util import find_library
|
||||
|
||||
# switches to enable/disable selected output
|
||||
SHOW_ALL_CONSTANTS = True
|
||||
SHOW_ALL_SIZES = True
|
||||
SHOW_SELECTED_CONSTANTS = True
|
||||
SHOW_SELECTED_SIZES = True
|
||||
SHOW_BUILD_OPTIONS_ALGS = True
|
||||
SHOW_SHA256_EXAMPLE = True
|
||||
SHOW_CHACHA_EXAMPLE = True
|
||||
|
||||
print(' ')
|
||||
print(' demo_dynamic.py')
|
||||
|
||||
def inprint(s, indent=0):
|
||||
"prints strings indented, including multline strings"
|
||||
for line in s.split('\n'):
|
||||
print(' '*indent + line)
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# load the .dylib
|
||||
|
||||
libname = 'tomcrypt'
|
||||
libpath = find_library(libname)
|
||||
print(' ')
|
||||
print(' path to library %s: %s' % (libname, libpath))
|
||||
|
||||
LTC = cdll.LoadLibrary(libpath)
|
||||
print(' loaded: %s' % LTC)
|
||||
print(' ')
|
||||
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# get list of all supported constants followed by a list of all
|
||||
# supported sizes. One alternative: these lists may be parsed
|
||||
# and used as needed.
|
||||
|
||||
if SHOW_ALL_CONSTANTS:
|
||||
print('-'*60)
|
||||
print(' all supported constants and their values:')
|
||||
|
||||
# get size to allocate for constants output list
|
||||
str_len = c_int(0)
|
||||
ret = LTC.crypt_list_all_constants(None, byref(str_len))
|
||||
print(' need to allocate %d bytes to build list \n' % str_len.value)
|
||||
|
||||
# allocate that size and get (name, size) pairs, each pair
|
||||
# separated by a newline char.
|
||||
names_sizes = c_buffer(str_len.value)
|
||||
ret = LTC.crypt_list_all_constants(names_sizes, byref(str_len))
|
||||
print(names_sizes.value.decode("utf-8"))
|
||||
print(' ')
|
||||
|
||||
|
||||
if SHOW_ALL_SIZES:
|
||||
print('-'*60)
|
||||
print(' all supported sizes:')
|
||||
|
||||
# get size to allocate for sizes output list
|
||||
str_len = c_int(0)
|
||||
ret = LTC.crypt_list_all_sizes(None, byref(str_len))
|
||||
print(' need to allocate %d bytes to build list \n' % str_len.value)
|
||||
|
||||
# allocate that size and get (name, size) pairs, each pair
|
||||
# separated by a newline char.
|
||||
names_sizes = c_buffer(str_len.value)
|
||||
ret = LTC.crypt_list_all_sizes(names_sizes, byref(str_len))
|
||||
print(names_sizes.value.decode("utf-8"))
|
||||
print(' ')
|
||||
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# get individually named constants and sizes
|
||||
|
||||
if SHOW_SELECTED_CONSTANTS:
|
||||
print('-'*60)
|
||||
print('\n selected constants:')
|
||||
|
||||
names = [
|
||||
b'ENDIAN_LITTLE',
|
||||
b'ENDIAN_64BITWORD',
|
||||
b'PK_PUBLIC',
|
||||
b'LTC_MILLER_RABIN_REPS',
|
||||
b'CTR_COUNTER_BIG_ENDIAN',
|
||||
]
|
||||
for name in names:
|
||||
const_value = c_int(0)
|
||||
rc = LTC.crypt_get_constant(name, byref(const_value))
|
||||
value = const_value.value
|
||||
print(' %-25s %d' % (name.decode("utf-8"), value))
|
||||
print(' ')
|
||||
|
||||
if SHOW_SELECTED_SIZES:
|
||||
print('-'*60)
|
||||
print('\n selected sizes:')
|
||||
|
||||
names = [
|
||||
b'rijndael_key',
|
||||
b'rsa_key',
|
||||
b'symmetric_CTR',
|
||||
b'twofish_key',
|
||||
b'ecc_point',
|
||||
b'gcm_state',
|
||||
b'sha512_state',
|
||||
]
|
||||
for name in names:
|
||||
size_value = c_int(0)
|
||||
rc = LTC.crypt_get_size(name, byref(size_value))
|
||||
value = size_value.value
|
||||
print(' %-25s %d' % (name.decode("utf-8"), value))
|
||||
print(' ')
|
||||
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
#-------------------------------------------------------------------------------
|
||||
# LibTomCrypt exposes one interesting string that can be accessed
|
||||
# via Python's ctypes module, "crypt_build_settings", which
|
||||
# provides a list of this build's compiler switches and supported
|
||||
# algorithms. If someday LTC exposes other interesting strings,
|
||||
# they can be found with:
|
||||
# nm /usr/local/lib/libtomcrypt.dylib | grep " D "
|
||||
|
||||
def get_named_string(lib, name):
|
||||
return c_char_p.in_dll(lib, name).value.decode("utf-8")
|
||||
|
||||
if SHOW_BUILD_OPTIONS_ALGS:
|
||||
print('-'*60)
|
||||
print('This is a string compiled into LTC showing compile')
|
||||
print('options and algorithms supported by this build \n')
|
||||
# print(get_named_string(LTC, 'crypt_build_settings'))
|
||||
inprint(get_named_string(LTC, 'crypt_build_settings'), 4)
|
||||
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
#-------------------------------------------------------------------------------
|
||||
# here is an example of how Python code can be written to access
|
||||
# LTC's implementation of SHA256 and ChaCha,
|
||||
|
||||
# - - - - - - - - - - - - -
|
||||
# definitions
|
||||
|
||||
from binascii import hexlify, unhexlify
|
||||
|
||||
def _err2str(err):
|
||||
# define return type
|
||||
errstr = LTC.error_to_string
|
||||
errstr.restype = c_char_p
|
||||
# get and return err string
|
||||
return errstr(err)
|
||||
|
||||
def _get_size(name):
|
||||
size = c_int(0)
|
||||
rc = LTC.crypt_get_size(bytes(name), byref(size))
|
||||
if rc != 0:
|
||||
raise Exception('LTC.crypt_get_size(%s) rc = %d' % (name, rc))
|
||||
return size.value
|
||||
|
||||
def _get_constant(name):
|
||||
constant = c_int(0)
|
||||
rc = LTC.crypt_get_constant(bytes(name), byref(constant))
|
||||
if rc != 0:
|
||||
raise Exception('LTC.crypt_get_constant(%s) rc = %d' % (name, rc))
|
||||
return constant.value
|
||||
|
||||
CRYPT_OK = _get_constant(b'CRYPT_OK')
|
||||
|
||||
class SHA256(object):
|
||||
def __init__(self):
|
||||
self.state = c_buffer(_get_size(b'sha256_state'))
|
||||
LTC.sha256_init(byref(self.state))
|
||||
def update(self, data):
|
||||
LTC.sha256_process(byref(self.state), data, len(data))
|
||||
def digest(self):
|
||||
md = c_buffer(32)
|
||||
LTC.sha256_done(byref(self.state), byref(md))
|
||||
return md.raw
|
||||
|
||||
# - - - - - - - - - - - - -
|
||||
# a SHA256 app fragment
|
||||
|
||||
if SHOW_SHA256_EXAMPLE:
|
||||
print('-'*60)
|
||||
data = b'hello world' # we want bytes, not Unicode
|
||||
|
||||
sha256 = SHA256()
|
||||
sha256.update(data)
|
||||
md = sha256.digest()
|
||||
|
||||
template = '\n the SHA256 digest for "%s" is %s \n'
|
||||
print(template % (data, hexlify(md)))
|
||||
|
||||
class ChaCha(object):
|
||||
def __init__(self, key, rounds):
|
||||
self.state = c_buffer(_get_size(b'chacha_state'))
|
||||
self.counter = c_uint(1)
|
||||
err = LTC.chacha_setup(byref(self.state), key, len(key), rounds)
|
||||
if err != CRYPT_OK:
|
||||
raise Exception('LTC.chacha_setup(), err = %d, "%s"' % (err, _err2str(err)))
|
||||
def set_iv32(self, iv):
|
||||
err = LTC.chacha_ivctr32(byref(self.state), iv, len(iv), self.counter)
|
||||
if err != CRYPT_OK:
|
||||
raise Exception('LTC.chacha_ivctr32(), err = %d, "%s"' % (err, _err2str(err)))
|
||||
def crypt(self, datain):
|
||||
dataout = c_buffer(len(datain))
|
||||
err = LTC.chacha_crypt(byref(self.state), datain, len(datain), byref(dataout))
|
||||
if err != CRYPT_OK:
|
||||
raise Exception('LTC.chacha_crypt(), err = %d, "%s"' % (err, _err2str(err)))
|
||||
return dataout.raw
|
||||
|
||||
# - - - - - - - - - - - - -
|
||||
# a ChaCha app fragment
|
||||
|
||||
if SHOW_CHACHA_EXAMPLE:
|
||||
print('-'*60)
|
||||
key = b'hownowbrowncow\x00\x00' # exactly 16 or 32 bytes
|
||||
rounds = 12 # common values: 8, 12, 20
|
||||
iv = b'123456789012' # exactly 12 bytes
|
||||
plain = b'Kilroy was here, there, and everywhere!'
|
||||
|
||||
cha = ChaCha(key, rounds)
|
||||
cha.set_iv32(iv)
|
||||
cipher = cha.crypt(plain)
|
||||
|
||||
template = '\n ChaCha%d ciphertext for "%s" is "%s"'
|
||||
print(template % (rounds, plain, hexlify(cipher)))
|
||||
|
||||
cha.set_iv32(iv) # reset to decrypt
|
||||
decrypted = cha.crypt(cipher)
|
||||
|
||||
template = ' ChaCha%d decoded text for "%s" is "%s" \n'
|
||||
print(template % (rounds, plain, decrypted.decode("utf-8")))
|
||||
|
||||
# Footnote: Keys should be erased fm memory as soon as possible after use,
|
||||
# and that includes Python. For a tip on how to do that in Python, see
|
||||
# http://buggywhip.blogspot.com/2010/12/erase-keys-and-credit-card-numbers-in.html
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
#-------------------------------------------------------------------------------
|
||||
#-------------------------------------------------------------------------------
|
84
deps/libtomcrypt/demos/gcm-file/gcm_file.c
vendored
Normal file
84
deps/libtomcrypt/demos/gcm-file/gcm_file.c
vendored
Normal file
@ -0,0 +1,84 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#include "tomcrypt.h"
|
||||
|
||||
/**
|
||||
@file gcm_file.c
|
||||
GCM process a file, Steffen Jaeckel
|
||||
*/
|
||||
|
||||
#ifdef LTC_GCM_MODE
|
||||
#ifndef LTC_NO_FILE
|
||||
|
||||
/**
|
||||
Process a file.
|
||||
|
||||
c.f. gcm_filehandle() for basic documentation.
|
||||
|
||||
It is possible, that in error-cases the 'out' file
|
||||
will be created and after the error occurred it will
|
||||
be removed again.
|
||||
|
||||
@param cipher Index of cipher to use
|
||||
@param key The secret key
|
||||
@param keylen The length of the secret key
|
||||
@param IV The initial vector
|
||||
@param IVlen The length of the initial vector
|
||||
@param adata The additional authentication data (header)
|
||||
@param adatalen The length of the adata
|
||||
@param in The input file
|
||||
@param out The output file
|
||||
@param taglen The MAC tag length
|
||||
@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)
|
||||
@param res [out] Result of the operation, 1==valid, 0==invalid
|
||||
@return CRYPT_OK on success
|
||||
*/
|
||||
int gcm_file( int cipher,
|
||||
const unsigned char *key, unsigned long keylen,
|
||||
const unsigned char *IV, unsigned long IVlen,
|
||||
const unsigned char *adata, unsigned long adatalen,
|
||||
const char *in,
|
||||
const char *out,
|
||||
unsigned long taglen,
|
||||
int direction,
|
||||
int *res)
|
||||
{
|
||||
int err;
|
||||
FILE *f_in = NULL, *f_out = NULL;
|
||||
|
||||
LTC_ARGCHK(in != NULL);
|
||||
LTC_ARGCHK(out != NULL);
|
||||
LTC_ARGCHK(res != NULL);
|
||||
|
||||
*res = 0;
|
||||
|
||||
f_in = fopen(in, "rb");
|
||||
if (f_in == NULL) {
|
||||
err = CRYPT_FILE_NOTFOUND;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
f_out = fopen(out, "w+b");
|
||||
if (f_out == NULL) {
|
||||
err = CRYPT_FILE_NOTFOUND;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
err = gcm_filehandle(cipher, key, keylen, IV, IVlen, adata, adatalen, f_in, f_out, taglen, direction, res);
|
||||
|
||||
LBL_ERR:
|
||||
if (f_out != NULL && fclose(f_out) != 0) {
|
||||
err = CRYPT_ERROR;
|
||||
}
|
||||
if (*res != 1) {
|
||||
remove(out);
|
||||
}
|
||||
if (f_in != NULL && fclose(f_in) != 0) {
|
||||
err = CRYPT_ERROR;
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
190
deps/libtomcrypt/demos/gcm-file/gcm_filehandle.c
vendored
Normal file
190
deps/libtomcrypt/demos/gcm-file/gcm_filehandle.c
vendored
Normal file
@ -0,0 +1,190 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#include "tomcrypt.h"
|
||||
|
||||
/**
|
||||
@file gcm_filehandle.c
|
||||
GCM process a filehandle, Steffen Jaeckel
|
||||
*/
|
||||
|
||||
#ifdef LTC_GCM_MODE
|
||||
#ifndef LTC_NO_FILE
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define ftruncate _chsize
|
||||
#else
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
/**
|
||||
Process a filehandle.
|
||||
|
||||
This uses the widely established scheme where the tag is appended
|
||||
to the ciphertext.
|
||||
|
||||
encrypted_file = aesgcm(plain_file) | aesgcm_tag(plain_file)
|
||||
|
||||
Depending on 'direction' this function does:
|
||||
|
||||
Encrypt file 'in' to 'out' and append the tag of length 'taglen'
|
||||
to 'out'.
|
||||
|
||||
or
|
||||
|
||||
Decrypt file 'in' to 'out' and check the tag of length 'taglen'
|
||||
and strip the tag from 'in'.
|
||||
|
||||
In error-cases 'out' will be zeroed out first and then truncated to
|
||||
a length of 0.
|
||||
|
||||
@param cipher Index of cipher to use
|
||||
@param key The secret key
|
||||
@param keylen The length of the secret key
|
||||
@param IV The initial vector
|
||||
@param IVlen The length of the initial vector
|
||||
@param adata The additional authentication data (header)
|
||||
@param adatalen The length of the adata
|
||||
@param in The input file
|
||||
@param out The output file
|
||||
@param taglen The MAC tag length
|
||||
@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)
|
||||
@param res [out] Result of the operation, 1==valid, 0==invalid
|
||||
@return CRYPT_OK on success
|
||||
*/
|
||||
int gcm_filehandle( int cipher,
|
||||
const unsigned char *key, unsigned long keylen,
|
||||
const unsigned char *IV, unsigned long IVlen,
|
||||
const unsigned char *adata, unsigned long adatalen,
|
||||
FILE *in,
|
||||
FILE *out,
|
||||
unsigned long taglen,
|
||||
int direction,
|
||||
int *res)
|
||||
{
|
||||
void *orig;
|
||||
gcm_state *gcm;
|
||||
int err;
|
||||
unsigned char *buf, tag[16];
|
||||
size_t x, tot_data;
|
||||
unsigned long tag_len;
|
||||
|
||||
LTC_ARGCHK(in != NULL);
|
||||
LTC_ARGCHK(out != NULL);
|
||||
LTC_ARGCHK(res != NULL);
|
||||
|
||||
*res = 0;
|
||||
|
||||
if ((err = cipher_is_valid(cipher)) != CRYPT_OK) {
|
||||
return err;
|
||||
}
|
||||
|
||||
#ifndef LTC_GCM_TABLES_SSE2
|
||||
orig = gcm = XMALLOC(sizeof(*gcm));
|
||||
#else
|
||||
orig = gcm = XMALLOC(sizeof(*gcm) + 16);
|
||||
#endif
|
||||
if (gcm == NULL) {
|
||||
return CRYPT_MEM;
|
||||
}
|
||||
|
||||
if ((buf = XMALLOC(LTC_FILE_READ_BUFSIZE)) == NULL) {
|
||||
XFREE(gcm);
|
||||
return CRYPT_MEM;
|
||||
}
|
||||
|
||||
/* Force GCM to be on a multiple of 16 so we can use 128-bit aligned operations
|
||||
* note that we only modify gcm and keep orig intact. This code is not portable
|
||||
* but again it's only for SSE2 anyways, so who cares?
|
||||
*/
|
||||
#ifdef LTC_GCM_TABLES_SSE2
|
||||
gcm = LTC_ALIGN_BUF(gcm, 16);
|
||||
#endif
|
||||
|
||||
if ((err = gcm_init(gcm, cipher, key, keylen)) != CRYPT_OK) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = gcm_add_iv(gcm, IV, IVlen)) != CRYPT_OK) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((err = gcm_add_aad(gcm, adata, adatalen)) != CRYPT_OK) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
fseek(in, 0, SEEK_END);
|
||||
tot_data = ftell(in);
|
||||
if (direction == GCM_DECRYPT) {
|
||||
tot_data -= taglen;
|
||||
}
|
||||
rewind(in);
|
||||
do {
|
||||
x = MIN(tot_data, LTC_FILE_READ_BUFSIZE);
|
||||
x = fread(buf, 1, x, in);
|
||||
tot_data -= x;
|
||||
if ((err = gcm_process(gcm, buf, (unsigned long)x, buf, direction)) != CRYPT_OK) {
|
||||
goto LBL_CLEANBUF;
|
||||
}
|
||||
if(fwrite(buf, 1, x, out) != x) {
|
||||
err = CRYPT_ERROR;
|
||||
goto LBL_CLEANBUF;
|
||||
}
|
||||
} while (x == LTC_FILE_READ_BUFSIZE);
|
||||
|
||||
tag_len = taglen;
|
||||
if ((err = gcm_done(gcm, tag, &tag_len)) != CRYPT_OK) {
|
||||
goto LBL_CLEANBUF;
|
||||
}
|
||||
if (tag_len != taglen) {
|
||||
err = CRYPT_ERROR;
|
||||
goto LBL_CLEANBUF;
|
||||
}
|
||||
|
||||
if (direction == GCM_DECRYPT) {
|
||||
x = fread(buf, 1, taglen, in);
|
||||
if (x != taglen) {
|
||||
err = CRYPT_ERROR;
|
||||
goto LBL_CLEANBUF;
|
||||
}
|
||||
|
||||
if (XMEM_NEQ(buf, tag, taglen) == 0) {
|
||||
*res = 1;
|
||||
}
|
||||
} else {
|
||||
if(fwrite(tag, 1, taglen, out) != taglen) {
|
||||
err = CRYPT_ERROR;
|
||||
goto LBL_CLEANBUF;
|
||||
}
|
||||
*res = 1;
|
||||
}
|
||||
|
||||
LBL_CLEANBUF:
|
||||
zeromem(buf, LTC_FILE_READ_BUFSIZE);
|
||||
zeromem(tag, sizeof(tag));
|
||||
LBL_ERR:
|
||||
#ifdef LTC_CLEAN_STACK
|
||||
#ifndef LTC_GCM_TABLES_SSE2
|
||||
zeromem(orig, sizeof(*gcm));
|
||||
#else
|
||||
zeromem(orig, sizeof(*gcm) + 16);
|
||||
#endif
|
||||
#endif
|
||||
if(*res == 0) {
|
||||
x = ftell(out);
|
||||
rewind(out);
|
||||
while((size_t)ftell(out) < x) {
|
||||
fwrite(buf, 1, LTC_FILE_READ_BUFSIZE, out);
|
||||
}
|
||||
if(ftruncate(fileno(out), 0)) {
|
||||
/* well, what shall we do here... */
|
||||
}
|
||||
}
|
||||
fflush(out);
|
||||
|
||||
XFREE(buf);
|
||||
XFREE(orig);
|
||||
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
290
deps/libtomcrypt/demos/hashsum.c
vendored
Normal file
290
deps/libtomcrypt/demos/hashsum.c
vendored
Normal file
@ -0,0 +1,290 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/*
|
||||
* Written by Daniel Richards <kyhwana@world-net.co.nz> 6/7/2002
|
||||
* hash.c: This app uses libtomcrypt to hash either stdin or a file
|
||||
* This file is Public Domain. No rights are reserved.
|
||||
* Compile with 'gcc hashsum.c -o hashsum -ltomcrypt'
|
||||
* This example isn't really big enough to warrent splitting into
|
||||
* more functions ;)
|
||||
*/
|
||||
|
||||
#include <tomcrypt.h>
|
||||
|
||||
#if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L
|
||||
#include <libgen.h>
|
||||
#else
|
||||
#define basename(x) x
|
||||
#endif
|
||||
|
||||
#if !defined(PATH_MAX) && defined(_MSC_VER)
|
||||
#include <windows.h>
|
||||
#define PATH_MAX MAX_PATH
|
||||
#endif
|
||||
|
||||
/* thanks http://stackoverflow.com/a/8198009 */
|
||||
#define s_base(x) ((x >= '0' && x <= '9') ? '0' : \
|
||||
(x >= 'a' && x <= 'f') ? 'a' - 10 : \
|
||||
(x >= 'A' && x <= 'F') ? 'A' - 10 : \
|
||||
'\255')
|
||||
#define HEXOF(x) (x - s_base(x))
|
||||
|
||||
static char* hashsum;
|
||||
|
||||
static void cleanup(void)
|
||||
{
|
||||
free(hashsum);
|
||||
}
|
||||
|
||||
static void die(int status)
|
||||
{
|
||||
unsigned long w, x;
|
||||
FILE* o = status == EXIT_SUCCESS ? stdout : stderr;
|
||||
fprintf(o, "usage: %s -a algorithm [-c] [file...]\n\n", hashsum);
|
||||
fprintf(o, "\t-c\tCheck the hash(es) of the file(s) written in [file].\n");
|
||||
fprintf(o, "\t\t(-a not required)\n");
|
||||
fprintf(o, "\nAlgorithms:\n\t");
|
||||
w = 0;
|
||||
for (x = 0; hash_descriptor[x].name != NULL; x++) {
|
||||
w += fprintf(o, "%-14s", hash_descriptor[x].name);
|
||||
if (w >= 70) {
|
||||
fprintf(o, "\n\t");
|
||||
w = 0;
|
||||
}
|
||||
}
|
||||
if (w != 0) fprintf(o, "\n");
|
||||
exit(status);
|
||||
}
|
||||
|
||||
static void printf_hex(unsigned char* hash_buffer, unsigned long w)
|
||||
{
|
||||
unsigned long x;
|
||||
for (x = 0; x < w; x++) {
|
||||
printf("%02x",hash_buffer[x]);
|
||||
}
|
||||
}
|
||||
|
||||
static void check_file(int argn, int argc, char **argv)
|
||||
{
|
||||
int err, failed, invalid;
|
||||
unsigned char is_buffer[MAXBLOCKSIZE], should_buffer[MAXBLOCKSIZE];
|
||||
char buf[PATH_MAX + (MAXBLOCKSIZE * 3)];
|
||||
/* iterate through all files */
|
||||
while(argn < argc) {
|
||||
char* s;
|
||||
FILE* f = fopen(argv[argn], "rb");
|
||||
if(f == NULL) {
|
||||
int n = snprintf(buf, sizeof(buf), "%s: %s", hashsum, argv[argn]);
|
||||
if (n > 0 && n < (int)sizeof(buf))
|
||||
perror(buf);
|
||||
else
|
||||
perror(argv[argn]);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
failed = 0;
|
||||
invalid = 0;
|
||||
/* read the file line by line */
|
||||
while((s = fgets(buf, sizeof(buf), f)) != NULL)
|
||||
{
|
||||
int tries, n;
|
||||
unsigned long hash_len, w, x;
|
||||
char* space = strstr(s, " ");
|
||||
|
||||
/* skip lines with comments */
|
||||
if (buf[0] == '#') continue;
|
||||
|
||||
if (space == NULL) {
|
||||
fprintf(stderr, "%s: no properly formatted checksum lines found\n", hashsum);
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
hash_len = space - s;
|
||||
hash_len /= 2;
|
||||
|
||||
if (hash_len > sizeof(should_buffer)) {
|
||||
fprintf(stderr, "%s: hash too long\n", hashsum);
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* convert the hex-string back to binary */
|
||||
for (x = 0; x < hash_len; ++x) {
|
||||
should_buffer[x] = HEXOF(s[x*2]) << 4 | HEXOF(s[x*2 + 1]);
|
||||
}
|
||||
|
||||
space++;
|
||||
if (*space != '*') {
|
||||
fprintf(stderr, "%s: unsupported input mode '%c'\n", hashsum, *space);
|
||||
goto ERR;
|
||||
}
|
||||
space++;
|
||||
|
||||
for (n = 0; n < (buf + sizeof(buf)) - space; ++n) {
|
||||
if(iscntrl((int)space[n])) {
|
||||
space[n] = '\0';
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* try all hash algorithms that have the appropriate hash size */
|
||||
tries = 0;
|
||||
for (x = 0; hash_descriptor[x].name != NULL; ++x) {
|
||||
if (hash_descriptor[x].hashsize == hash_len) {
|
||||
tries++;
|
||||
w = sizeof(is_buffer);
|
||||
if ((err = hash_file(x, space, is_buffer, &w)) != CRYPT_OK) {
|
||||
fprintf(stderr, "%s: File hash error: %s: %s\n", hashsum, space, error_to_string(err));
|
||||
ERR:
|
||||
fclose(f);
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if(XMEMCMP(should_buffer, is_buffer, w) == 0) {
|
||||
printf("%s: OK\n", space);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} /* for */
|
||||
if (hash_descriptor[x].name == NULL) {
|
||||
if(tries > 0) {
|
||||
printf("%s: FAILED\n", space);
|
||||
failed++;
|
||||
}
|
||||
else {
|
||||
invalid++;
|
||||
}
|
||||
}
|
||||
} /* while */
|
||||
fclose(f);
|
||||
if(invalid) {
|
||||
fprintf(stderr, "%s: WARNING: %d %s is improperly formatted\n", hashsum, invalid, invalid > 1?"lines":"line");
|
||||
}
|
||||
if(failed) {
|
||||
fprintf(stderr, "%s: WARNING: %d computed %s did NOT match\n", hashsum, failed, failed > 1?"checksums":"checksum");
|
||||
}
|
||||
argn++;
|
||||
}
|
||||
exit(EXIT_SUCCESS);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int idxs[TAB_SIZE], idx, check, y, z, err, argn;
|
||||
unsigned long w, x;
|
||||
unsigned char hash_buffer[MAXBLOCKSIZE];
|
||||
|
||||
hashsum = strdup(basename(argv[0]));
|
||||
atexit(cleanup);
|
||||
|
||||
/* You need to register algorithms before using them */
|
||||
register_all_ciphers();
|
||||
register_all_hashes();
|
||||
if (argc > 1 && (strcmp("-h", argv[1]) == 0 || strcmp("--help", argv[1]) == 0)) {
|
||||
die(EXIT_SUCCESS);
|
||||
}
|
||||
if (argc < 3) {
|
||||
die(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (x = 0; x < sizeof(idxs)/sizeof(idxs[0]); ++x) {
|
||||
idxs[x] = -2;
|
||||
}
|
||||
argn = 1;
|
||||
check = 0;
|
||||
idx = 0;
|
||||
|
||||
while(argn < argc){
|
||||
if(strcmp("-a", argv[argn]) == 0) {
|
||||
argn++;
|
||||
if(argn < argc) {
|
||||
idxs[idx] = find_hash(argv[argn]);
|
||||
if (idxs[idx] == -1) {
|
||||
struct {
|
||||
const char* is;
|
||||
const char* should;
|
||||
} shasum_compat[] =
|
||||
{
|
||||
#ifdef LTC_SHA1
|
||||
{ "1", sha1_desc.name },
|
||||
#endif
|
||||
#ifdef LTC_SHA224
|
||||
{ "224", sha224_desc.name },
|
||||
#endif
|
||||
#ifdef LTC_SHA256
|
||||
{ "256", sha256_desc.name },
|
||||
#endif
|
||||
#ifdef LTC_SHA384
|
||||
{ "384", sha384_desc.name },
|
||||
#endif
|
||||
#ifdef LTC_SHA512
|
||||
{ "512", sha512_desc.name },
|
||||
#endif
|
||||
#ifdef LTC_SHA512_224
|
||||
{ "512224", sha512_224_desc.name },
|
||||
#endif
|
||||
#ifdef LTC_SHA512_256
|
||||
{ "512256", sha512_256_desc.name },
|
||||
#endif
|
||||
{ NULL, NULL }
|
||||
};
|
||||
for (x = 0; shasum_compat[x].is != NULL; ++x) {
|
||||
if(XSTRCMP(shasum_compat[x].is, argv[argn]) == 0) {
|
||||
idxs[idx] = find_hash(shasum_compat[x].should);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (idxs[idx] == -1) {
|
||||
fprintf(stderr, "%s: Unrecognized algorithm\n", hashsum);
|
||||
die(EXIT_FAILURE);
|
||||
}
|
||||
idx++;
|
||||
if ((size_t)idx >= sizeof(idxs)/sizeof(idxs[0])) {
|
||||
fprintf(stderr, "%s: Too many '-a' options chosen\n", hashsum);
|
||||
die(EXIT_FAILURE);
|
||||
}
|
||||
argn++;
|
||||
continue;
|
||||
}
|
||||
else {
|
||||
die(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
if(strcmp("-c", argv[argn]) == 0) {
|
||||
check = 1;
|
||||
argn++;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
if (check == 1) {
|
||||
check_file(argn, argc, argv);
|
||||
}
|
||||
|
||||
if (argc == argn) {
|
||||
w = sizeof(hash_buffer);
|
||||
if ((err = hash_filehandle(idxs[0], stdin, hash_buffer, &w)) != CRYPT_OK) {
|
||||
fprintf(stderr, "%s: File hash error: %s\n", hashsum, error_to_string(err));
|
||||
return EXIT_FAILURE;
|
||||
} else {
|
||||
for (x = 0; x < w; x++) {
|
||||
printf("%02x",hash_buffer[x]);
|
||||
}
|
||||
printf(" *-\n");
|
||||
}
|
||||
} else {
|
||||
for (z = argn; z < argc; z++) {
|
||||
for (y = 0; y < idx; ++y) {
|
||||
w = sizeof(hash_buffer);
|
||||
if ((err = hash_file(idxs[y],argv[z],hash_buffer,&w)) != CRYPT_OK) {
|
||||
fprintf(stderr, "%s: File hash error: %s\n", hashsum, error_to_string(err));
|
||||
return EXIT_FAILURE;
|
||||
} else {
|
||||
printf_hex(hash_buffer, w);
|
||||
printf(" *%s\n", argv[z]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return EXIT_SUCCESS;
|
||||
}
|
195
deps/libtomcrypt/demos/ltcrypt.c
vendored
Normal file
195
deps/libtomcrypt/demos/ltcrypt.c
vendored
Normal file
@ -0,0 +1,195 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/* encrypt V1.1 Fri Oct 18 04:28:03 NZDT 2002 */
|
||||
/* File de/encryption, using libtomcrypt */
|
||||
/* Written by Daniel Richards <kyhwana@world-net.co.nz> */
|
||||
/* Help from Tom St Denis with various bits */
|
||||
/* This code is public domain, no rights reserved. */
|
||||
/* Encrypts by default, -d flag enables decryption */
|
||||
/* ie: ./encrypt blowfish story.txt story.ct */
|
||||
/* ./encrypt -d blowfish story.ct story.pt */
|
||||
|
||||
#include <tomcrypt.h>
|
||||
|
||||
static int LTC_NORETURN usage(char *name)
|
||||
{
|
||||
int x;
|
||||
|
||||
printf("Usage encrypt: %s cipher infile outfile\n", name);
|
||||
printf("Usage decrypt: %s -d cipher infile outfile\n", name);
|
||||
printf("Usage test: %s -t cipher\nCiphers:\n", name);
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
printf("%s\n",cipher_descriptor[x].name);
|
||||
}
|
||||
exit(1);
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
unsigned char plaintext[512],ciphertext[512];
|
||||
unsigned char tmpkey[512], key[MAXBLOCKSIZE], IV[MAXBLOCKSIZE];
|
||||
unsigned char inbuf[512]; /* i/o block size */
|
||||
unsigned long outlen, y, ivsize, x, decrypt;
|
||||
symmetric_CTR ctr;
|
||||
int cipher_idx, hash_idx, ks;
|
||||
char *infile, *outfile, *cipher;
|
||||
prng_state prng;
|
||||
FILE *fdin, *fdout;
|
||||
int err;
|
||||
|
||||
/* register algs, so they can be printed */
|
||||
register_all_ciphers();
|
||||
register_all_hashes();
|
||||
register_all_prngs();
|
||||
|
||||
if (argc < 4) {
|
||||
if ((argc > 2) && (!strcmp(argv[1], "-t"))) {
|
||||
cipher = argv[2];
|
||||
cipher_idx = find_cipher(cipher);
|
||||
if (cipher_idx == -1) {
|
||||
printf("Invalid cipher %s entered on command line.\n", cipher);
|
||||
exit(-1);
|
||||
} /* if */
|
||||
if (cipher_descriptor[cipher_idx].test)
|
||||
{
|
||||
if (cipher_descriptor[cipher_idx].test() != CRYPT_OK)
|
||||
{
|
||||
printf("Error when testing cipher %s.\n", cipher);
|
||||
exit(-1);
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("Testing cipher %s succeeded.\n", cipher);
|
||||
exit(0);
|
||||
} /* if ... else */
|
||||
} /* if */
|
||||
}
|
||||
return usage(argv[0]);
|
||||
}
|
||||
|
||||
if (!strcmp(argv[1], "-d")) {
|
||||
decrypt = 1;
|
||||
cipher = argv[2];
|
||||
infile = argv[3];
|
||||
outfile = argv[4];
|
||||
} else {
|
||||
decrypt = 0;
|
||||
cipher = argv[1];
|
||||
infile = argv[2];
|
||||
outfile = argv[3];
|
||||
}
|
||||
|
||||
/* file handles setup */
|
||||
fdin = fopen(infile,"rb");
|
||||
if (fdin == NULL) {
|
||||
perror("Can't open input for reading");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
fdout = fopen(outfile,"wb");
|
||||
if (fdout == NULL) {
|
||||
perror("Can't open output for writing");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
cipher_idx = find_cipher(cipher);
|
||||
if (cipher_idx == -1) {
|
||||
printf("Invalid cipher entered on command line.\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
hash_idx = find_hash("sha256");
|
||||
if (hash_idx == -1) {
|
||||
printf("LTC_SHA256 not found...?\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
ivsize = cipher_descriptor[cipher_idx].block_length;
|
||||
ks = hash_descriptor[hash_idx].hashsize;
|
||||
if (cipher_descriptor[cipher_idx].keysize(&ks) != CRYPT_OK) {
|
||||
printf("Invalid keysize???\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
printf("\nEnter key: ");
|
||||
if(fgets((char *)tmpkey,sizeof(tmpkey), stdin) == NULL)
|
||||
exit(-1);
|
||||
outlen = sizeof(key);
|
||||
if ((err = hash_memory(hash_idx,tmpkey,XSTRLEN((char *)tmpkey),key,&outlen)) != CRYPT_OK) {
|
||||
printf("Error hashing key: %s\n", error_to_string(err));
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if (decrypt) {
|
||||
/* Need to read in IV */
|
||||
if (fread(IV,1,ivsize,fdin) != ivsize) {
|
||||
printf("Error reading IV from input.\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if ((err = ctr_start(cipher_idx,IV,key,ks,0,CTR_COUNTER_LITTLE_ENDIAN,&ctr)) != CRYPT_OK) {
|
||||
printf("ctr_start error: %s\n",error_to_string(err));
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
/* IV done */
|
||||
do {
|
||||
y = fread(inbuf,1,sizeof(inbuf),fdin);
|
||||
|
||||
if ((err = ctr_decrypt(inbuf,plaintext,y,&ctr)) != CRYPT_OK) {
|
||||
printf("ctr_decrypt error: %s\n", error_to_string(err));
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if (fwrite(plaintext,1,y,fdout) != y) {
|
||||
printf("Error writing to file.\n");
|
||||
exit(-1);
|
||||
}
|
||||
} while (y == sizeof(inbuf));
|
||||
fclose(fdin);
|
||||
fclose(fdout);
|
||||
|
||||
} else { /* encrypt */
|
||||
/* Setup yarrow for random bytes for IV */
|
||||
|
||||
if ((err = rng_make_prng(128, find_prng("yarrow"), &prng, NULL)) != CRYPT_OK) {
|
||||
printf("Error setting up PRNG, %s\n", error_to_string(err));
|
||||
}
|
||||
|
||||
/* You can use rng_get_bytes on platforms that support it */
|
||||
/* x = rng_get_bytes(IV,ivsize,NULL);*/
|
||||
x = yarrow_read(IV,ivsize,&prng);
|
||||
if (x != ivsize) {
|
||||
printf("Error reading PRNG for IV required.\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if (fwrite(IV,1,ivsize,fdout) != ivsize) {
|
||||
printf("Error writing IV to output.\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if ((err = ctr_start(cipher_idx,IV,key,ks,0,CTR_COUNTER_LITTLE_ENDIAN,&ctr)) != CRYPT_OK) {
|
||||
printf("ctr_start error: %s\n",error_to_string(err));
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
do {
|
||||
y = fread(inbuf,1,sizeof(inbuf),fdin);
|
||||
|
||||
if ((err = ctr_encrypt(inbuf,ciphertext,y,&ctr)) != CRYPT_OK) {
|
||||
printf("ctr_encrypt error: %s\n", error_to_string(err));
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
if (fwrite(ciphertext,1,y,fdout) != y) {
|
||||
printf("Error writing to output.\n");
|
||||
exit(-1);
|
||||
}
|
||||
} while (y == sizeof(inbuf));
|
||||
fclose(fdout);
|
||||
fclose(fdin);
|
||||
}
|
||||
return 0;
|
||||
}
|
358
deps/libtomcrypt/demos/openssl-enc.c
vendored
Normal file
358
deps/libtomcrypt/demos/openssl-enc.c
vendored
Normal file
@ -0,0 +1,358 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
/*
|
||||
* Demo to do the rough equivalent of:
|
||||
*
|
||||
* openssl enc -aes-256-cbc -pass pass:foobar -in infile -out outfile -p
|
||||
*
|
||||
* Compilation:
|
||||
*
|
||||
* $(CC) -I /path/to/headers -L .../libs \
|
||||
* -o openssl-enc \
|
||||
* openssl-enc.c -ltomcrypt
|
||||
*
|
||||
* Usage:
|
||||
*
|
||||
* ./openssl-enc <enc|dec> infile outfile "passphrase" [salt]
|
||||
*
|
||||
* If provided, the salt must be EXACTLY a 16-char hex string.
|
||||
*
|
||||
* Demo is an example of:
|
||||
*
|
||||
* - (When decrypting) yanking salt out of the OpenSSL "Salted__..." header
|
||||
* - OpenSSL-compatible key derivation (in OpenSSL's modified PKCS#5v1 approach)
|
||||
* - Grabbing an Initialization Vector from the key generator
|
||||
* - Performing simple block encryption using AES
|
||||
* - PKCS#7-type padding (which hopefully can get ripped out of this demo and
|
||||
* made a libtomcrypt thing someday).
|
||||
*
|
||||
* This program is free for all purposes without any express guarantee it
|
||||
* works. If you really want to see a license here, assume the WTFPL :-)
|
||||
*
|
||||
* BJ Black, bblack@barracuda.com, https://wjblack.com
|
||||
*
|
||||
* BUGS:
|
||||
* Passing a password on a command line is a HORRIBLE idea. Don't use
|
||||
* this program for serious work!
|
||||
*/
|
||||
|
||||
#include <tomcrypt.h>
|
||||
|
||||
#ifndef LTC_RIJNDAEL
|
||||
#error Cannot compile this demo; Rijndael (AES) required
|
||||
#endif
|
||||
#ifndef LTC_CBC_MODE
|
||||
#error Cannot compile this demo; CBC mode required
|
||||
#endif
|
||||
#ifndef LTC_PKCS_5
|
||||
#error Cannot compile this demo; PKCS5 required
|
||||
#endif
|
||||
#ifndef LTC_RNG_GET_BYTES
|
||||
#error Cannot compile this demo; random generator required
|
||||
#endif
|
||||
#ifndef LTC_MD5
|
||||
#error Cannot compile this demo; MD5 required
|
||||
#endif
|
||||
|
||||
/* OpenSSL by default only runs one hash round */
|
||||
#define OPENSSL_ITERATIONS 1
|
||||
/* Use aes-256-cbc, so 256 bits of key, 128 of IV */
|
||||
#define KEY_LENGTH (256>>3)
|
||||
#define IV_LENGTH (128>>3)
|
||||
/* PKCS#5v1 requires exactly an 8-byte salt */
|
||||
#define SALT_LENGTH 8
|
||||
/* The header OpenSSL puts on an encrypted file */
|
||||
static char salt_header[] = { 'S', 'a', 'l', 't', 'e', 'd', '_', '_' };
|
||||
|
||||
#include <errno.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
/* A simple way to handle the possibility that a block may increase in size
|
||||
after padding. */
|
||||
union paddable {
|
||||
unsigned char unpad[1024];
|
||||
unsigned char pad[1024+MAXBLOCKSIZE];
|
||||
};
|
||||
|
||||
/*
|
||||
* Print usage and exit with a bad status (and perror() if any errno).
|
||||
*
|
||||
* Input: argv[0] and the error string
|
||||
* Output: <no return>
|
||||
* Side Effects: print messages and barf (does exit(3))
|
||||
*/
|
||||
void barf(const char *pname, const char *err)
|
||||
{
|
||||
printf("Usage: %s <enc|dec> infile outfile passphrase [salt]\n", pname);
|
||||
printf("\n");
|
||||
printf(" # encrypts infile->outfile, random salt\n");
|
||||
printf(" %s enc infile outfile \"passphrase\"\n", pname);
|
||||
printf("\n");
|
||||
printf(" # encrypts infile->outfile, salt from cmdline\n");
|
||||
printf(" %s enc infile outfile pass 0123456789abcdef\n", pname);
|
||||
printf("\n");
|
||||
printf(" # decrypts infile->outfile, pulls salt from infile\n");
|
||||
printf(" %s dec infile outfile pass\n", pname);
|
||||
printf("\n");
|
||||
printf(" # decrypts infile->outfile, salt specified\n");
|
||||
printf(" # (don't try to read the salt from infile)\n");
|
||||
printf(" %s dec infile outfile pass 0123456789abcdef"
|
||||
"\n", pname);
|
||||
printf("\n");
|
||||
printf("Application Error: %s\n", err);
|
||||
if(errno)
|
||||
perror(" System Error");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Parse a salt value passed in on the cmdline.
|
||||
*
|
||||
* Input: string passed in and a buf to put it in (exactly 8 bytes!)
|
||||
* Output: CRYPT_OK if parsed OK, CRYPT_ERROR if not
|
||||
* Side Effects: none
|
||||
*/
|
||||
int parse_hex_salt(unsigned char *in, unsigned char *out)
|
||||
{
|
||||
int idx;
|
||||
for(idx=0; idx<SALT_LENGTH; idx++)
|
||||
if(sscanf((char*)in+idx*2, "%02hhx", out+idx) != 1)
|
||||
return CRYPT_ERROR;
|
||||
return CRYPT_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Parse the Salted__[+8 bytes] from an OpenSSL-compatible file header.
|
||||
*
|
||||
* Input: file to read from and a to put the salt in (exactly 8 bytes!)
|
||||
* Output: CRYPT_OK if parsed OK, CRYPT_ERROR if not
|
||||
* Side Effects: infile's read pointer += 16
|
||||
*/
|
||||
int parse_openssl_header(FILE *in, unsigned char *out)
|
||||
{
|
||||
unsigned char tmp[SALT_LENGTH];
|
||||
if(fread(tmp, 1, sizeof(tmp), in) != sizeof(tmp))
|
||||
return CRYPT_ERROR;
|
||||
if(memcmp(tmp, salt_header, sizeof(tmp)))
|
||||
return CRYPT_ERROR;
|
||||
if(fread(tmp, 1, sizeof(tmp), in) != sizeof(tmp))
|
||||
return CRYPT_ERROR;
|
||||
memcpy(out, tmp, sizeof(tmp));
|
||||
return CRYPT_OK;
|
||||
}
|
||||
|
||||
/*
|
||||
* Dump a hexed stream of bytes (convenience func).
|
||||
*
|
||||
* Input: buf to read from, length
|
||||
* Output: none
|
||||
* Side Effects: bytes printed as a hex blob, no lf at the end
|
||||
*/
|
||||
void dump_bytes(unsigned char *in, unsigned long len)
|
||||
{
|
||||
unsigned long idx;
|
||||
for(idx=0; idx<len; idx++)
|
||||
printf("%02hhX", *(in+idx));
|
||||
}
|
||||
|
||||
/*
|
||||
* Pad or unpad a message using PKCS#7 padding.
|
||||
* Padding will add 1-(blocksize) bytes and unpadding will remove that amount.
|
||||
* Set is_padding to 1 to pad, 0 to unpad.
|
||||
*
|
||||
* Input: paddable buffer, size read, block length of cipher, mode
|
||||
* Output: number of bytes after padding resp. after unpadding
|
||||
* Side Effects: none
|
||||
*/
|
||||
static size_t s_pkcs7_pad(union paddable *buf, size_t nb, int block_length,
|
||||
int is_padding)
|
||||
{
|
||||
unsigned long length;
|
||||
|
||||
if(is_padding) {
|
||||
length = sizeof(buf->pad);
|
||||
if (padding_pad(buf->pad, nb, &length, block_length) != CRYPT_OK)
|
||||
return 0;
|
||||
return length;
|
||||
} else {
|
||||
length = nb;
|
||||
if (padding_depad(buf->pad, &length, 0) != CRYPT_OK)
|
||||
return 0;
|
||||
return length;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform an encrypt/decrypt operation to/from files using AES+CBC+PKCS7 pad.
|
||||
* Set encrypt to 1 to encrypt, 0 to decrypt.
|
||||
*
|
||||
* Input: in/out files, key, iv, and mode
|
||||
* Output: CRYPT_OK if no error
|
||||
* Side Effects: bytes slurped from infile, pushed to outfile, fds updated.
|
||||
*/
|
||||
int do_crypt(FILE *infd, FILE *outfd, unsigned char *key, unsigned char *iv,
|
||||
int encrypt)
|
||||
{
|
||||
union paddable inbuf, outbuf;
|
||||
int cipher, ret;
|
||||
symmetric_CBC cbc;
|
||||
size_t nb;
|
||||
|
||||
/* Register your cipher! */
|
||||
cipher = register_cipher(&aes_desc);
|
||||
if(cipher == -1)
|
||||
return CRYPT_INVALID_CIPHER;
|
||||
|
||||
/* Start a CBC session with cipher/key/val params */
|
||||
ret = cbc_start(cipher, iv, key, KEY_LENGTH, 0, &cbc);
|
||||
if( ret != CRYPT_OK )
|
||||
return -1;
|
||||
|
||||
do {
|
||||
/* Get bytes from the source */
|
||||
nb = fread(inbuf.unpad, 1, sizeof(inbuf.unpad), infd);
|
||||
if(!nb)
|
||||
return encrypt ? CRYPT_OK : CRYPT_ERROR;
|
||||
|
||||
/* Barf if we got a read error */
|
||||
if(ferror(infd))
|
||||
return CRYPT_ERROR;
|
||||
|
||||
if(encrypt) {
|
||||
/* We're encrypting, so pad first (if at EOF) and then
|
||||
crypt */
|
||||
if(feof(infd))
|
||||
nb = s_pkcs7_pad(&inbuf, nb,
|
||||
aes_desc.block_length, 1);
|
||||
|
||||
ret = cbc_encrypt(inbuf.pad, outbuf.pad, nb, &cbc);
|
||||
if(ret != CRYPT_OK)
|
||||
return ret;
|
||||
|
||||
} else {
|
||||
/* We're decrypting, so decrypt and then unpad if at
|
||||
EOF */
|
||||
ret = cbc_decrypt(inbuf.unpad, outbuf.unpad, nb, &cbc);
|
||||
if( ret != CRYPT_OK )
|
||||
return ret;
|
||||
|
||||
if(feof(infd))
|
||||
nb = s_pkcs7_pad(&outbuf, nb,
|
||||
aes_desc.block_length, 0);
|
||||
if(nb == 0)
|
||||
/* The file didn't decrypt correctly */
|
||||
return CRYPT_ERROR;
|
||||
|
||||
}
|
||||
|
||||
/* Push bytes to outfile */
|
||||
if(fwrite(outbuf.unpad, 1, nb, outfd) != nb)
|
||||
return CRYPT_ERROR;
|
||||
|
||||
} while(!feof(infd));
|
||||
|
||||
/* Close up */
|
||||
cbc_done(&cbc);
|
||||
|
||||
return CRYPT_OK;
|
||||
}
|
||||
|
||||
/* Convenience macro for the various barfable places below */
|
||||
#define BARF(a) { \
|
||||
if(infd) fclose(infd); \
|
||||
if(outfd) { fclose(outfd); remove(argv[3]); } \
|
||||
barf(argv[0], a); \
|
||||
}
|
||||
/*
|
||||
* The main routine. Mostly validate cmdline params, open files, run the KDF,
|
||||
* and do the crypt.
|
||||
*/
|
||||
int main(int argc, char *argv[]) {
|
||||
unsigned char salt[SALT_LENGTH];
|
||||
FILE *infd = NULL, *outfd = NULL;
|
||||
int encrypt = -1;
|
||||
int hash = -1;
|
||||
int ret;
|
||||
unsigned char keyiv[KEY_LENGTH + IV_LENGTH];
|
||||
unsigned long keyivlen = (KEY_LENGTH + IV_LENGTH);
|
||||
unsigned char *key, *iv;
|
||||
|
||||
/* Check proper number of cmdline args */
|
||||
if(argc < 5 || argc > 6)
|
||||
BARF("Invalid number of arguments");
|
||||
|
||||
/* Check proper mode of operation */
|
||||
if (!strncmp(argv[1], "enc", 3))
|
||||
encrypt = 1;
|
||||
else if(!strncmp(argv[1], "dec", 3))
|
||||
encrypt = 0;
|
||||
else
|
||||
BARF("Bad command name");
|
||||
|
||||
/* Check we can open infile/outfile */
|
||||
infd = fopen(argv[2], "rb");
|
||||
if(infd == NULL)
|
||||
BARF("Could not open infile");
|
||||
outfd = fopen(argv[3], "wb");
|
||||
if(outfd == NULL)
|
||||
BARF("Could not open outfile");
|
||||
|
||||
/* Get the salt from wherever */
|
||||
if(argc == 6) {
|
||||
/* User-provided */
|
||||
if(parse_hex_salt((unsigned char*) argv[5], salt) != CRYPT_OK)
|
||||
BARF("Bad user-specified salt");
|
||||
} else if(!strncmp(argv[1], "enc", 3)) {
|
||||
/* Encrypting; get from RNG */
|
||||
if(rng_get_bytes(salt, sizeof(salt), NULL) != sizeof(salt))
|
||||
BARF("Not enough random data");
|
||||
} else {
|
||||
/* Parse from infile (decrypt only) */
|
||||
if(parse_openssl_header(infd, salt) != CRYPT_OK)
|
||||
BARF("Invalid OpenSSL header in infile");
|
||||
}
|
||||
|
||||
/* Fetch the MD5 hasher for PKCS#5 */
|
||||
hash = register_hash(&md5_desc);
|
||||
if(hash == -1)
|
||||
BARF("Could not register MD5 hash");
|
||||
|
||||
/* Set things to a sane initial state */
|
||||
zeromem(keyiv, sizeof(keyiv));
|
||||
key = keyiv + 0; /* key comes first */
|
||||
iv = keyiv + KEY_LENGTH; /* iv comes next */
|
||||
|
||||
/* Run the key derivation from the provided passphrase. This gets us
|
||||
the key and iv. */
|
||||
ret = pkcs_5_alg1_openssl((unsigned char*)argv[4], XSTRLEN(argv[4]), salt,
|
||||
OPENSSL_ITERATIONS, hash, keyiv, &keyivlen );
|
||||
if(ret != CRYPT_OK)
|
||||
BARF("Could not derive key/iv from passphrase");
|
||||
|
||||
/* Display the salt/key/iv like OpenSSL cmdline does when -p */
|
||||
printf("salt="); dump_bytes(salt, sizeof(salt)); printf("\n");
|
||||
printf("key="); dump_bytes(key, KEY_LENGTH); printf("\n");
|
||||
printf("iv ="); dump_bytes(iv, IV_LENGTH ); printf("\n");
|
||||
|
||||
/* If we're encrypting, write the salt header as OpenSSL does */
|
||||
if(!strncmp(argv[1], "enc", 3)) {
|
||||
if(fwrite(salt_header, 1, sizeof(salt_header), outfd) !=
|
||||
sizeof(salt_header) )
|
||||
BARF("Error writing salt header to outfile");
|
||||
if(fwrite(salt, 1, sizeof(salt), outfd) != sizeof(salt))
|
||||
BARF("Error writing salt to outfile");
|
||||
}
|
||||
|
||||
/* At this point, the files are open, the salt has been figured out,
|
||||
and we're ready to pump data through crypt. */
|
||||
|
||||
/* Do the crypt operation */
|
||||
if(do_crypt(infd, outfd, key, iv, encrypt) != CRYPT_OK)
|
||||
BARF("Error during crypt operation");
|
||||
|
||||
/* Clean up */
|
||||
fclose(infd); fclose(outfd);
|
||||
return 0;
|
||||
}
|
71
deps/libtomcrypt/demos/sizes.c
vendored
Normal file
71
deps/libtomcrypt/demos/sizes.c
vendored
Normal file
@ -0,0 +1,71 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
|
||||
#include "tomcrypt.h"
|
||||
|
||||
#if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L
|
||||
#include <libgen.h>
|
||||
#else
|
||||
#define basename(x) x
|
||||
#endif
|
||||
/**
|
||||
@file demo_crypt_sizes.c
|
||||
|
||||
Demo how to get various sizes to dynamic languages
|
||||
like Python - Larry Bugbee, February 2013
|
||||
*/
|
||||
|
||||
static void s_print_line(const char* cmd, const char* desc)
|
||||
{
|
||||
printf(" %-16s - %s\n", cmd, desc);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
if (argc == 1) {
|
||||
/* given a specific size name, get and print its size */
|
||||
char name[] = "ltc_hash_descriptor";
|
||||
unsigned int size;
|
||||
char *sizes_list;
|
||||
unsigned int sizes_list_len;
|
||||
if (crypt_get_size(name, &size) != 0) exit(EXIT_FAILURE);
|
||||
printf("\n size of '%s' is %u \n\n", name, size);
|
||||
|
||||
/* get and print the length of the names (and sizes) list */
|
||||
if (crypt_list_all_sizes(NULL, &sizes_list_len) != 0) exit(EXIT_FAILURE);
|
||||
printf(" need to allocate %u bytes \n\n", sizes_list_len);
|
||||
|
||||
/* get and print the names (and sizes) list */
|
||||
if ((sizes_list = malloc(sizes_list_len)) == NULL) exit(EXIT_FAILURE);
|
||||
if (crypt_list_all_sizes(sizes_list, &sizes_list_len) != 0) exit(EXIT_FAILURE);
|
||||
printf(" supported sizes:\n\n%s\n\n", sizes_list);
|
||||
free(sizes_list);
|
||||
} else if (argc == 2) {
|
||||
if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "--help") == 0) {
|
||||
char* base = strdup(basename(argv[0]));
|
||||
printf("Usage: %s [-a] [-s name]\n\n", base);
|
||||
s_print_line("<no argument>", "The old behavior of the demo");
|
||||
s_print_line("-a", "Only lists all sizes");
|
||||
s_print_line("-s name", "List a single size given as argument");
|
||||
s_print_line("-h", "The help you're looking at");
|
||||
free(base);
|
||||
} else if (strcmp(argv[1], "-a") == 0) {
|
||||
char *sizes_list;
|
||||
unsigned int sizes_list_len;
|
||||
/* get and print the length of the names (and sizes) list */
|
||||
if (crypt_list_all_sizes(NULL, &sizes_list_len) != 0) exit(EXIT_FAILURE);
|
||||
/* get and print the names (and sizes) list */
|
||||
if ((sizes_list = malloc(sizes_list_len)) == NULL) exit(EXIT_FAILURE);
|
||||
if (crypt_list_all_sizes(sizes_list, &sizes_list_len) != 0) exit(EXIT_FAILURE);
|
||||
printf("%s\n", sizes_list);
|
||||
free(sizes_list);
|
||||
}
|
||||
} else if (argc == 3) {
|
||||
if (strcmp(argv[1], "-s") == 0) {
|
||||
unsigned int size;
|
||||
if (crypt_get_size(argv[2], &size) != 0) exit(EXIT_FAILURE);
|
||||
printf("%s,%u\n", argv[2], size);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
12
deps/libtomcrypt/demos/small.c
vendored
Normal file
12
deps/libtomcrypt/demos/small.c
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
/* small demo app that just includes a cipher/hash/prng */
|
||||
#include <tomcrypt.h>
|
||||
|
||||
int main(void)
|
||||
{
|
||||
register_cipher(&rijndael_enc_desc);
|
||||
register_prng(&yarrow_desc);
|
||||
register_hash(&sha256_desc);
|
||||
return 0;
|
||||
}
|
1396
deps/libtomcrypt/demos/timing.c
vendored
Normal file
1396
deps/libtomcrypt/demos/timing.c
vendored
Normal file
File diff suppressed because it is too large
Load Diff
818
deps/libtomcrypt/demos/tv_gen.c
vendored
Normal file
818
deps/libtomcrypt/demos/tv_gen.c
vendored
Normal file
@ -0,0 +1,818 @@
|
||||
/* LibTomCrypt, modular cryptographic library -- Tom St Denis */
|
||||
/* SPDX-License-Identifier: Unlicense */
|
||||
#include "tomcrypt_private.h"
|
||||
|
||||
static void hash_gen(void)
|
||||
{
|
||||
unsigned char md[MAXBLOCKSIZE], *buf;
|
||||
unsigned long outlen, x, y, z;
|
||||
FILE *out;
|
||||
int err;
|
||||
|
||||
out = fopen("hash_tv.txt", "w");
|
||||
if (out == NULL) {
|
||||
perror("can't open hash_tv");
|
||||
}
|
||||
|
||||
fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n");
|
||||
for (x = 0; hash_descriptor[x].name != NULL; x++) {
|
||||
buf = XMALLOC(2 * hash_descriptor[x].blocksize + 1);
|
||||
if (buf == NULL) {
|
||||
perror("can't alloc mem");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "Hash: %s\n", hash_descriptor[x].name);
|
||||
for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) {
|
||||
for (z = 0; z < y; z++) {
|
||||
buf[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
outlen = sizeof(md);
|
||||
if ((err = hash_memory(x, buf, y, md, &outlen)) != CRYPT_OK) {
|
||||
printf("hash_memory error: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3lu: ", y);
|
||||
for (z = 0; z < outlen; z++) {
|
||||
fprintf(out, "%02X", md[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
XFREE(buf);
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
static void cipher_gen(void)
|
||||
{
|
||||
unsigned char *key, pt[MAXBLOCKSIZE];
|
||||
unsigned long x, y, z, w;
|
||||
int err, kl, lastkl;
|
||||
FILE *out;
|
||||
symmetric_key skey;
|
||||
|
||||
out = fopen("cipher_tv.txt", "w");
|
||||
|
||||
fprintf(out,
|
||||
"Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n"
|
||||
"The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name);
|
||||
|
||||
/* three modes, smallest, medium, large keys */
|
||||
lastkl = 10000;
|
||||
for (y = 0; y < 3; y++) {
|
||||
switch (y) {
|
||||
case 0: kl = cipher_descriptor[x].min_key_length; break;
|
||||
case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break;
|
||||
case 2: kl = cipher_descriptor[x].max_key_length; break;
|
||||
}
|
||||
if ((err = cipher_descriptor[x].keysize(&kl)) != CRYPT_OK) {
|
||||
printf("keysize error: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (kl == lastkl) continue;
|
||||
lastkl = kl;
|
||||
fprintf(out, "Key Size: %d bytes\n", kl);
|
||||
|
||||
key = XMALLOC(kl);
|
||||
if (key == NULL) {
|
||||
perror("can't malloc memory");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (z = 0; (int)z < kl; z++) {
|
||||
key[z] = (unsigned char)z;
|
||||
}
|
||||
if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
|
||||
printf("setup error: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
|
||||
pt[z] = (unsigned char)z;
|
||||
}
|
||||
for (w = 0; w < 50; w++) {
|
||||
cipher_descriptor[x].ecb_encrypt(pt, pt, &skey);
|
||||
fprintf(out, "%2lu: ", w);
|
||||
for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
|
||||
fprintf(out, "%02X", pt[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* reschedule a new key */
|
||||
for (z = 0; z < (unsigned long)kl; z++) {
|
||||
key[z] = pt[z % cipher_descriptor[x].block_length];
|
||||
}
|
||||
if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
|
||||
printf("cipher setup2 error: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
XFREE(key);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
static void hmac_gen(void)
|
||||
{
|
||||
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], *input;
|
||||
int x, y, z, err;
|
||||
FILE *out;
|
||||
unsigned long len;
|
||||
|
||||
out = fopen("hmac_tv.txt", "w");
|
||||
|
||||
fprintf(out,
|
||||
"HMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed. The initial key is\n"
|
||||
"of the same format (the same length as the HASH output size). The HMAC key in step N+1 is the HMAC output of\n"
|
||||
"step N.\n\n");
|
||||
|
||||
for (x = 0; hash_descriptor[x].name != NULL; x++) {
|
||||
fprintf(out, "HMAC-%s\n", hash_descriptor[x].name);
|
||||
|
||||
/* initial key */
|
||||
for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) {
|
||||
key[y] = (y&255);
|
||||
}
|
||||
|
||||
input = XMALLOC(hash_descriptor[x].blocksize * 2 + 1);
|
||||
if (input == NULL) {
|
||||
perror("Can't malloc memory");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) {
|
||||
for (z = 0; z < y; z++) {
|
||||
input[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = sizeof(output);
|
||||
if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) {
|
||||
printf("Error hmacing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y);
|
||||
for (z = 0; z <(int) len; z++) {
|
||||
fprintf(out, "%02X", output[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
memcpy(key, output, hash_descriptor[x].hashsize);
|
||||
}
|
||||
XFREE(input);
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
#ifdef LTC_OMAC
|
||||
static void omac_gen(void)
|
||||
{
|
||||
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
|
||||
int err, x, y, z, kl;
|
||||
FILE *out;
|
||||
unsigned long len;
|
||||
|
||||
out = fopen("omac_tv.txt", "w");
|
||||
|
||||
fprintf(out,
|
||||
"OMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed. The initial key is\n"
|
||||
"of the same format (length specified per cipher). The OMAC key in step N+1 is the OMAC output of\n"
|
||||
"step N (repeated as required to fill the array).\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
kl = cipher_descriptor[x].block_length;
|
||||
|
||||
/* skip ciphers which do not have 64 or 128 bit block sizes */
|
||||
if (kl != 8 && kl != 16) continue;
|
||||
|
||||
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
||||
kl = cipher_descriptor[x].max_key_length;
|
||||
}
|
||||
fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
||||
|
||||
/* initial key/block */
|
||||
for (y = 0; y < kl; y++) {
|
||||
key[y] = (y & 255);
|
||||
}
|
||||
|
||||
for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
|
||||
for (z = 0; z < y; z++) {
|
||||
input[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = sizeof(output);
|
||||
if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
|
||||
printf("Error OMAC'ing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (len == 0) {
|
||||
printf("Error OMAC'ing: zero length\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y);
|
||||
for (z = 0; z <(int)len; z++) {
|
||||
fprintf(out, "%02X", output[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = output[z % len];
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef LTC_PMAC
|
||||
static void pmac_gen(void)
|
||||
{
|
||||
unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
|
||||
int err, x, y, z, kl;
|
||||
FILE *out;
|
||||
unsigned long len;
|
||||
|
||||
out = fopen("pmac_tv.txt", "w");
|
||||
|
||||
fprintf(out,
|
||||
"PMAC Tests. In these tests messages of N bytes long (00,01,02,...,NN-1) are PMAC'ed. The initial key is\n"
|
||||
"of the same format (length specified per cipher). The PMAC key in step N+1 is the PMAC output of\n"
|
||||
"step N (repeated as required to fill the array).\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
kl = cipher_descriptor[x].block_length;
|
||||
|
||||
/* skip ciphers which do not have 64 or 128 bit block sizes */
|
||||
if (kl != 8 && kl != 16) continue;
|
||||
|
||||
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
||||
kl = cipher_descriptor[x].max_key_length;
|
||||
}
|
||||
fprintf(out, "PMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
||||
|
||||
/* initial key/block */
|
||||
for (y = 0; y < kl; y++) {
|
||||
key[y] = (y & 255);
|
||||
}
|
||||
|
||||
for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
|
||||
for (z = 0; z < y; z++) {
|
||||
input[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = sizeof(output);
|
||||
if ((err = pmac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
|
||||
printf("Error PMACing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (len == 0) {
|
||||
printf("Error PMAC'ing: zero length\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y);
|
||||
for (z = 0; z <(int)len; z++) {
|
||||
fprintf(out, "%02X", output[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = output[z % len];
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef LTC_EAX_MODE
|
||||
static void eax_gen(void)
|
||||
{
|
||||
int err, kl, x, y1, z;
|
||||
FILE *out;
|
||||
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], header[MAXBLOCKSIZE*2],
|
||||
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
|
||||
unsigned long len;
|
||||
|
||||
out = fopen("eax_tv.txt", "w");
|
||||
fprintf(out, "EAX Test Vectors. Uses the 00010203...NN-1 pattern for header/nonce/plaintext/key. The outputs\n"
|
||||
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
|
||||
"step repeated sufficiently.\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
kl = cipher_descriptor[x].block_length;
|
||||
|
||||
/* skip ciphers which do not have 64 or 128 bit block sizes */
|
||||
if (kl != 8 && kl != 16) continue;
|
||||
|
||||
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
||||
kl = cipher_descriptor[x].max_key_length;
|
||||
}
|
||||
fprintf(out, "EAX-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
||||
|
||||
/* the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = (z & 255);
|
||||
}
|
||||
|
||||
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
|
||||
for (z = 0; z < y1; z++) {
|
||||
plaintext[z] = (unsigned char)(z & 255);
|
||||
nonce[z] = (unsigned char)(z & 255);
|
||||
header[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = sizeof(tag);
|
||||
if ((err = eax_encrypt_authenticate_memory(x, key, kl, nonce, y1, header, y1, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
|
||||
printf("Error EAX'ing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (len == 0) {
|
||||
printf("Error EAX'ing: zero length\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y1);
|
||||
for (z = 0; z < y1; z++) {
|
||||
fprintf(out, "%02X", plaintext[z]);
|
||||
}
|
||||
fprintf(out, ", ");
|
||||
for (z = 0; z <(int)len; z++) {
|
||||
fprintf(out, "%02X", tag[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = tag[z % len];
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef LTC_OCB_MODE
|
||||
static void ocb_gen(void)
|
||||
{
|
||||
int err, kl, x, y1, z;
|
||||
FILE *out;
|
||||
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
|
||||
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
|
||||
unsigned long len;
|
||||
|
||||
out = fopen("ocb_tv.txt", "w");
|
||||
fprintf(out, "OCB Test Vectors. Uses the 00010203...NN-1 pattern for nonce/plaintext/key. The outputs\n"
|
||||
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
|
||||
"step repeated sufficiently. The nonce is fixed throughout.\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
kl = cipher_descriptor[x].block_length;
|
||||
|
||||
/* skip ciphers which do not have 64 or 128 bit block sizes */
|
||||
if (kl != 8 && kl != 16) continue;
|
||||
|
||||
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
||||
kl = cipher_descriptor[x].max_key_length;
|
||||
}
|
||||
fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
||||
|
||||
/* the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = (z & 255);
|
||||
}
|
||||
|
||||
/* fixed nonce */
|
||||
for (z = 0; z < cipher_descriptor[x].block_length; z++) {
|
||||
nonce[z] = z;
|
||||
}
|
||||
|
||||
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
|
||||
for (z = 0; z < y1; z++) {
|
||||
plaintext[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = sizeof(tag);
|
||||
if ((err = ocb_encrypt_authenticate_memory(x, key, kl, nonce, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
|
||||
printf("Error OCB'ing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (len == 0) {
|
||||
printf("Error OCB'ing: zero length\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y1);
|
||||
for (z = 0; z < y1; z++) {
|
||||
fprintf(out, "%02X", plaintext[z]);
|
||||
}
|
||||
fprintf(out, ", ");
|
||||
for (z = 0; z <(int)len; z++) {
|
||||
fprintf(out, "%02X", tag[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = tag[z % len];
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef LTC_OCB3_MODE
|
||||
static void ocb3_gen(void)
|
||||
{
|
||||
int err, kl, x, y1, z, noncelen;
|
||||
FILE *out;
|
||||
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
|
||||
plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
|
||||
unsigned long len;
|
||||
|
||||
out = fopen("ocb3_tv.txt", "w");
|
||||
fprintf(out, "OCB3 Test Vectors. Uses the 00010203...NN-1 pattern for nonce/plaintext/key. The outputs\n"
|
||||
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
|
||||
"step repeated sufficiently. The nonce is fixed throughout. AAD is fixed to 3 bytes (ASCII) 'AAD'.\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
kl = cipher_descriptor[x].block_length;
|
||||
|
||||
/* skip ciphers which do not have 64 or 128 bit block sizes */
|
||||
if (kl != 16) continue;
|
||||
|
||||
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
||||
kl = cipher_descriptor[x].max_key_length;
|
||||
}
|
||||
fprintf(out, "OCB3-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
||||
|
||||
/* the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = (z & 255);
|
||||
}
|
||||
|
||||
/* fixed nonce */
|
||||
noncelen = MIN(15, cipher_descriptor[x].block_length);
|
||||
for (z = 0; z < noncelen; z++) {
|
||||
nonce[z] = z;
|
||||
}
|
||||
|
||||
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
|
||||
for (z = 0; z < y1; z++) {
|
||||
plaintext[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = 16;
|
||||
if ((err = ocb3_encrypt_authenticate_memory(x, key, kl, nonce, noncelen, (unsigned char*)"AAD", 3, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
|
||||
printf("Error OCB3'ing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (len == 0) {
|
||||
printf("Error OCB3'ing: zero length\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y1);
|
||||
for (z = 0; z < y1; z++) {
|
||||
fprintf(out, "%02X", plaintext[z]);
|
||||
}
|
||||
fprintf(out, ", ");
|
||||
for (z = 0; z <(int)len; z++) {
|
||||
fprintf(out, "%02X", tag[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = tag[z % len];
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef LTC_CCM_MODE
|
||||
static void ccm_gen(void)
|
||||
{
|
||||
int err, kl, x, y1, z;
|
||||
unsigned int t;
|
||||
FILE *out;
|
||||
unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
|
||||
plaintext[MAXBLOCKSIZE*2], tag[16];
|
||||
unsigned long len;
|
||||
const unsigned int taglen[] = {4, 6, 8, 10, 12, 14, 16};
|
||||
|
||||
out = fopen("ccm_tv.txt", "w");
|
||||
fprintf(out, "CCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n"
|
||||
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
|
||||
"step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
kl = cipher_descriptor[x].block_length;
|
||||
|
||||
/* skip ciphers which do not have 128 bit block sizes */
|
||||
if (kl != 16) continue;
|
||||
|
||||
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
||||
kl = cipher_descriptor[x].max_key_length;
|
||||
}
|
||||
fprintf(out, "CCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
||||
|
||||
/* the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = (z & 255);
|
||||
}
|
||||
|
||||
/* fixed nonce */
|
||||
for (z = 0; z < cipher_descriptor[x].block_length; z++) {
|
||||
nonce[z] = z;
|
||||
}
|
||||
|
||||
for (t = 0; t < sizeof(taglen)/sizeof(taglen[0]); ++t) {
|
||||
for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
|
||||
for (z = 0; z < y1; z++) {
|
||||
plaintext[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = taglen[t];
|
||||
if ((err = ccm_memory(x, key, kl, NULL, nonce, 13, plaintext, y1, plaintext, y1, plaintext, tag, &len, CCM_ENCRYPT)) != CRYPT_OK) {
|
||||
printf("Error CCM'ing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (len == 0) {
|
||||
printf("Error CCM'ing: zero length\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y1);
|
||||
for (z = 0; z < y1; z++) {
|
||||
fprintf(out, "%02X", plaintext[z]);
|
||||
}
|
||||
fprintf(out, ", ");
|
||||
for (z = 0; z <(int)len; z++) {
|
||||
fprintf(out, "%02X", tag[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = tag[z % len];
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef LTC_GCM_MODE
|
||||
static void gcm_gen(void)
|
||||
{
|
||||
int err, kl, x, y1, z;
|
||||
FILE *out;
|
||||
unsigned char key[MAXBLOCKSIZE], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
|
||||
unsigned long len;
|
||||
|
||||
out = fopen("gcm_tv.txt", "w");
|
||||
fprintf(out, "GCM Test Vectors. Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key. The outputs\n"
|
||||
"are of the form ciphertext,tag for a given NN. The key for step N>1 is the tag of the previous\n"
|
||||
"step repeated sufficiently. The nonce is fixed throughout at 13 bytes 000102...\n\n");
|
||||
|
||||
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
|
||||
kl = cipher_descriptor[x].block_length;
|
||||
|
||||
/* skip ciphers which do not have 128 bit block sizes */
|
||||
if (kl != 16) continue;
|
||||
|
||||
if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
|
||||
kl = cipher_descriptor[x].max_key_length;
|
||||
}
|
||||
fprintf(out, "GCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
|
||||
|
||||
/* the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = (z & 255);
|
||||
}
|
||||
|
||||
for (y1 = 1; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
|
||||
for (z = 0; z < y1; z++) {
|
||||
plaintext[z] = (unsigned char)(z & 255);
|
||||
}
|
||||
len = sizeof(tag);
|
||||
if ((err = gcm_memory(x, key, kl, plaintext, y1, plaintext, y1, plaintext, y1, plaintext, tag, &len, GCM_ENCRYPT)) != CRYPT_OK) {
|
||||
printf("Error GCM'ing: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (len == 0) {
|
||||
printf("Error GCM'ing: zero length\n");
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
fprintf(out, "%3d: ", y1);
|
||||
for (z = 0; z < y1; z++) {
|
||||
fprintf(out, "%02X", plaintext[z]);
|
||||
}
|
||||
fprintf(out, ", ");
|
||||
for (z = 0; z <(int)len; z++) {
|
||||
fprintf(out, "%02X", tag[z]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* forward the key */
|
||||
for (z = 0; z < kl; z++) {
|
||||
key[z] = tag[z % len];
|
||||
}
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void base64_gen(void)
|
||||
{
|
||||
FILE *out;
|
||||
unsigned char src[32], ch;
|
||||
char dst[256];
|
||||
unsigned long x, len;
|
||||
|
||||
out = fopen("base64_tv.txt", "w");
|
||||
fprintf(out, "Base64 vectors. These are the base64 encodings of the strings 00,01,02...NN-1\n\n");
|
||||
for (x = 0; x <= 32; x++) {
|
||||
for (ch = 0; ch < x; ch++) {
|
||||
src[ch] = ch;
|
||||
}
|
||||
len = sizeof(dst);
|
||||
base64_encode(src, x, dst, &len);
|
||||
fprintf(out, "%2lu: %s\n", x, dst);
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
static void math_gen(void)
|
||||
{
|
||||
}
|
||||
|
||||
static void ecc_gen(void)
|
||||
{
|
||||
FILE *out;
|
||||
unsigned char str[512];
|
||||
void *k, *order, *modulus, *a;
|
||||
ecc_point *G, *R;
|
||||
int x;
|
||||
|
||||
out = fopen("ecc_tv.txt", "w");
|
||||
fprintf(out, "ecc vectors. These are for kG for k=1,3,9,27,...,3**n until k > order of the curve outputs are <k,x,y> triplets\n\n");
|
||||
G = ltc_ecc_new_point();
|
||||
R = ltc_ecc_new_point();
|
||||
mp_init(&k);
|
||||
mp_init(&order);
|
||||
mp_init(&modulus);
|
||||
mp_init(&a);
|
||||
|
||||
for (x = 0; ltc_ecc_curves[x].prime != NULL; x++) {
|
||||
fprintf(out, "%s\n", ltc_ecc_curves[x].OID);
|
||||
mp_set(k, 1);
|
||||
|
||||
mp_read_radix(order, (char *)ltc_ecc_curves[x].order, 16);
|
||||
mp_read_radix(modulus, (char *)ltc_ecc_curves[x].prime, 16);
|
||||
mp_read_radix(a, (char *)ltc_ecc_curves[x].A, 16);
|
||||
mp_read_radix(G->x, (char *)ltc_ecc_curves[x].Gx, 16);
|
||||
mp_read_radix(G->y, (char *)ltc_ecc_curves[x].Gy, 16);
|
||||
mp_set(G->z, 1);
|
||||
|
||||
while (mp_cmp(k, order) == LTC_MP_LT) {
|
||||
ltc_mp.ecc_ptmul(k, G, R, a, modulus, 1);
|
||||
mp_tohex(k, (char*)str); fprintf(out, "%s, ", (char*)str);
|
||||
mp_tohex(R->x, (char*)str); fprintf(out, "%s, ", (char*)str);
|
||||
mp_tohex(R->y, (char*)str); fprintf(out, "%s\n", (char*)str);
|
||||
mp_mul_d(k, 3, k);
|
||||
}
|
||||
}
|
||||
mp_clear_multi(k, order, modulus, a, LTC_NULL);
|
||||
ltc_ecc_del_point(G);
|
||||
ltc_ecc_del_point(R);
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
#ifdef LTC_LRW_MODE
|
||||
static void lrw_gen(void)
|
||||
{
|
||||
FILE *out;
|
||||
unsigned char tweak[16], key[16], iv[16], buf[1024];
|
||||
int x, y, err;
|
||||
symmetric_LRW lrw;
|
||||
|
||||
/* initialize default key and tweak */
|
||||
for (x = 0; x < 16; x++) {
|
||||
tweak[x] = key[x] = iv[x] = x;
|
||||
}
|
||||
|
||||
out = fopen("lrw_tv.txt", "w");
|
||||
for (x = 16; x < (int)(sizeof(buf)); x += 16) {
|
||||
if ((err = lrw_start(find_cipher("aes"), iv, key, 16, tweak, 0, &lrw)) != CRYPT_OK) {
|
||||
fprintf(stderr, "Error starting LRW-AES: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
/* encrypt incremental */
|
||||
for (y = 0; y < x; y++) {
|
||||
buf[y] = y & 255;
|
||||
}
|
||||
|
||||
if ((err = lrw_encrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
|
||||
fprintf(stderr, "Error encrypting with LRW-AES: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
/* display it */
|
||||
fprintf(out, "%d:", x);
|
||||
for (y = 0; y < x; y++) {
|
||||
fprintf(out, "%02x", buf[y]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
|
||||
/* reset IV */
|
||||
if ((err = lrw_setiv(iv, 16, &lrw)) != CRYPT_OK) {
|
||||
fprintf(stderr, "Error setting IV: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
/* copy new tweak, iv and key */
|
||||
for (y = 0; y < 16; y++) {
|
||||
key[y] = buf[y];
|
||||
iv[y] = buf[(y+16)%x];
|
||||
tweak[y] = buf[(y+32)%x];
|
||||
}
|
||||
|
||||
if ((err = lrw_decrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
|
||||
fprintf(stderr, "Error decrypting with LRW-AES: %s\n", error_to_string(err));
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
/* display it */
|
||||
fprintf(out, "%d:", x);
|
||||
for (y = 0; y < x; y++) {
|
||||
fprintf(out, "%02x", buf[y]);
|
||||
}
|
||||
fprintf(out, "\n");
|
||||
lrw_done(&lrw);
|
||||
}
|
||||
fclose(out);
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(void)
|
||||
{
|
||||
register_all_ciphers();
|
||||
register_all_hashes();
|
||||
register_all_prngs();
|
||||
#ifdef USE_LTM
|
||||
ltc_mp = ltm_desc;
|
||||
#elif defined(USE_TFM)
|
||||
ltc_mp = tfm_desc;
|
||||
#elif defined(USE_GMP)
|
||||
ltc_mp = gmp_desc;
|
||||
#elif defined(EXT_MATH_LIB)
|
||||
extern ltc_math_descriptor EXT_MATH_LIB;
|
||||
ltc_mp = EXT_MATH_LIB;
|
||||
#endif
|
||||
|
||||
printf("Generating hash vectors..."); fflush(stdout); hash_gen(); printf("done\n");
|
||||
printf("Generating cipher vectors..."); fflush(stdout); cipher_gen(); printf("done\n");
|
||||
printf("Generating HMAC vectors..."); fflush(stdout); hmac_gen(); printf("done\n");
|
||||
#ifdef LTC_OMAC
|
||||
printf("Generating OMAC vectors..."); fflush(stdout); omac_gen(); printf("done\n");
|
||||
#endif
|
||||
#ifdef LTC_PMAC
|
||||
printf("Generating PMAC vectors..."); fflush(stdout); pmac_gen(); printf("done\n");
|
||||
#endif
|
||||
#ifdef LTC_EAX_MODE
|
||||
printf("Generating EAX vectors..."); fflush(stdout); eax_gen(); printf("done\n");
|
||||
#endif
|
||||
#ifdef LTC_OCB_MODE
|
||||
printf("Generating OCB vectors..."); fflush(stdout); ocb_gen(); printf("done\n");
|
||||
#endif
|
||||
#ifdef LTC_OCB3_MODE
|
||||
printf("Generating OCB3 vectors..."); fflush(stdout); ocb3_gen(); printf("done\n");
|
||||
#endif
|
||||
#ifdef LTC_CCM_MODE
|
||||
printf("Generating CCM vectors..."); fflush(stdout); ccm_gen(); printf("done\n");
|
||||
#endif
|
||||
#ifdef LTC_GCM_MODE
|
||||
printf("Generating GCM vectors..."); fflush(stdout); gcm_gen(); printf("done\n");
|
||||
#endif
|
||||
printf("Generating BASE64 vectors..."); fflush(stdout); base64_gen(); printf("done\n");
|
||||
if (ltc_mp.name != NULL) {
|
||||
printf("Generating MATH vectors..."); fflush(stdout); math_gen(); printf("done\n");
|
||||
printf("Generating ECC vectors..."); fflush(stdout); ecc_gen(); printf("done\n");
|
||||
}
|
||||
#ifdef LTC_LRW_MODE
|
||||
printf("Generating LRW vectors..."); fflush(stdout); lrw_gen(); printf("done\n");
|
||||
#endif
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user