iw5-mod/deps/zstd/tests/paramgrill.c

2967 lines
102 KiB
C

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-************************************
* Dependencies
**************************************/
#include "util.h" /* Ensure platform.h is compiled first; also : compiler options, UTIL_GetFileSize */
#include <stdlib.h> /* malloc */
#include <stdio.h> /* fprintf, fopen, ftello64 */
#include <string.h> /* strcmp */
#include <math.h> /* log */
#include <assert.h>
#include "timefn.h" /* SEC_TO_MICRO, UTIL_time_t, UTIL_clockSpanMicro, UTIL_clockSpanNano, UTIL_getTime */
#include "mem.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_estimateCCtxSize */
#include "zstd.h"
#include "datagen.h"
#include "xxhash.h"
#include "benchfn.h"
#include "benchzstd.h"
#include "zstd_errors.h"
#include "zstd_internal.h" /* should not be needed */
/*-************************************
* Constants
**************************************/
#define PROGRAM_DESCRIPTION "ZSTD parameters tester"
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %s %i-bits, by %s ***\n", PROGRAM_DESCRIPTION, ZSTD_VERSION_STRING, (int)(sizeof(void*)*8), AUTHOR
#define TIMELOOP_NANOSEC (1*1000000000ULL) /* 1 second */
#define NB_LEVELS_TRACKED 22 /* ensured being >= ZSTD_maxCLevel() in BMK_init_level_constraints() */
static const size_t maxMemory = (sizeof(size_t)==4) ? (2 GB - 64 MB) : (size_t)(1ULL << ((sizeof(size_t)*8)-31));
#define COMPRESSIBILITY_DEFAULT 0.50
static const U64 g_maxVariationTime = 60 * SEC_TO_MICRO;
static const int g_maxNbVariations = 64;
/*-************************************
* Macros
**************************************/
#define DISPLAY(...) fprintf(stderr, __VA_ARGS__)
#define DISPLAYLEVEL(n, ...) if(g_displayLevel >= n) { fprintf(stderr, __VA_ARGS__); }
#define DEBUGOUTPUT(...) { if (DEBUG) DISPLAY(__VA_ARGS__); }
#define TIMED 0
#ifndef DEBUG
# define DEBUG 0
#endif
#undef MIN
#undef MAX
#define MIN(a,b) ( (a) < (b) ? (a) : (b) )
#define MAX(a,b) ( (a) > (b) ? (a) : (b) )
#define CUSTOM_LEVEL 99
#define BASE_CLEVEL 1
#define FADT_MIN 0
#define FADT_MAX ((U32)-1)
#define WLOG_RANGE (ZSTD_WINDOWLOG_MAX - ZSTD_WINDOWLOG_MIN + 1)
#define CLOG_RANGE (ZSTD_CHAINLOG_MAX - ZSTD_CHAINLOG_MIN + 1)
#define HLOG_RANGE (ZSTD_HASHLOG_MAX - ZSTD_HASHLOG_MIN + 1)
#define SLOG_RANGE (ZSTD_SEARCHLOG_MAX - ZSTD_SEARCHLOG_MIN + 1)
#define MML_RANGE (ZSTD_MINMATCH_MAX - ZSTD_MINMATCH_MIN + 1)
#define TLEN_RANGE 17
#define STRT_RANGE (ZSTD_STRATEGY_MAX - ZSTD_STRATEGY_MIN + 1)
#define FADT_RANGE 3
#define CHECKTIME(r) { if(BMK_timeSpan_s(g_time) > g_timeLimit_s) { DEBUGOUTPUT("Time Limit Reached\n"); return r; } }
#define CHECKTIMEGT(ret, val, _gototag) { if(BMK_timeSpan_s(g_time) > g_timeLimit_s) { DEBUGOUTPUT("Time Limit Reached\n"); ret = val; goto _gototag; } }
#define PARAM_UNSET ((U32)-2) /* can't be -1 b/c fadt uses -1 */
static const char* g_stratName[ZSTD_STRATEGY_MAX+1] = {
"(none) ", "ZSTD_fast ", "ZSTD_dfast ",
"ZSTD_greedy ", "ZSTD_lazy ", "ZSTD_lazy2 ",
"ZSTD_btlazy2 ", "ZSTD_btopt ", "ZSTD_btultra ",
"ZSTD_btultra2"};
static const U32 tlen_table[TLEN_RANGE] = { 0, 1, 2, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 256, 512, 999 };
/*-************************************
* Setup for Adding new params
**************************************/
/* indices for each of the variables */
typedef enum {
wlog_ind = 0,
clog_ind = 1,
hlog_ind = 2,
slog_ind = 3,
mml_ind = 4,
tlen_ind = 5,
strt_ind = 6,
fadt_ind = 7, /* forceAttachDict */
NUM_PARAMS = 8
} varInds_t;
typedef struct {
U32 vals[NUM_PARAMS];
} paramValues_t;
/* minimum value of parameters */
static const U32 mintable[NUM_PARAMS] =
{ ZSTD_WINDOWLOG_MIN, ZSTD_CHAINLOG_MIN, ZSTD_HASHLOG_MIN, ZSTD_SEARCHLOG_MIN, ZSTD_MINMATCH_MIN, ZSTD_TARGETLENGTH_MIN, ZSTD_STRATEGY_MIN, FADT_MIN };
/* maximum value of parameters */
static const U32 maxtable[NUM_PARAMS] =
{ ZSTD_WINDOWLOG_MAX, ZSTD_CHAINLOG_MAX, ZSTD_HASHLOG_MAX, ZSTD_SEARCHLOG_MAX, ZSTD_MINMATCH_MAX, ZSTD_TARGETLENGTH_MAX, ZSTD_STRATEGY_MAX, FADT_MAX };
/* # of values parameters can take on */
static const U32 rangetable[NUM_PARAMS] =
{ WLOG_RANGE, CLOG_RANGE, HLOG_RANGE, SLOG_RANGE, MML_RANGE, TLEN_RANGE, STRT_RANGE, FADT_RANGE };
/* ZSTD_cctxSetParameter() index to set */
static const ZSTD_cParameter cctxSetParamTable[NUM_PARAMS] =
{ ZSTD_c_windowLog, ZSTD_c_chainLog, ZSTD_c_hashLog, ZSTD_c_searchLog, ZSTD_c_minMatch, ZSTD_c_targetLength, ZSTD_c_strategy, ZSTD_c_forceAttachDict };
/* names of parameters */
static const char* g_paramNames[NUM_PARAMS] =
{ "windowLog", "chainLog", "hashLog","searchLog", "minMatch", "targetLength", "strategy", "forceAttachDict" };
/* shortened names of parameters */
static const char* g_shortParamNames[NUM_PARAMS] =
{ "wlog", "clog", "hlog", "slog", "mml", "tlen", "strat", "fadt" };
/* maps value from { 0 to rangetable[param] - 1 } to valid paramvalues */
static U32 rangeMap(varInds_t param, int ind)
{
U32 const uind = (U32)MAX(MIN(ind, (int)rangetable[param] - 1), 0);
switch(param) {
case wlog_ind: /* using default: triggers -Wswitch-enum */
case clog_ind:
case hlog_ind:
case slog_ind:
case mml_ind:
case strt_ind:
return mintable[param] + uind;
case tlen_ind:
return tlen_table[uind];
case fadt_ind: /* 0, 1, 2 -> -1, 0, 1 */
return uind - 1;
case NUM_PARAMS:
default:;
}
DISPLAY("Error, not a valid param\n ");
assert(0);
return (U32)-1;
}
/* inverse of rangeMap */
static int invRangeMap(varInds_t param, U32 value)
{
value = MIN(MAX(mintable[param], value), maxtable[param]);
switch(param) {
case wlog_ind:
case clog_ind:
case hlog_ind:
case slog_ind:
case mml_ind:
case strt_ind:
return (int)(value - mintable[param]);
case tlen_ind: /* bin search */
{
int lo = 0;
int hi = TLEN_RANGE;
while(lo < hi) {
int mid = (lo + hi) / 2;
if(tlen_table[mid] < value) {
lo = mid + 1;
} if(tlen_table[mid] == value) {
return mid;
} else {
hi = mid;
}
}
return lo;
}
case fadt_ind:
return (int)value + 1;
case NUM_PARAMS:
default:;
}
DISPLAY("Error, not a valid param\n ");
assert(0);
return -2;
}
/* display of params */
static void displayParamVal(FILE* f, varInds_t param, unsigned value, int width)
{
switch(param) {
case wlog_ind:
case clog_ind:
case hlog_ind:
case slog_ind:
case mml_ind:
case tlen_ind:
if(width) {
fprintf(f, "%*u", width, value);
} else {
fprintf(f, "%u", value);
}
break;
case strt_ind:
if(width) {
fprintf(f, "%*s", width, g_stratName[value]);
} else {
fprintf(f, "%s", g_stratName[value]);
}
break;
case fadt_ind: /* force attach dict */
if(width) {
fprintf(f, "%*d", width, (int)value);
} else {
fprintf(f, "%d", (int)value);
}
break;
case NUM_PARAMS:
default:
DISPLAY("Error, not a valid param\n ");
assert(0);
break;
}
}
/*-************************************
* Benchmark Parameters/Global Variables
**************************************/
/* General Utility */
static U32 g_timeLimit_s = 99999; /* about 27 hours */
static UTIL_time_t g_time; /* to be used to compare solution finding speeds to compare to original */
static U32 g_blockSize = 0;
static U32 g_rand = 1;
/* Display */
static int g_displayLevel = 3;
static BYTE g_silenceParams[NUM_PARAMS]; /* can selectively silence some params when displaying them */
/* Mode Selection */
static U32 g_singleRun = 0;
static U32 g_optimizer = 0;
static int g_optmode = 0;
/* For cLevel Table generation */
static U32 g_target = 0;
static U32 g_noSeed = 0;
/* For optimizer */
static paramValues_t g_params; /* Initialized at the beginning of main w/ emptyParams() function */
static double g_ratioMultiplier = 5.;
static U32 g_strictness = PARAM_UNSET; /* range 1 - 100, measure of how strict */
static BMK_benchResult_t g_lvltarget;
typedef enum {
directMap,
xxhashMap,
noMemo
} memoTableType_t;
typedef struct {
memoTableType_t tableType;
BYTE* table;
size_t tableLen;
varInds_t varArray[NUM_PARAMS];
size_t varLen;
} memoTable_t;
typedef struct {
BMK_benchResult_t result;
paramValues_t params;
} winnerInfo_t;
typedef struct {
U32 cSpeed; /* bytes / sec */
U32 dSpeed;
U32 cMem; /* bytes */
} constraint_t;
typedef struct winner_ll_node winner_ll_node;
struct winner_ll_node {
winnerInfo_t res;
winner_ll_node* next;
};
static winner_ll_node* g_winners; /* linked list sorted ascending by cSize & cSpeed */
/*
* Additional Global Variables (Defined Above Use)
* g_level_constraint
* g_alreadyTested
* g_maxTries
* g_clockGranularity
*/
/*-*******************************************************
* General Util Functions
*********************************************************/
/* nullified useless params, to ensure count stats */
/* cleans up params for memoizing / display */
static paramValues_t sanitizeParams(paramValues_t params)
{
if (params.vals[strt_ind] == ZSTD_fast)
params.vals[clog_ind] = 0, params.vals[slog_ind] = 0;
if (params.vals[strt_ind] == ZSTD_dfast)
params.vals[slog_ind] = 0;
if ( (params.vals[strt_ind] < ZSTD_btopt) && (params.vals[strt_ind] != ZSTD_fast) )
params.vals[tlen_ind] = 0;
return params;
}
static ZSTD_compressionParameters pvalsToCParams(paramValues_t p)
{
ZSTD_compressionParameters c;
memset(&c, 0, sizeof(ZSTD_compressionParameters));
c.windowLog = p.vals[wlog_ind];
c.chainLog = p.vals[clog_ind];
c.hashLog = p.vals[hlog_ind];
c.searchLog = p.vals[slog_ind];
c.minMatch = p.vals[mml_ind];
c.targetLength = p.vals[tlen_ind];
c.strategy = p.vals[strt_ind];
/* no forceAttachDict */
return c;
}
static paramValues_t cParamsToPVals(ZSTD_compressionParameters c)
{
paramValues_t p;
varInds_t i;
p.vals[wlog_ind] = c.windowLog;
p.vals[clog_ind] = c.chainLog;
p.vals[hlog_ind] = c.hashLog;
p.vals[slog_ind] = c.searchLog;
p.vals[mml_ind] = c.minMatch;
p.vals[tlen_ind] = c.targetLength;
p.vals[strt_ind] = c.strategy;
/* set all other params to their minimum value */
for (i = strt_ind + 1; i < NUM_PARAMS; i++) {
p.vals[i] = mintable[i];
}
return p;
}
/* equivalent of ZSTD_adjustCParams for paramValues_t */
static paramValues_t
adjustParams(paramValues_t p, const size_t maxBlockSize, const size_t dictSize)
{
paramValues_t ot = p;
varInds_t i;
p = cParamsToPVals(ZSTD_adjustCParams(pvalsToCParams(p), maxBlockSize, dictSize));
if (!dictSize) { p.vals[fadt_ind] = 0; }
/* retain value of all other parameters */
for(i = strt_ind + 1; i < NUM_PARAMS; i++) {
p.vals[i] = ot.vals[i];
}
return p;
}
static size_t BMK_findMaxMem(U64 requiredMem)
{
size_t const step = 64 MB;
void* testmem = NULL;
requiredMem = (((requiredMem >> 26) + 1) << 26);
if (requiredMem > maxMemory) requiredMem = maxMemory;
requiredMem += 2 * step;
while (!testmem && requiredMem > 0) {
testmem = malloc ((size_t)requiredMem);
requiredMem -= step;
}
free (testmem);
return (size_t) requiredMem;
}
/* accuracy in seconds only, span can be multiple years */
static U32 BMK_timeSpan_s(const UTIL_time_t tStart)
{
return (U32)(UTIL_clockSpanMicro(tStart) / 1000000ULL);
}
static U32 FUZ_rotl32(U32 x, U32 r)
{
return ((x << r) | (x >> (32 - r)));
}
static U32 FUZ_rand(U32* src)
{
const U32 prime1 = 2654435761U;
const U32 prime2 = 2246822519U;
U32 rand32 = *src;
rand32 *= prime1;
rand32 += prime2;
rand32 = FUZ_rotl32(rand32, 13);
*src = rand32;
return rand32 >> 5;
}
#define BOUNDCHECK(val,min,max) { \
if (((val)<(min)) | ((val)>(max))) { \
DISPLAY("INVALID PARAMETER CONSTRAINTS\n"); \
return 0; \
} }
static int paramValid(const paramValues_t paramTarget)
{
U32 i;
for(i = 0; i < NUM_PARAMS; i++) {
BOUNDCHECK(paramTarget.vals[i], mintable[i], maxtable[i]);
}
return 1;
}
/* cParamUnsetMin() :
* if any parameter in paramTarget is not yet set,
* it will receive its corresponding minimal value.
* This function never fails */
static paramValues_t cParamUnsetMin(paramValues_t paramTarget)
{
varInds_t vi;
for (vi = 0; vi < NUM_PARAMS; vi++) {
if (paramTarget.vals[vi] == PARAM_UNSET) {
paramTarget.vals[vi] = mintable[vi];
}
}
return paramTarget;
}
static paramValues_t emptyParams(void)
{
U32 i;
paramValues_t p;
for(i = 0; i < NUM_PARAMS; i++) {
p.vals[i] = PARAM_UNSET;
}
return p;
}
static winnerInfo_t initWinnerInfo(const paramValues_t p)
{
winnerInfo_t w1;
w1.result.cSpeed = 0;
w1.result.dSpeed = 0;
w1.result.cMem = (size_t)-1;
w1.result.cSize = (size_t)-1;
w1.params = p;
return w1;
}
static paramValues_t
overwriteParams(paramValues_t base, const paramValues_t mask)
{
U32 i;
for(i = 0; i < NUM_PARAMS; i++) {
if(mask.vals[i] != PARAM_UNSET) {
base.vals[i] = mask.vals[i];
}
}
return base;
}
static void
paramVaryOnce(const varInds_t paramIndex, const int amt, paramValues_t* ptr)
{
ptr->vals[paramIndex] = rangeMap(paramIndex,
invRangeMap(paramIndex, ptr->vals[paramIndex]) + amt);
}
/* varies ptr by nbChanges respecting varyParams*/
static void
paramVariation(paramValues_t* ptr, memoTable_t* mtAll, const U32 nbChanges)
{
paramValues_t p;
int validated = 0;
while (!validated) {
U32 i;
p = *ptr;
for (i = 0 ; i < nbChanges ; i++) {
const U32 changeID = (U32)FUZ_rand(&g_rand) % (mtAll[p.vals[strt_ind]].varLen << 1);
paramVaryOnce(mtAll[p.vals[strt_ind]].varArray[changeID >> 1],
(int)((changeID & 1) << 1) - 1,
&p);
}
validated = paramValid(p);
}
*ptr = p;
}
/* Completely random parameter selection */
static paramValues_t randomParams(void)
{
varInds_t v; paramValues_t p;
for(v = 0; v < NUM_PARAMS; v++) {
p.vals[v] = rangeMap(v, (int)(FUZ_rand(&g_rand) % rangetable[v]));
}
return p;
}
static U64 g_clockGranularity = 100000000ULL;
static void init_clockGranularity(void)
{
UTIL_time_t const clockStart = UTIL_getTime();
U64 el1 = 0, el2 = 0;
int i = 0;
do {
el1 = el2;
el2 = UTIL_clockSpanNano(clockStart);
if(el1 < el2) {
U64 iv = el2 - el1;
if(g_clockGranularity > iv) {
g_clockGranularity = iv;
i = 0;
} else {
i++;
}
}
} while(i < 10);
DEBUGOUTPUT("Granularity: %llu\n", (unsigned long long)g_clockGranularity);
}
/*-************************************
* Optimizer Util Functions
**************************************/
/* checks results are feasible */
static int feasible(const BMK_benchResult_t results, const constraint_t target) {
return (results.cSpeed >= target.cSpeed)
&& (results.dSpeed >= target.dSpeed)
&& (results.cMem <= target.cMem)
&& (!g_optmode || results.cSize <= g_lvltarget.cSize);
}
/* hill climbing value for part 1 */
/* Scoring here is a linear reward for all set constraints normalized between 0 and 1
* (with 0 at 0 and 1 being fully fulfilling the constraint), summed with a logarithmic
* bonus to exceeding the constraint value. We also give linear ratio for compression ratio.
* The constant factors are experimental.
*/
static double
resultScore(const BMK_benchResult_t res, const size_t srcSize, const constraint_t target)
{
double cs = 0., ds = 0., rt, cm = 0.;
const double r1 = 1, r2 = 0.1, rtr = 0.5;
double ret;
if(target.cSpeed) { cs = (double)res.cSpeed / (double)target.cSpeed; }
if(target.dSpeed) { ds = (double)res.dSpeed / (double)target.dSpeed; }
if(target.cMem != (U32)-1) { cm = (double)target.cMem / (double)res.cMem; }
rt = ((double)srcSize / (double)res.cSize);
ret = (MIN(1, cs) + MIN(1, ds) + MIN(1, cm))*r1 + rt * rtr +
(MAX(0, log(cs))+ MAX(0, log(ds))+ MAX(0, log(cm))) * r2;
return ret;
}
/* calculates normalized squared euclidean distance of result1 if it is in the first quadrant relative to lvlRes */
static double
resultDistLvl(const BMK_benchResult_t result1, const BMK_benchResult_t lvlRes)
{
double normalizedCSpeedGain1 = ((double)result1.cSpeed / (double)lvlRes.cSpeed) - 1;
double normalizedRatioGain1 = ((double)lvlRes.cSize / (double)result1.cSize) - 1;
if(normalizedRatioGain1 < 0 || normalizedCSpeedGain1 < 0) {
return 0.0;
}
return normalizedRatioGain1 * g_ratioMultiplier + normalizedCSpeedGain1;
}
/* return true if r2 strictly better than r1 */
static int
compareResultLT(const BMK_benchResult_t result1, const BMK_benchResult_t result2, const constraint_t target, size_t srcSize)
{
if(feasible(result1, target) && feasible(result2, target)) {
if(g_optmode) {
return resultDistLvl(result1, g_lvltarget) < resultDistLvl(result2, g_lvltarget);
} else {
return (result1.cSize > result2.cSize)
|| (result1.cSize == result2.cSize && result2.cSpeed > result1.cSpeed)
|| (result1.cSize == result2.cSize && result2.cSpeed == result1.cSpeed && result2.dSpeed > result1.dSpeed);
}
}
return feasible(result2, target)
|| (!feasible(result1, target)
&& (resultScore(result1, srcSize, target) < resultScore(result2, srcSize, target)));
}
static constraint_t relaxTarget(constraint_t target) {
target.cMem = (U32)-1;
target.cSpeed = (target.cSpeed * g_strictness) / 100;
target.dSpeed = (target.dSpeed * g_strictness) / 100;
return target;
}
static void optimizerAdjustInput(paramValues_t* pc, const size_t maxBlockSize)
{
varInds_t v;
for(v = 0; v < NUM_PARAMS; v++) {
if(pc->vals[v] != PARAM_UNSET) {
U32 newval = MIN(MAX(pc->vals[v], mintable[v]), maxtable[v]);
if(newval != pc->vals[v]) {
pc->vals[v] = newval;
DISPLAY("Warning: parameter %s not in valid range, adjusting to ",
g_paramNames[v]);
displayParamVal(stderr, v, newval, 0); DISPLAY("\n");
}
}
}
if(pc->vals[wlog_ind] != PARAM_UNSET) {
U32 sshb = maxBlockSize > 1 ? ZSTD_highbit32((U32)(maxBlockSize-1)) + 1 : 1;
/* edge case of highBit not working for 0 */
if(maxBlockSize < (1ULL << 31) && sshb + 1 < pc->vals[wlog_ind]) {
U32 adjust = MAX(mintable[wlog_ind], sshb);
if(adjust != pc->vals[wlog_ind]) {
pc->vals[wlog_ind] = adjust;
DISPLAY("Warning: windowLog larger than src/block size, adjusted to %u\n",
(unsigned)pc->vals[wlog_ind]);
}
}
}
if(pc->vals[wlog_ind] != PARAM_UNSET && pc->vals[clog_ind] != PARAM_UNSET) {
U32 maxclog;
if(pc->vals[strt_ind] == PARAM_UNSET || pc->vals[strt_ind] >= (U32)ZSTD_btlazy2) {
maxclog = pc->vals[wlog_ind] + 1;
} else {
maxclog = pc->vals[wlog_ind];
}
if(pc->vals[clog_ind] > maxclog) {
pc->vals[clog_ind] = maxclog;
DISPLAY("Warning: chainlog too much larger than windowLog size, adjusted to %u\n",
(unsigned)pc->vals[clog_ind]);
}
}
if(pc->vals[wlog_ind] != PARAM_UNSET && pc->vals[hlog_ind] != PARAM_UNSET) {
if(pc->vals[wlog_ind] + 1 < pc->vals[hlog_ind]) {
pc->vals[hlog_ind] = pc->vals[wlog_ind] + 1;
DISPLAY("Warning: hashlog too much larger than windowLog size, adjusted to %u\n",
(unsigned)pc->vals[hlog_ind]);
}
}
if(pc->vals[slog_ind] != PARAM_UNSET && pc->vals[clog_ind] != PARAM_UNSET) {
if(pc->vals[slog_ind] > pc->vals[clog_ind]) {
pc->vals[clog_ind] = pc->vals[slog_ind];
DISPLAY("Warning: searchLog larger than chainLog, adjusted to %u\n",
(unsigned)pc->vals[slog_ind]);
}
}
}
static int
redundantParams(const paramValues_t paramValues, const constraint_t target, const size_t maxBlockSize)
{
return
(ZSTD_estimateCStreamSize_usingCParams(pvalsToCParams(paramValues)) > (size_t)target.cMem) /* Uses too much memory */
|| ((1ULL << (paramValues.vals[wlog_ind] - 1)) >= maxBlockSize && paramValues.vals[wlog_ind] != mintable[wlog_ind]) /* wlog too much bigger than src size */
|| (paramValues.vals[clog_ind] > (paramValues.vals[wlog_ind] + (paramValues.vals[strt_ind] > ZSTD_btlazy2))) /* chainLog larger than windowLog*/
|| (paramValues.vals[slog_ind] > paramValues.vals[clog_ind]) /* searchLog larger than chainLog */
|| (paramValues.vals[hlog_ind] > paramValues.vals[wlog_ind] + 1); /* hashLog larger than windowLog + 1 */
}
/*-************************************
* Display Functions
**************************************/
/* BMK_paramValues_into_commandLine() :
* transform a set of parameters paramValues_t
* into a command line compatible with `zstd` syntax
* and writes it into FILE* f.
* f must be already opened and writable */
static void
BMK_paramValues_into_commandLine(FILE* f, const paramValues_t params)
{
varInds_t v;
int first = 1;
fprintf(f,"--zstd=");
for (v = 0; v < NUM_PARAMS; v++) {
if (g_silenceParams[v]) { continue; }
if (!first) { fprintf(f, ","); }
fprintf(f,"%s=", g_paramNames[v]);
if (v == strt_ind) { fprintf(f,"%u", (unsigned)params.vals[v]); }
else { displayParamVal(f, v, params.vals[v], 0); }
first = 0;
}
fprintf(f, "\n");
}
/* comparison function: */
/* strictly better, strictly worse, equal, speed-side adv, size-side adv */
#define WORSE_RESULT 0
#define BETTER_RESULT 1
#define ERROR_RESULT 2
#define SPEED_RESULT 4
#define SIZE_RESULT 5
/* maybe have epsilon-eq to limit table size? */
static int
speedSizeCompare(const BMK_benchResult_t r1, const BMK_benchResult_t r2)
{
if(r1.cSpeed < r2.cSpeed) {
if(r1.cSize >= r2.cSize) {
return BETTER_RESULT;
}
return SPEED_RESULT; /* r2 is smaller but not faster. */
} else {
if(r1.cSize <= r2.cSize) {
return WORSE_RESULT;
}
return SIZE_RESULT; /* r2 is faster but not smaller */
}
}
/* 0 for insertion, 1 for no insert */
/* maintain invariant speedSizeCompare(n, n->next) = SPEED_RESULT */
static int
insertWinner(const winnerInfo_t w, const constraint_t targetConstraints)
{
BMK_benchResult_t r = w.result;
winner_ll_node* cur_node = g_winners;
/* first node to insert */
if(!feasible(r, targetConstraints)) {
return 1;
}
if(g_winners == NULL) {
winner_ll_node* first_node = malloc(sizeof(winner_ll_node));
if(first_node == NULL) {
return 1;
}
first_node->next = NULL;
first_node->res = w;
g_winners = first_node;
return 0;
}
while(cur_node->next != NULL) {
switch(speedSizeCompare(cur_node->res.result, r)) {
case WORSE_RESULT:
{
return 1; /* never insert if better */
}
case BETTER_RESULT:
{
winner_ll_node* tmp;
cur_node->res = cur_node->next->res;
tmp = cur_node->next;
cur_node->next = cur_node->next->next;
free(tmp);
break;
}
case SIZE_RESULT:
{
cur_node = cur_node->next;
break;
}
case SPEED_RESULT: /* insert after first size result, then return */
{
winner_ll_node* newnode = malloc(sizeof(winner_ll_node));
if(newnode == NULL) {
return 1;
}
newnode->res = cur_node->res;
cur_node->res = w;
newnode->next = cur_node->next;
cur_node->next = newnode;
return 0;
}
}
}
assert(cur_node->next == NULL);
switch(speedSizeCompare(cur_node->res.result, r)) {
case WORSE_RESULT:
{
return 1; /* never insert if better */
}
case BETTER_RESULT:
{
cur_node->res = w;
return 0;
}
case SIZE_RESULT:
{
winner_ll_node* newnode = malloc(sizeof(winner_ll_node));
if(newnode == NULL) {
return 1;
}
newnode->res = w;
newnode->next = NULL;
cur_node->next = newnode;
return 0;
}
case SPEED_RESULT: /* insert before first size result, then return */
{
winner_ll_node* newnode = malloc(sizeof(winner_ll_node));
if(newnode == NULL) {
return 1;
}
newnode->res = cur_node->res;
cur_node->res = w;
newnode->next = cur_node->next;
cur_node->next = newnode;
return 0;
}
default:
return 1;
}
}
static void
BMK_displayOneResult(FILE* f, winnerInfo_t res, const size_t srcSize)
{
varInds_t v;
int first = 1;
res.params = cParamUnsetMin(res.params);
fprintf(f, " {");
for (v = 0; v < NUM_PARAMS; v++) {
if (g_silenceParams[v]) { continue; }
if (!first) { fprintf(f, ","); }
displayParamVal(f, v, res.params.vals[v], 3);
first = 0;
}
{ double const ratio = res.result.cSize ?
(double)srcSize / (double)res.result.cSize : 0;
double const cSpeedMBps = (double)res.result.cSpeed / MB_UNIT;
double const dSpeedMBps = (double)res.result.dSpeed / MB_UNIT;
fprintf(f, " }, /* R:%5.3f at %5.1f MB/s - %5.1f MB/s */\n",
ratio, cSpeedMBps, dSpeedMBps);
}
}
/* Writes to f the results of a parameter benchmark */
/* when used with --optimize, will only print results better than previously discovered */
static void
BMK_printWinner(FILE* f, const int cLevel, const BMK_benchResult_t result, const paramValues_t params, const size_t srcSize)
{
char lvlstr[15] = "Custom Level";
winnerInfo_t w;
w.params = params;
w.result = result;
fprintf(f, "\r%79s\r", "");
if(cLevel != CUSTOM_LEVEL) {
snprintf(lvlstr, 15, " Level %2d ", cLevel);
}
if(TIMED) {
const U64 mn_in_ns = 60ULL * TIMELOOP_NANOSEC;
const U64 time_ns = UTIL_clockSpanNano(g_time);
const U64 minutes = time_ns / mn_in_ns;
fprintf(f, "%1lu:%2lu:%05.2f - ",
(unsigned long) minutes / 60,
(unsigned long) minutes % 60,
(double)(time_ns - (minutes * mn_in_ns)) / TIMELOOP_NANOSEC );
}
fprintf(f, "/* %s */ ", lvlstr);
BMK_displayOneResult(f, w, srcSize);
}
static void
BMK_printWinnerOpt(FILE* f, const U32 cLevel, const BMK_benchResult_t result, const paramValues_t params, const constraint_t targetConstraints, const size_t srcSize)
{
/* global winner used for constraints */
/* cSize, cSpeed, dSpeed, cMem */
static winnerInfo_t g_winner = { { (size_t)-1LL, 0, 0, (size_t)-1LL },
{ { PARAM_UNSET, PARAM_UNSET, PARAM_UNSET, PARAM_UNSET, PARAM_UNSET, PARAM_UNSET, PARAM_UNSET, PARAM_UNSET } }
};
if ( DEBUG
|| compareResultLT(g_winner.result, result, targetConstraints, srcSize)
|| g_displayLevel >= 4) {
if ( DEBUG
&& compareResultLT(g_winner.result, result, targetConstraints, srcSize)) {
DISPLAY("New Winner: \n");
}
if(g_displayLevel >= 2) {
BMK_printWinner(f, cLevel, result, params, srcSize);
}
if(compareResultLT(g_winner.result, result, targetConstraints, srcSize)) {
if(g_displayLevel >= 1) { BMK_paramValues_into_commandLine(f, params); }
g_winner.result = result;
g_winner.params = params;
}
}
if(g_optmode && g_optimizer && (DEBUG || g_displayLevel == 3)) {
winnerInfo_t w;
winner_ll_node* n;
w.result = result;
w.params = params;
insertWinner(w, targetConstraints);
if(!DEBUG) { fprintf(f, "\033c"); }
fprintf(f, "\n");
/* the table */
fprintf(f, "================================\n");
for(n = g_winners; n != NULL; n = n->next) {
BMK_displayOneResult(f, n->res, srcSize);
}
fprintf(f, "================================\n");
fprintf(f, "Level Bounds: R: > %.3f AND C: < %.1f MB/s \n\n",
(double)srcSize / (double)g_lvltarget.cSize, (double)g_lvltarget.cSpeed / MB_UNIT);
fprintf(f, "Overall Winner: \n");
BMK_displayOneResult(f, g_winner, srcSize);
BMK_paramValues_into_commandLine(f, g_winner.params);
fprintf(f, "Latest BMK: \n");\
BMK_displayOneResult(f, w, srcSize);
}
}
/* BMK_print_cLevelEntry() :
* Writes one cLevelTable entry, for one level.
* f must exist, be already opened, and be seekable.
* this function cannot error.
*/
static void
BMK_print_cLevelEntry(FILE* f, const int cLevel,
paramValues_t params,
const BMK_benchResult_t result, const size_t srcSize)
{
varInds_t v;
int first = 1;
assert(cLevel >= 0);
assert(cLevel <= NB_LEVELS_TRACKED);
params = cParamUnsetMin(params);
fprintf(f, " {");
/* print cParams.
* assumption : all cParams are present and in order in the following range */
for (v = 0; v <= strt_ind; v++) {
if (!first) { fprintf(f, ","); }
displayParamVal(f, v, params.vals[v], 3);
first = 0;
}
/* print comment */
{ double const ratio = result.cSize ?
(double)srcSize / (double)result.cSize : 0;
double const cSpeedMBps = (double)result.cSpeed / MB_UNIT;
double const dSpeedMBps = (double)result.dSpeed / MB_UNIT;
fprintf(f, " }, /* level %2i: R=%5.3f at %5.1f MB/s - %5.1f MB/s */\n",
cLevel, ratio, cSpeedMBps, dSpeedMBps);
}
}
/* BMK_print_cLevelTable() :
* print candidate compression table into proposed FILE* f.
* f must exist, be already opened, and be seekable.
* winners must be a table of NB_LEVELS_TRACKED+1 elements winnerInfo_t, all entries presumed initialized
* this function cannot error.
*/
static void
BMK_print_cLevelTable(FILE* f, const winnerInfo_t* winners, const size_t srcSize)
{
int cLevel;
fprintf(f, "\n /* Proposed configurations : */ \n");
fprintf(f, " /* W, C, H, S, L, T, strat */ \n");
for (cLevel=0; cLevel <= NB_LEVELS_TRACKED; cLevel++)
BMK_print_cLevelEntry(f,
cLevel, winners[cLevel].params,
winners[cLevel].result, srcSize);
}
/* BMK_saveAndPrint_cLevelTable() :
* save candidate compression table into FILE* f,
* and then to stdout.
* f must exist, be already opened, and be seekable.
* winners must be a table of NB_LEVELS_TRACKED+1 elements winnerInfo_t, all entries presumed initialized
* this function cannot error.
*/
static void
BMK_saveAndPrint_cLevelTable(FILE* const f,
const winnerInfo_t* winners,
const size_t srcSize)
{
fseek(f, 0, SEEK_SET);
BMK_print_cLevelTable(f, winners, srcSize);
fflush(f);
BMK_print_cLevelTable(stdout, winners, srcSize);
}
/*-*******************************************************
* Functions to Benchmark
*********************************************************/
typedef struct {
ZSTD_CCtx* cctx;
const void* dictBuffer;
size_t dictBufferSize;
int cLevel;
const paramValues_t* comprParams;
} BMK_initCCtxArgs;
static size_t local_initCCtx(void* payload) {
const BMK_initCCtxArgs* ag = (const BMK_initCCtxArgs*)payload;
varInds_t i;
ZSTD_CCtx_reset(ag->cctx, ZSTD_reset_session_and_parameters);
ZSTD_CCtx_setParameter(ag->cctx, ZSTD_c_compressionLevel, ag->cLevel);
for(i = 0; i < NUM_PARAMS; i++) {
if(ag->comprParams->vals[i] != PARAM_UNSET)
ZSTD_CCtx_setParameter(ag->cctx, cctxSetParamTable[i], ag->comprParams->vals[i]);
}
ZSTD_CCtx_loadDictionary(ag->cctx, ag->dictBuffer, ag->dictBufferSize);
return 0;
}
typedef struct {
ZSTD_DCtx* dctx;
const void* dictBuffer;
size_t dictBufferSize;
} BMK_initDCtxArgs;
static size_t local_initDCtx(void* payload) {
const BMK_initDCtxArgs* ag = (const BMK_initDCtxArgs*)payload;
ZSTD_DCtx_reset(ag->dctx, ZSTD_reset_session_and_parameters);
ZSTD_DCtx_loadDictionary(ag->dctx, ag->dictBuffer, ag->dictBufferSize);
return 0;
}
/* additional argument is just the context */
static size_t local_defaultCompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstSize,
void* addArgs)
{
ZSTD_CCtx* cctx = (ZSTD_CCtx*)addArgs;
assert(dstSize == ZSTD_compressBound(srcSize)); /* specific to this version, which is only used in paramgrill */
return ZSTD_compress2(cctx, dstBuffer, dstSize, srcBuffer, srcSize);
}
/* additional argument is just the context */
static size_t local_defaultDecompress(
const void* srcBuffer, size_t srcSize,
void* dstBuffer, size_t dstSize,
void* addArgs) {
size_t moreToFlush = 1;
ZSTD_DCtx* dctx = (ZSTD_DCtx*)addArgs;
ZSTD_inBuffer in;
ZSTD_outBuffer out;
in.src = srcBuffer;
in.size = srcSize;
in.pos = 0;
out.dst = dstBuffer;
out.size = dstSize;
out.pos = 0;
while (moreToFlush) {
if(out.pos == out.size) {
return (size_t)-ZSTD_error_dstSize_tooSmall;
}
moreToFlush = ZSTD_decompressStream(dctx,
&out, &in);
if (ZSTD_isError(moreToFlush)) {
return moreToFlush;
}
}
return out.pos;
}
/*-************************************
* Data Initialization Functions
**************************************/
typedef struct {
void* srcBuffer;
size_t srcSize;
const void** srcPtrs;
size_t* srcSizes;
void** dstPtrs;
size_t* dstCapacities;
size_t* dstSizes;
void** resPtrs;
size_t* resSizes;
size_t nbBlocks;
size_t maxBlockSize;
} buffers_t;
typedef struct {
size_t dictSize;
void* dictBuffer;
ZSTD_CCtx* cctx;
ZSTD_DCtx* dctx;
} contexts_t;
static void freeNonSrcBuffers(const buffers_t b) {
free((void*)b.srcPtrs);
free(b.srcSizes);
if(b.dstPtrs != NULL) {
free(b.dstPtrs[0]);
}
free(b.dstPtrs);
free(b.dstCapacities);
free(b.dstSizes);
if(b.resPtrs != NULL) {
free(b.resPtrs[0]);
}
free(b.resPtrs);
free(b.resSizes);
}
static void freeBuffers(const buffers_t b) {
if(b.srcPtrs != NULL) {
free(b.srcBuffer);
}
freeNonSrcBuffers(b);
}
/* srcBuffer will be freed by freeBuffers now */
static int createBuffersFromMemory(buffers_t* buff, void * srcBuffer, const size_t nbFiles,
const size_t* fileSizes)
{
size_t pos = 0, n, blockSize;
U32 maxNbBlocks, blockNb = 0;
buff->srcSize = 0;
for(n = 0; n < nbFiles; n++) {
buff->srcSize += fileSizes[n];
}
if(buff->srcSize == 0) {
DISPLAY("No data to bench\n");
return 1;
}
blockSize = g_blockSize ? g_blockSize : buff->srcSize;
maxNbBlocks = (U32) ((buff->srcSize + (blockSize-1)) / blockSize) + (U32)nbFiles;
buff->srcPtrs = (const void**)calloc(maxNbBlocks, sizeof(void*));
buff->srcSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
buff->dstPtrs = (void**)calloc(maxNbBlocks, sizeof(void*));
buff->dstCapacities = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
buff->dstSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
buff->resPtrs = (void**)calloc(maxNbBlocks, sizeof(void*));
buff->resSizes = (size_t*)malloc(maxNbBlocks * sizeof(size_t));
if(!buff->srcPtrs || !buff->srcSizes || !buff->dstPtrs || !buff->dstCapacities || !buff->dstSizes || !buff->resPtrs || !buff->resSizes) {
DISPLAY("alloc error\n");
freeNonSrcBuffers(*buff);
return 1;
}
buff->srcBuffer = srcBuffer;
buff->srcPtrs[0] = (const void*)buff->srcBuffer;
buff->dstPtrs[0] = malloc(ZSTD_compressBound(buff->srcSize) + (maxNbBlocks * 1024));
buff->resPtrs[0] = malloc(buff->srcSize);
if(!buff->dstPtrs[0] || !buff->resPtrs[0]) {
DISPLAY("alloc error\n");
freeNonSrcBuffers(*buff);
return 1;
}
for(n = 0; n < nbFiles; n++) {
size_t pos_end = pos + fileSizes[n];
for(; pos < pos_end; blockNb++) {
buff->srcPtrs[blockNb] = (const void*)((char*)srcBuffer + pos);
buff->srcSizes[blockNb] = blockSize;
pos += blockSize;
}
if(fileSizes[n] > 0) { buff->srcSizes[blockNb - 1] = ((fileSizes[n] - 1) % blockSize) + 1; }
pos = pos_end;
}
buff->dstCapacities[0] = ZSTD_compressBound(buff->srcSizes[0]);
buff->dstSizes[0] = buff->dstCapacities[0];
buff->resSizes[0] = buff->srcSizes[0];
buff->maxBlockSize = buff->srcSizes[0];
for(n = 1; n < blockNb; n++) {
buff->dstPtrs[n] = ((char*)buff->dstPtrs[n-1]) + buff->dstCapacities[n-1];
buff->resPtrs[n] = ((char*)buff->resPtrs[n-1]) + buff->resSizes[n-1];
buff->dstCapacities[n] = ZSTD_compressBound(buff->srcSizes[n]);
buff->dstSizes[n] = buff->dstCapacities[n];
buff->resSizes[n] = buff->srcSizes[n];
buff->maxBlockSize = MAX(buff->maxBlockSize, buff->srcSizes[n]);
}
buff->nbBlocks = blockNb;
return 0;
}
/* allocates buffer's arguments. returns success / failure */
static int createBuffers(buffers_t* buff, const char* const * const fileNamesTable,
size_t nbFiles) {
size_t pos = 0;
size_t n;
size_t totalSizeToLoad = (size_t)UTIL_getTotalFileSize(fileNamesTable, (U32)nbFiles);
size_t benchedSize = MIN(BMK_findMaxMem(totalSizeToLoad * 3) / 3, totalSizeToLoad);
size_t* fileSizes = calloc(sizeof(size_t), nbFiles);
void* srcBuffer = NULL;
int ret = 0;
if(!totalSizeToLoad || !benchedSize) {
ret = 1;
DISPLAY("Nothing to Bench\n");
goto _cleanUp;
}
srcBuffer = malloc(benchedSize);
if(!fileSizes || !srcBuffer) {
ret = 1;
goto _cleanUp;
}
for(n = 0; n < nbFiles; n++) {
FILE* f;
U64 fileSize = UTIL_getFileSize(fileNamesTable[n]);
if (UTIL_isDirectory(fileNamesTable[n])) {
DISPLAY("Ignoring %s directory... \n", fileNamesTable[n]);
continue;
}
if (fileSize == UTIL_FILESIZE_UNKNOWN) {
DISPLAY("Cannot evaluate size of %s, ignoring ... \n", fileNamesTable[n]);
continue;
}
f = fopen(fileNamesTable[n], "rb");
if (f==NULL) {
DISPLAY("impossible to open file %s\n", fileNamesTable[n]);
fclose(f);
ret = 10;
goto _cleanUp;
}
DISPLAYLEVEL(2, "Loading %s... \r", fileNamesTable[n]);
if (fileSize + pos > benchedSize) fileSize = benchedSize - pos, nbFiles=n; /* buffer too small - stop after this file */
{
char* buffer = (char*)(srcBuffer);
size_t const readSize = fread((buffer)+pos, 1, (size_t)fileSize, f);
fclose(f);
if (readSize != (size_t)fileSize) {
DISPLAY("could not read %s", fileNamesTable[n]);
ret = 1;
goto _cleanUp;
}
fileSizes[n] = readSize;
pos += readSize;
}
}
ret = createBuffersFromMemory(buff, srcBuffer, nbFiles, fileSizes);
_cleanUp:
if(ret) { free(srcBuffer); }
free(fileSizes);
return ret;
}
static void freeContexts(const contexts_t ctx) {
free(ctx.dictBuffer);
ZSTD_freeCCtx(ctx.cctx);
ZSTD_freeDCtx(ctx.dctx);
}
static int createContexts(contexts_t* ctx, const char* dictFileName) {
FILE* f;
size_t readSize;
ctx->cctx = ZSTD_createCCtx();
ctx->dctx = ZSTD_createDCtx();
assert(ctx->cctx != NULL);
assert(ctx->dctx != NULL);
if(dictFileName == NULL) {
ctx->dictSize = 0;
ctx->dictBuffer = NULL;
return 0;
}
{ U64 const dictFileSize = UTIL_getFileSize(dictFileName);
assert(dictFileSize != UTIL_FILESIZE_UNKNOWN);
ctx->dictSize = (size_t)dictFileSize;
assert((U64)ctx->dictSize == dictFileSize); /* check overflow */
}
ctx->dictBuffer = malloc(ctx->dictSize);
f = fopen(dictFileName, "rb");
if (f==NULL) {
DISPLAY("unable to open file\n");
freeContexts(*ctx);
return 1;
}
if (ctx->dictSize > 64 MB || !(ctx->dictBuffer)) {
DISPLAY("dictionary too large\n");
fclose(f);
freeContexts(*ctx);
return 1;
}
readSize = fread(ctx->dictBuffer, 1, ctx->dictSize, f);
fclose(f);
if (readSize != ctx->dictSize) {
DISPLAY("unable to read file\n");
freeContexts(*ctx);
return 1;
}
return 0;
}
/*-************************************
* Optimizer Memoization Functions
**************************************/
/* return: new length */
/* keep old array, will need if iter over strategy. */
/* prunes useless params */
static size_t sanitizeVarArray(varInds_t* varNew, const size_t varLength, const varInds_t* varArray, const ZSTD_strategy strat) {
size_t i, j = 0;
for(i = 0; i < varLength; i++) {
if( !((varArray[i] == clog_ind && strat == ZSTD_fast)
|| (varArray[i] == slog_ind && strat == ZSTD_fast)
|| (varArray[i] == slog_ind && strat == ZSTD_dfast)
|| (varArray[i] == tlen_ind && strat < ZSTD_btopt && strat != ZSTD_fast))) {
varNew[j] = varArray[i];
j++;
}
}
return j;
}
/* res should be NUM_PARAMS size */
/* constructs varArray from paramValues_t style parameter */
/* pass in using dict. */
static size_t variableParams(const paramValues_t paramConstraints, varInds_t* res, const int usingDictionary) {
varInds_t i;
size_t j = 0;
for(i = 0; i < NUM_PARAMS; i++) {
if(paramConstraints.vals[i] == PARAM_UNSET) {
if(i == fadt_ind && !usingDictionary) continue; /* don't use fadt if no dictionary */
res[j] = i; j++;
}
}
return j;
}
/* length of memo table given free variables */
static size_t memoTableLen(const varInds_t* varyParams, const size_t varyLen) {
size_t arrayLen = 1;
size_t i;
for(i = 0; i < varyLen; i++) {
if(varyParams[i] == strt_ind) continue; /* strategy separated by table */
arrayLen *= rangetable[varyParams[i]];
}
return arrayLen;
}
/* returns unique index in memotable of compression parameters */
static unsigned memoTableIndDirect(const paramValues_t* ptr, const varInds_t* varyParams, const size_t varyLen) {
size_t i;
unsigned ind = 0;
for(i = 0; i < varyLen; i++) {
varInds_t v = varyParams[i];
if(v == strt_ind) continue; /* exclude strategy from memotable */
ind *= rangetable[v]; ind += (unsigned)invRangeMap(v, ptr->vals[v]);
}
return ind;
}
static size_t memoTableGet(const memoTable_t* memoTableArray, const paramValues_t p) {
const memoTable_t mt = memoTableArray[p.vals[strt_ind]];
switch(mt.tableType) {
case directMap:
return mt.table[memoTableIndDirect(&p, mt.varArray, mt.varLen)];
case xxhashMap:
return mt.table[(XXH64(&p.vals, sizeof(U32) * NUM_PARAMS, 0) >> 3) % mt.tableLen];
case noMemo:
return 0;
}
return 0; /* should never happen, stop compiler warnings */
}
static void memoTableSet(const memoTable_t* memoTableArray, const paramValues_t p, const BYTE value) {
const memoTable_t mt = memoTableArray[p.vals[strt_ind]];
switch(mt.tableType) {
case directMap:
mt.table[memoTableIndDirect(&p, mt.varArray, mt.varLen)] = value; break;
case xxhashMap:
mt.table[(XXH64(&p.vals, sizeof(U32) * NUM_PARAMS, 0) >> 3) % mt.tableLen] = value; break;
case noMemo:
break;
}
}
/* frees all allocated memotables */
/* secret contract :
* mtAll is a table of (ZSTD_STRATEGY_MAX+1) memoTable_t */
static void freeMemoTableArray(memoTable_t* const mtAll) {
int i;
if(mtAll == NULL) { return; }
for(i = 1; i <= (int)ZSTD_STRATEGY_MAX; i++) {
free(mtAll[i].table);
}
free(mtAll);
}
/* inits memotables for all (including mallocs), all strategies */
/* takes unsanitized varyParams */
static memoTable_t*
createMemoTableArray(const paramValues_t p,
const varInds_t* const varyParams,
const size_t varyLen,
const U32 memoTableLog)
{
memoTable_t* const mtAll = (memoTable_t*)calloc(sizeof(memoTable_t),(ZSTD_STRATEGY_MAX + 1));
ZSTD_strategy i, stratMin = ZSTD_STRATEGY_MIN, stratMax = ZSTD_STRATEGY_MAX;
if(mtAll == NULL) {
return NULL;
}
for(i = 1; i <= (int)ZSTD_STRATEGY_MAX; i++) {
mtAll[i].varLen = sanitizeVarArray(mtAll[i].varArray, varyLen, varyParams, i);
}
/* no memoization */
if(memoTableLog == 0) {
for(i = 1; i <= (int)ZSTD_STRATEGY_MAX; i++) {
mtAll[i].tableType = noMemo;
mtAll[i].table = NULL;
mtAll[i].tableLen = 0;
}
return mtAll;
}
if(p.vals[strt_ind] != PARAM_UNSET) {
stratMin = p.vals[strt_ind];
stratMax = p.vals[strt_ind];
}
for(i = stratMin; i <= stratMax; i++) {
size_t mtl = memoTableLen(mtAll[i].varArray, mtAll[i].varLen);
mtAll[i].tableType = directMap;
if(memoTableLog != PARAM_UNSET && mtl > (1ULL << memoTableLog)) { /* use hash table */ /* provide some option to only use hash tables? */
mtAll[i].tableType = xxhashMap;
mtl = ((size_t)1 << memoTableLog);
}
mtAll[i].table = (BYTE*)calloc(sizeof(BYTE), mtl);
mtAll[i].tableLen = mtl;
if(mtAll[i].table == NULL) {
freeMemoTableArray(mtAll);
return NULL;
}
}
return mtAll;
}
/* Sets pc to random unmeasured set of parameters */
/* specify strategy */
static void randomConstrainedParams(paramValues_t* pc, const memoTable_t* memoTableArray, const ZSTD_strategy st)
{
size_t j;
const memoTable_t mt = memoTableArray[st];
pc->vals[strt_ind] = st;
for(j = 0; j < mt.tableLen; j++) {
int i;
for(i = 0; i < NUM_PARAMS; i++) {
varInds_t v = mt.varArray[i];
if(v == strt_ind) continue;
pc->vals[v] = rangeMap(v, FUZ_rand(&g_rand) % rangetable[v]);
}
if(!(memoTableGet(memoTableArray, *pc))) break; /* only pick unpicked params. */
}
}
/*-************************************
* Benchmarking Functions
**************************************/
static void display_params_tested(paramValues_t cParams)
{
varInds_t vi;
DISPLAYLEVEL(3, "\r testing :");
for (vi=0; vi < NUM_PARAMS; vi++) {
DISPLAYLEVEL(3, "%3u,", (unsigned)cParams.vals[vi]);
}
DISPLAYLEVEL(3, "\b \r");
}
/* Replicate functionality of benchMemAdvanced, but with pre-split src / dst buffers */
/* The purpose is so that sufficient information is returned so that a decompression call to benchMemInvertible is possible */
/* BMK_benchMemAdvanced(srcBuffer,srcSize, dstBuffer, dstSize, fileSizes, nbFiles, 0, &cParams, dictBuffer, dictSize, ctx, dctx, 0, "File", &adv); */
/* nbSeconds used in same way as in BMK_advancedParams_t */
/* if in decodeOnly, then srcPtr's will be compressed blocks, and uncompressedBlocks will be written to dstPtrs */
/* dictionary nullable, nothing else though. */
/* note : it would be a lot better if this function was present in benchzstd.c,
* sharing code with benchMemAdvanced(), since it's technically a part of it */
static BMK_benchOutcome_t
BMK_benchMemInvertible( buffers_t buf, contexts_t ctx,
int cLevel, const paramValues_t* comprParams,
BMK_mode_t mode, unsigned nbSeconds)
{
U32 i;
BMK_benchResult_t bResult;
const void *const *const srcPtrs = (const void *const *const)buf.srcPtrs;
size_t const *const srcSizes = buf.srcSizes;
void** const dstPtrs = buf.dstPtrs;
size_t const *const dstCapacities = buf.dstCapacities;
size_t* const dstSizes = buf.dstSizes;
void** const resPtrs = buf.resPtrs;
size_t const *const resSizes = buf.resSizes;
const void* dictBuffer = ctx.dictBuffer;
const size_t dictBufferSize = ctx.dictSize;
const size_t nbBlocks = buf.nbBlocks;
const size_t srcSize = buf.srcSize;
ZSTD_CCtx* cctx = ctx.cctx;
ZSTD_DCtx* dctx = ctx.dctx;
/* init */
display_params_tested(*comprParams);
memset(&bResult, 0, sizeof(bResult));
/* warming up memory */
for (i = 0; i < buf.nbBlocks; i++) {
if (mode != BMK_decodeOnly) {
RDG_genBuffer(dstPtrs[i], dstCapacities[i], 0.10, 0.50, 1);
} else {
RDG_genBuffer(resPtrs[i], resSizes[i], 0.10, 0.50, 1);
}
}
/* Bench */
{
/* init args */
int compressionCompleted = (mode == BMK_decodeOnly);
int decompressionCompleted = (mode == BMK_compressOnly);
BMK_timedFnState_t* timeStateCompress = BMK_createTimedFnState(nbSeconds * 1000, 1000);
BMK_timedFnState_t* timeStateDecompress = BMK_createTimedFnState(nbSeconds * 1000, 1000);
BMK_benchParams_t cbp, dbp;
BMK_initCCtxArgs cctxprep;
BMK_initDCtxArgs dctxprep;
cbp.benchFn = local_defaultCompress;
cbp.benchPayload = cctx;
cbp.initFn = local_initCCtx;
cbp.initPayload = &cctxprep;
cbp.errorFn = ZSTD_isError;
cbp.blockCount = nbBlocks;
cbp.srcBuffers = srcPtrs;
cbp.srcSizes = srcSizes;
cbp.dstBuffers = dstPtrs;
cbp.dstCapacities = dstCapacities;
cbp.blockResults = dstSizes;
cctxprep.cctx = cctx;
cctxprep.dictBuffer = dictBuffer;
cctxprep.dictBufferSize = dictBufferSize;
cctxprep.cLevel = cLevel;
cctxprep.comprParams = comprParams;
dbp.benchFn = local_defaultDecompress;
dbp.benchPayload = dctx;
dbp.initFn = local_initDCtx;
dbp.initPayload = &dctxprep;
dbp.errorFn = ZSTD_isError;
dbp.blockCount = nbBlocks;
dbp.srcBuffers = (const void* const *) dstPtrs;
dbp.srcSizes = dstCapacities;
dbp.dstBuffers = resPtrs;
dbp.dstCapacities = resSizes;
dbp.blockResults = NULL;
dctxprep.dctx = dctx;
dctxprep.dictBuffer = dictBuffer;
dctxprep.dictBufferSize = dictBufferSize;
assert(timeStateCompress != NULL);
assert(timeStateDecompress != NULL);
while(!compressionCompleted) {
BMK_runOutcome_t const cOutcome = BMK_benchTimedFn(timeStateCompress, cbp);
if (!BMK_isSuccessful_runOutcome(cOutcome)) {
BMK_benchOutcome_t bOut;
memset(&bOut, 0, sizeof(bOut));
bOut.tag = 1; /* should rather be a function or a constant */
BMK_freeTimedFnState(timeStateCompress);
BMK_freeTimedFnState(timeStateDecompress);
return bOut;
}
{ BMK_runTime_t const rResult = BMK_extract_runTime(cOutcome);
bResult.cSpeed = (unsigned long long)((double)srcSize * TIMELOOP_NANOSEC / rResult.nanoSecPerRun);
bResult.cSize = rResult.sumOfReturn;
}
compressionCompleted = BMK_isCompleted_TimedFn(timeStateCompress);
}
while (!decompressionCompleted) {
BMK_runOutcome_t const dOutcome = BMK_benchTimedFn(timeStateDecompress, dbp);
if (!BMK_isSuccessful_runOutcome(dOutcome)) {
BMK_benchOutcome_t bOut;
memset(&bOut, 0, sizeof(bOut));
bOut.tag = 1; /* should rather be a function or a constant */
BMK_freeTimedFnState(timeStateCompress);
BMK_freeTimedFnState(timeStateDecompress);
return bOut;
}
{ BMK_runTime_t const rResult = BMK_extract_runTime(dOutcome);
bResult.dSpeed = (unsigned long long)((double)srcSize * TIMELOOP_NANOSEC / rResult.nanoSecPerRun);
}
decompressionCompleted = BMK_isCompleted_TimedFn(timeStateDecompress);
}
BMK_freeTimedFnState(timeStateCompress);
BMK_freeTimedFnState(timeStateDecompress);
}
/* Bench */
bResult.cMem = ((size_t)1 << (comprParams->vals[wlog_ind])) + ZSTD_sizeof_CCtx(cctx);
{ BMK_benchOutcome_t bOut;
bOut.tag = 0;
bOut.internal_never_use_directly = bResult; /* should be a function */
return bOut;
}
}
/* BMK_benchParam() :
* benchmark a set of `cParams` over sample `buf`,
* store the result in `resultPtr`.
* @return : 0 if success, 1 if error */
static int BMK_benchParam ( BMK_benchResult_t* resultPtr,
buffers_t buf, contexts_t ctx,
paramValues_t cParams)
{
BMK_benchOutcome_t const outcome = BMK_benchMemInvertible(buf, ctx,
BASE_CLEVEL, &cParams,
BMK_both, 3);
if (!BMK_isSuccessful_benchOutcome(outcome)) return 1;
*resultPtr = BMK_extract_benchResult(outcome);
return 0;
}
/* Benchmarking which stops when we are sufficiently sure the solution is infeasible / worse than the winner */
#define VARIANCE 1.2
static int allBench(BMK_benchResult_t* resultPtr,
const buffers_t buf, const contexts_t ctx,
const paramValues_t cParams,
const constraint_t target,
BMK_benchResult_t* winnerResult, int feas)
{
BMK_benchResult_t benchres;
double uncertaintyConstantC = 3., uncertaintyConstantD = 3.;
double winnerRS;
BMK_benchOutcome_t const outcome = BMK_benchMemInvertible(buf, ctx, BASE_CLEVEL, &cParams, BMK_both, 2);
if (!BMK_isSuccessful_benchOutcome(outcome)) {
DEBUGOUTPUT("Benchmarking failed \n");
return ERROR_RESULT;
}
benchres = BMK_extract_benchResult(outcome);
winnerRS = resultScore(*winnerResult, buf.srcSize, target);
DEBUGOUTPUT("WinnerScore: %f \n ", winnerRS);
*resultPtr = benchres;
/* anything with worse ratio in feas is definitely worse, discard */
if(feas && benchres.cSize < winnerResult->cSize && !g_optmode) {
return WORSE_RESULT;
}
/* calculate uncertainty in compression / decompression runs */
if (benchres.cSpeed) {
double const loopDurationC = (double)(((U64)buf.srcSize * TIMELOOP_NANOSEC) / benchres.cSpeed);
uncertaintyConstantC = ((loopDurationC + (double)(2 * g_clockGranularity))/loopDurationC);
}
if (benchres.dSpeed) {
double const loopDurationD = (double)(((U64)buf.srcSize * TIMELOOP_NANOSEC) / benchres.dSpeed);
uncertaintyConstantD = ((loopDurationD + (double)(2 * g_clockGranularity))/loopDurationD);
}
/* optimistic assumption of benchres */
{ BMK_benchResult_t resultMax = benchres;
resultMax.cSpeed = (unsigned long long)((double)resultMax.cSpeed * uncertaintyConstantC * VARIANCE);
resultMax.dSpeed = (unsigned long long)((double)resultMax.dSpeed * uncertaintyConstantD * VARIANCE);
/* disregard infeasible results in feas mode */
/* disregard if resultMax < winner in infeas mode */
if((feas && !feasible(resultMax, target)) ||
(!feas && (winnerRS > resultScore(resultMax, buf.srcSize, target)))) {
return WORSE_RESULT;
}
}
/* compare by resultScore when in infeas */
/* compare by compareResultLT when in feas */
if((!feas && (resultScore(benchres, buf.srcSize, target) > resultScore(*winnerResult, buf.srcSize, target))) ||
(feas && (compareResultLT(*winnerResult, benchres, target, buf.srcSize))) ) {
return BETTER_RESULT;
} else {
return WORSE_RESULT;
}
}
#define INFEASIBLE_THRESHOLD 200
/* Memoized benchmarking, won't benchmark anything which has already been benchmarked before. */
static int benchMemo(BMK_benchResult_t* resultPtr,
const buffers_t buf, const contexts_t ctx,
const paramValues_t cParams,
const constraint_t target,
BMK_benchResult_t* winnerResult, memoTable_t* const memoTableArray,
const int feas) {
static int bmcount = 0;
int res;
if ( memoTableGet(memoTableArray, cParams) >= INFEASIBLE_THRESHOLD
|| redundantParams(cParams, target, buf.maxBlockSize) ) {
return WORSE_RESULT;
}
res = allBench(resultPtr, buf, ctx, cParams, target, winnerResult, feas);
if(DEBUG && !(bmcount % 250)) {
DISPLAY("Count: %d\n", bmcount);
bmcount++;
}
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, *resultPtr, cParams, target, buf.srcSize);
if(res == BETTER_RESULT || feas) {
memoTableSet(memoTableArray, cParams, 255); /* what happens if collisions are frequent */
}
return res;
}
typedef struct {
U64 cSpeed_min;
U64 dSpeed_min;
U32 windowLog_max;
ZSTD_strategy strategy_max;
} level_constraints_t;
static level_constraints_t g_level_constraint[NB_LEVELS_TRACKED+1];
static void BMK_init_level_constraints(int bytePerSec_level1)
{
assert(NB_LEVELS_TRACKED >= ZSTD_maxCLevel());
memset(g_level_constraint, 0, sizeof(g_level_constraint));
g_level_constraint[1].cSpeed_min = bytePerSec_level1;
g_level_constraint[1].dSpeed_min = 0;
g_level_constraint[1].windowLog_max = 19;
g_level_constraint[1].strategy_max = ZSTD_fast;
/* establish speed objectives (relative to level 1) */
{ int l;
for (l=2; l<=NB_LEVELS_TRACKED; l++) {
g_level_constraint[l].cSpeed_min = (g_level_constraint[l-1].cSpeed_min * 49) / 64;
g_level_constraint[l].dSpeed_min = 0;
g_level_constraint[l].windowLog_max = (l<20) ? 23 : l+5; /* only --ultra levels >= 20 can use windowlog > 23 */
g_level_constraint[l].strategy_max = ZSTD_STRATEGY_MAX;
} }
}
static int BMK_seed(winnerInfo_t* winners,
const paramValues_t params,
const buffers_t buf,
const contexts_t ctx)
{
BMK_benchResult_t testResult;
int better = 0;
int cLevel;
BMK_benchParam(&testResult, buf, ctx, params);
for (cLevel = 1; cLevel <= NB_LEVELS_TRACKED; cLevel++) {
if (testResult.cSpeed < g_level_constraint[cLevel].cSpeed_min)
continue; /* not fast enough for this level */
if (testResult.dSpeed < g_level_constraint[cLevel].dSpeed_min)
continue; /* not fast enough for this level */
if (params.vals[wlog_ind] > g_level_constraint[cLevel].windowLog_max)
continue; /* too much memory for this level */
if (params.vals[strt_ind] > (U32)g_level_constraint[cLevel].strategy_max)
continue; /* forbidden strategy for this level */
if (winners[cLevel].result.cSize==0) {
/* first solution for this cLevel */
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_print_cLevelEntry(stdout, cLevel, params, testResult, buf.srcSize);
better = 1;
continue;
}
if ((double)testResult.cSize <= ((double)winners[cLevel].result.cSize * (1. + (0.02 / cLevel))) ) {
/* Validate solution is "good enough" */
double W_ratio = (double)buf.srcSize / (double)testResult.cSize;
double O_ratio = (double)buf.srcSize / (double)winners[cLevel].result.cSize;
double W_ratioNote = log (W_ratio);
double O_ratioNote = log (O_ratio);
size_t W_DMemUsed = (1 << params.vals[wlog_ind]) + (16 KB);
size_t O_DMemUsed = (1 << winners[cLevel].params.vals[wlog_ind]) + (16 KB);
double W_DMemUsed_note = W_ratioNote * ( 40 + 9*cLevel) - log((double)W_DMemUsed);
double O_DMemUsed_note = O_ratioNote * ( 40 + 9*cLevel) - log((double)O_DMemUsed);
size_t W_CMemUsed = ((size_t)1 << params.vals[wlog_ind]) + ZSTD_estimateCCtxSize_usingCParams(pvalsToCParams(params));
size_t O_CMemUsed = ((size_t)1 << winners[cLevel].params.vals[wlog_ind]) + ZSTD_estimateCCtxSize_usingCParams(pvalsToCParams(winners[cLevel].params));
double W_CMemUsed_note = W_ratioNote * ( 50 + 13*cLevel) - log((double)W_CMemUsed);
double O_CMemUsed_note = O_ratioNote * ( 50 + 13*cLevel) - log((double)O_CMemUsed);
double W_CSpeed_note = W_ratioNote * (double)( 30 + 10*cLevel) + log((double)testResult.cSpeed);
double O_CSpeed_note = O_ratioNote * (double)( 30 + 10*cLevel) + log((double)winners[cLevel].result.cSpeed);
double W_DSpeed_note = W_ratioNote * (double)( 20 + 2*cLevel) + log((double)testResult.dSpeed);
double O_DSpeed_note = O_ratioNote * (double)( 20 + 2*cLevel) + log((double)winners[cLevel].result.dSpeed);
if (W_DMemUsed_note < O_DMemUsed_note) {
/* uses too much Decompression memory for too little benefit */
if (W_ratio > O_ratio)
DISPLAYLEVEL(3, "Decompression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_DMemUsed) / 1024 / 1024,
O_ratio, (double)(O_DMemUsed) / 1024 / 1024, cLevel);
continue;
}
if (W_CMemUsed_note < O_CMemUsed_note) {
/* uses too much memory for compression for too little benefit */
if (W_ratio > O_ratio)
DISPLAYLEVEL(3, "Compression Memory : %5.3f @ %4.1f MB vs %5.3f @ %4.1f MB : not enough for level %i\n",
W_ratio, (double)(W_CMemUsed) / 1024 / 1024,
O_ratio, (double)(O_CMemUsed) / 1024 / 1024,
cLevel);
continue;
}
if (W_CSpeed_note < O_CSpeed_note ) {
/* too large compression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAYLEVEL(3, "Compression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, (double)testResult.cSpeed / MB_UNIT,
O_ratio, (double)winners[cLevel].result.cSpeed / MB_UNIT,
cLevel);
continue;
}
if (W_DSpeed_note < O_DSpeed_note ) {
/* too large decompression speed difference for the compression benefit */
if (W_ratio > O_ratio)
DISPLAYLEVEL(3, "Decompression Speed : %5.3f @ %4.1f MB/s vs %5.3f @ %4.1f MB/s : not enough for level %i\n",
W_ratio, (double)testResult.dSpeed / MB_UNIT,
O_ratio, (double)winners[cLevel].result.dSpeed / MB_UNIT,
cLevel);
continue;
}
if (W_ratio < O_ratio)
DISPLAYLEVEL(3, "Solution %4.3f selected over %4.3f at level %i, due to better secondary statistics \n",
W_ratio, O_ratio, cLevel);
winners[cLevel].result = testResult;
winners[cLevel].params = params;
BMK_print_cLevelEntry(stdout, cLevel, params, testResult, buf.srcSize);
better = 1;
} }
return better;
}
/*-************************************
* Compression Level Table Generation Functions
**************************************/
#define PARAMTABLELOG 25
#define PARAMTABLESIZE (1<<PARAMTABLELOG)
#define PARAMTABLEMASK (PARAMTABLESIZE-1)
static BYTE g_alreadyTested[PARAMTABLESIZE] = {0}; /* init to zero */
static BYTE* NB_TESTS_PLAYED(paramValues_t p)
{
ZSTD_compressionParameters const cParams = pvalsToCParams(sanitizeParams(p));
unsigned long long const h64 = XXH64(&cParams, sizeof(cParams), 0);
return &g_alreadyTested[(h64 >> 3) & PARAMTABLEMASK];
}
static void playAround(FILE* f,
winnerInfo_t* winners,
paramValues_t p,
const buffers_t buf, const contexts_t ctx)
{
int nbVariations = 0;
UTIL_time_t const clockStart = UTIL_getTime();
while (UTIL_clockSpanMicro(clockStart) < g_maxVariationTime) {
if (nbVariations++ > g_maxNbVariations) break;
do {
int i;
for(i = 0; i < 4; i++) {
paramVaryOnce(FUZ_rand(&g_rand) % (strt_ind + 1),
((FUZ_rand(&g_rand) & 1) << 1) - 1,
&p);
}
} while (!paramValid(p));
/* exclude faster if already played params */
if (FUZ_rand(&g_rand) & ((1 << *NB_TESTS_PLAYED(p))-1))
continue;
/* test */
{ BYTE* const b = NB_TESTS_PLAYED(p);
(*b)++;
}
if (!BMK_seed(winners, p, buf, ctx)) continue;
/* improvement found => search more */
BMK_saveAndPrint_cLevelTable(f, winners, buf.srcSize);
playAround(f, winners, p, buf, ctx);
}
}
static void
BMK_selectRandomStart( FILE* f,
winnerInfo_t* winners,
const buffers_t buf, const contexts_t ctx)
{
U32 const id = FUZ_rand(&g_rand) % (NB_LEVELS_TRACKED+1);
if ((id==0) || (winners[id].params.vals[wlog_ind]==0)) {
/* use some random entry */
paramValues_t const p = adjustParams(cParamsToPVals(pvalsToCParams(randomParams())), /* defaults nonCompression parameters */
buf.srcSize, 0);
playAround(f, winners, p, buf, ctx);
} else {
playAround(f, winners, winners[id].params, buf, ctx);
}
}
/* BMK_generate_cLevelTable() :
* test a large number of configurations
* and distribute them across compression levels according to speed conditions.
* display and save all intermediate results into rfName = "grillResults.txt".
* the function automatically stops after g_timeLimit_s.
* this function cannot error, it directly exit() in case of problem.
*/
static void BMK_generate_cLevelTable(const buffers_t buf, const contexts_t ctx)
{
paramValues_t params;
winnerInfo_t winners[NB_LEVELS_TRACKED+1];
const char* const rfName = "grillResults.txt";
FILE* const f = fopen(rfName, "w");
/* init */
assert(g_singleRun==0);
memset(winners, 0, sizeof(winners));
if (f==NULL) { DISPLAY("error opening %s \n", rfName); exit(1); }
if (g_target) {
BMK_init_level_constraints(g_target * MB_UNIT);
} else {
/* baseline config for level 1 */
paramValues_t const l1params = cParamsToPVals(ZSTD_getCParams(1, buf.maxBlockSize, ctx.dictSize));
BMK_benchResult_t testResult;
BMK_benchParam(&testResult, buf, ctx, l1params);
BMK_init_level_constraints((int)((testResult.cSpeed * 31) / 32));
}
/* populate initial solution */
{ const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel();
int i;
for (i=0; i<=maxSeeds; i++) {
params = cParamsToPVals(ZSTD_getCParams(i, buf.maxBlockSize, 0));
BMK_seed(winners, params, buf, ctx);
} }
BMK_saveAndPrint_cLevelTable(f, winners, buf.srcSize);
/* start tests */
{ const UTIL_time_t grillStart = UTIL_getTime();
do {
BMK_selectRandomStart(f, winners, buf, ctx);
} while (BMK_timeSpan_s(grillStart) < g_timeLimit_s);
}
/* end summary */
BMK_saveAndPrint_cLevelTable(f, winners, buf.srcSize);
DISPLAY("grillParams operations completed \n");
/* clean up*/
fclose(f);
}
/*-************************************
* Single Benchmark Functions
**************************************/
static int
benchOnce(const buffers_t buf, const contexts_t ctx, const int cLevel)
{
BMK_benchResult_t testResult;
g_params = adjustParams(overwriteParams(cParamsToPVals(ZSTD_getCParams(cLevel, buf.maxBlockSize, ctx.dictSize)), g_params), buf.maxBlockSize, ctx.dictSize);
if (BMK_benchParam(&testResult, buf, ctx, g_params)) {
DISPLAY("Error during benchmarking\n");
return 1;
}
BMK_printWinner(stdout, CUSTOM_LEVEL, testResult, g_params, buf.srcSize);
return 0;
}
static int benchSample(double compressibility, int cLevel)
{
const char* const name = "Sample 10MB";
size_t const benchedSize = 10 MB;
void* const srcBuffer = malloc(benchedSize);
int ret = 0;
buffers_t buf;
contexts_t ctx;
if(srcBuffer == NULL) {
DISPLAY("Out of Memory\n");
return 2;
}
RDG_genBuffer(srcBuffer, benchedSize, compressibility, 0.0, 0);
if(createBuffersFromMemory(&buf, srcBuffer, 1, &benchedSize)) {
DISPLAY("Buffer Creation Error\n");
free(srcBuffer);
return 3;
}
if(createContexts(&ctx, NULL)) {
DISPLAY("Context Creation Error\n");
freeBuffers(buf);
return 1;
}
/* bench */
DISPLAY("\r%79s\r", "");
DISPLAY("using %s %i%%: \n", name, (int)(compressibility*100));
if(g_singleRun) {
ret = benchOnce(buf, ctx, cLevel);
} else {
BMK_generate_cLevelTable(buf, ctx);
}
freeBuffers(buf);
freeContexts(ctx);
return ret;
}
/* benchFiles() :
* note: while this function takes a table of filenames,
* in practice, only the first filename will be used */
static int benchFiles(const char** fileNamesTable, int nbFiles,
const char* dictFileName, int cLevel)
{
buffers_t buf;
contexts_t ctx;
int ret = 0;
if (createBuffers(&buf, fileNamesTable, nbFiles)) {
DISPLAY("unable to load files\n");
return 1;
}
if (createContexts(&ctx, dictFileName)) {
DISPLAY("unable to load dictionary\n");
freeBuffers(buf);
return 2;
}
DISPLAY("\r%79s\r", "");
if (nbFiles == 1) {
DISPLAY("using %s : \n", fileNamesTable[0]);
} else {
DISPLAY("using %d Files : \n", nbFiles);
}
if (g_singleRun) {
ret = benchOnce(buf, ctx, cLevel);
} else {
BMK_generate_cLevelTable(buf, ctx);
}
freeBuffers(buf);
freeContexts(ctx);
return ret;
}
/*-************************************
* Local Optimization Functions
**************************************/
/* One iteration of hill climbing. Specifically, it first tries all
* valid parameter configurations w/ manhattan distance 1 and picks the best one
* failing that, it progressively tries candidates further and further away (up to #dim + 2)
* if it finds a candidate exceeding winnerInfo, it will repeat. Otherwise, it will stop the
* current stage of hill climbing.
* Each iteration of hill climbing proceeds in 2 'phases'. Phase 1 climbs according to
* the resultScore function, which is effectively a linear increase in reward until it reaches
* the constraint-satisfying value, it which point any excess results in only logarithmic reward.
* This aims to find some constraint-satisfying point.
* Phase 2 optimizes in accordance with what the original function sets out to maximize, with
* all feasible solutions valued over all infeasible solutions.
*/
/* sanitize all params here.
* all generation after random should be sanitized. (maybe sanitize random)
*/
static winnerInfo_t climbOnce(const constraint_t target,
memoTable_t* mtAll,
const buffers_t buf, const contexts_t ctx,
const paramValues_t init)
{
/*
* cparam - currently considered 'center'
* candidate - params to benchmark/results
* winner - best option found so far.
*/
paramValues_t cparam = init;
winnerInfo_t candidateInfo, winnerInfo;
int better = 1;
int feas = 0;
winnerInfo = initWinnerInfo(init);
candidateInfo = winnerInfo;
{ winnerInfo_t bestFeasible1 = initWinnerInfo(cparam);
DEBUGOUTPUT("Climb Part 1\n");
while(better) {
int offset;
size_t i, dist;
const size_t varLen = mtAll[cparam.vals[strt_ind]].varLen;
better = 0;
DEBUGOUTPUT("Start\n");
cparam = winnerInfo.params;
candidateInfo.params = cparam;
/* all dist-1 candidates */
for (i = 0; i < varLen; i++) {
for (offset = -1; offset <= 1; offset += 2) {
CHECKTIME(winnerInfo);
candidateInfo.params = cparam;
paramVaryOnce(mtAll[cparam.vals[strt_ind]].varArray[i],
offset,
&candidateInfo.params);
if(paramValid(candidateInfo.params)) {
int res;
res = benchMemo(&candidateInfo.result, buf, ctx,
sanitizeParams(candidateInfo.params), target, &winnerInfo.result, mtAll, feas);
DEBUGOUTPUT("Res: %d\n", res);
if(res == BETTER_RESULT) { /* synonymous with better when called w/ infeasibleBM */
winnerInfo = candidateInfo;
better = 1;
if(compareResultLT(bestFeasible1.result, winnerInfo.result, target, buf.srcSize)) {
bestFeasible1 = winnerInfo;
}
}
}
} /* for (offset = -1; offset <= 1; offset += 2) */
} /* for (i = 0; i < varLen; i++) */
if(better) {
continue;
}
for (dist = 2; dist < varLen + 2; dist++) { /* varLen is # dimensions */
for (i = 0; i < (1ULL << varLen) / varLen + 2; i++) {
int res;
CHECKTIME(winnerInfo);
candidateInfo.params = cparam;
/* param error checking already done here */
paramVariation(&candidateInfo.params, mtAll, (U32)dist);
res = benchMemo(&candidateInfo.result,
buf, ctx,
sanitizeParams(candidateInfo.params), target,
&winnerInfo.result, mtAll, feas);
DEBUGOUTPUT("Res: %d\n", res);
if (res == BETTER_RESULT) { /* synonymous with better in this case*/
winnerInfo = candidateInfo;
better = 1;
if (compareResultLT(bestFeasible1.result, winnerInfo.result, target, buf.srcSize)) {
bestFeasible1 = winnerInfo;
}
break;
}
}
if (better) {
break;
}
} /* for(dist = 2; dist < varLen + 2; dist++) */
if (!better) { /* infeas -> feas -> stop */
if (feas) return winnerInfo;
feas = 1;
better = 1;
winnerInfo = bestFeasible1; /* note with change, bestFeasible may not necessarily be feasible, but if one has been benchmarked, it will be. */
DEBUGOUTPUT("Climb Part 2\n");
}
}
winnerInfo = bestFeasible1;
}
return winnerInfo;
}
/* Optimizes for a fixed strategy */
/* flexible parameters: iterations of failed climbing (or if we do non-random, maybe this is when everything is close to visited)
weight more on visit for bad results, less on good results/more on later results / ones with more failures.
allocate memoTable here.
*/
static winnerInfo_t
optimizeFixedStrategy(const buffers_t buf, const contexts_t ctx,
const constraint_t target, paramValues_t paramTarget,
const ZSTD_strategy strat,
memoTable_t* memoTableArray, const int tries)
{
int i = 0;
paramValues_t init;
winnerInfo_t winnerInfo, candidateInfo;
winnerInfo = initWinnerInfo(emptyParams());
/* so climb is given the right fixed strategy */
paramTarget.vals[strt_ind] = strat;
/* to pass ZSTD_checkCParams */
paramTarget = cParamUnsetMin(paramTarget);
init = paramTarget;
for(i = 0; i < tries; i++) {
DEBUGOUTPUT("Restart\n");
do {
randomConstrainedParams(&init, memoTableArray, strat);
} while(redundantParams(init, target, buf.maxBlockSize));
candidateInfo = climbOnce(target, memoTableArray, buf, ctx, init);
if (compareResultLT(winnerInfo.result, candidateInfo.result, target, buf.srcSize)) {
winnerInfo = candidateInfo;
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winnerInfo.result, winnerInfo.params, target, buf.srcSize);
i = 0;
continue;
}
CHECKTIME(winnerInfo);
i++;
}
return winnerInfo;
}
/* goes best, best-1, best+1, best-2, ... */
/* return 0 if nothing remaining */
static int nextStrategy(const int currentStrategy, const int bestStrategy)
{
if(bestStrategy <= currentStrategy) {
int candidate = 2 * bestStrategy - currentStrategy - 1;
if(candidate < 1) {
candidate = currentStrategy + 1;
if(candidate > (int)ZSTD_STRATEGY_MAX) {
return 0;
} else {
return candidate;
}
} else {
return candidate;
}
} else { /* bestStrategy >= currentStrategy */
int candidate = 2 * bestStrategy - currentStrategy;
if(candidate > (int)ZSTD_STRATEGY_MAX) {
candidate = currentStrategy - 1;
if(candidate < 1) {
return 0;
} else {
return candidate;
}
} else {
return candidate;
}
}
}
/* experiment with playing with this and decay value */
/* main fn called when using --optimize */
/* Does strategy selection by benchmarking default compression levels
* then optimizes by strategy, starting with the best one and moving
* progressively moving further away by number
* args:
* fileNamesTable - list of files to benchmark
* nbFiles - length of fileNamesTable
* dictFileName - name of dictionary file if one, else NULL
* target - performance constraints (cSpeed, dSpeed, cMem)
* paramTarget - parameter constraints (i.e. restriction search space to where strategy = ZSTD_fast)
* cLevel - compression level to exceed (all solutions must be > lvl in cSpeed + ratio)
*/
static unsigned g_maxTries = 5;
#define TRY_DECAY 1
static int
optimizeForSize(const char* const * const fileNamesTable, const size_t nbFiles,
const char* dictFileName,
constraint_t target, paramValues_t paramTarget,
const int cLevelOpt, const int cLevelRun,
const U32 memoTableLog)
{
varInds_t varArray [NUM_PARAMS];
int ret = 0;
const size_t varLen = variableParams(paramTarget, varArray, dictFileName != NULL);
winnerInfo_t winner = initWinnerInfo(emptyParams());
memoTable_t* allMT = NULL;
paramValues_t paramBase;
contexts_t ctx;
buffers_t buf;
g_time = UTIL_getTime();
if (createBuffers(&buf, fileNamesTable, nbFiles)) {
DISPLAY("unable to load files\n");
return 1;
}
if (createContexts(&ctx, dictFileName)) {
DISPLAY("unable to load dictionary\n");
freeBuffers(buf);
return 2;
}
if (nbFiles == 1) {
DISPLAYLEVEL(2, "Loading %s... \r", fileNamesTable[0]);
} else {
DISPLAYLEVEL(2, "Loading %lu Files... \r", (unsigned long)nbFiles);
}
/* sanitize paramTarget */
optimizerAdjustInput(&paramTarget, buf.maxBlockSize);
paramBase = cParamUnsetMin(paramTarget);
allMT = createMemoTableArray(paramTarget, varArray, varLen, memoTableLog);
if (!allMT) {
DISPLAY("MemoTable Init Error\n");
ret = 2;
goto _cleanUp;
}
/* default strictnesses */
if (g_strictness == PARAM_UNSET) {
if(g_optmode) {
g_strictness = 100;
} else {
g_strictness = 90;
}
} else {
if(0 >= g_strictness || g_strictness > 100) {
DISPLAY("Strictness Outside of Bounds\n");
ret = 4;
goto _cleanUp;
}
}
/* use level'ing mode instead of normal target mode */
if (g_optmode) {
winner.params = cParamsToPVals(ZSTD_getCParams(cLevelOpt, buf.maxBlockSize, ctx.dictSize));
if(BMK_benchParam(&winner.result, buf, ctx, winner.params)) {
ret = 3;
goto _cleanUp;
}
g_lvltarget = winner.result;
g_lvltarget.cSpeed = (g_lvltarget.cSpeed * g_strictness) / 100;
g_lvltarget.dSpeed = (g_lvltarget.dSpeed * g_strictness) / 100;
g_lvltarget.cSize = (g_lvltarget.cSize * 100) / g_strictness;
target.cSpeed = (U32)g_lvltarget.cSpeed;
target.dSpeed = (U32)g_lvltarget.dSpeed;
BMK_printWinnerOpt(stdout, cLevelOpt, winner.result, winner.params, target, buf.srcSize);
}
/* Don't want it to return anything worse than the best known result */
if (g_singleRun) {
BMK_benchResult_t res;
g_params = adjustParams(overwriteParams(cParamsToPVals(ZSTD_getCParams(cLevelRun, buf.maxBlockSize, ctx.dictSize)), g_params), buf.maxBlockSize, ctx.dictSize);
if (BMK_benchParam(&res, buf, ctx, g_params)) {
ret = 45;
goto _cleanUp;
}
if(compareResultLT(winner.result, res, relaxTarget(target), buf.srcSize)) {
winner.result = res;
winner.params = g_params;
}
}
/* bench */
DISPLAYLEVEL(2, "\r%79s\r", "");
if(nbFiles == 1) {
DISPLAYLEVEL(2, "optimizing for %s", fileNamesTable[0]);
} else {
DISPLAYLEVEL(2, "optimizing for %lu Files", (unsigned long)nbFiles);
}
if(target.cSpeed != 0) { DISPLAYLEVEL(2," - limit compression speed %u MB/s", (unsigned)(target.cSpeed >> 20)); }
if(target.dSpeed != 0) { DISPLAYLEVEL(2, " - limit decompression speed %u MB/s", (unsigned)(target.dSpeed >> 20)); }
if(target.cMem != (U32)-1) { DISPLAYLEVEL(2, " - limit memory %u MB", (unsigned)(target.cMem >> 20)); }
DISPLAYLEVEL(2, "\n");
init_clockGranularity();
{ paramValues_t CParams;
/* find best solution from default params */
{ const int maxSeeds = g_noSeed ? 1 : ZSTD_maxCLevel();
DEBUGOUTPUT("Strategy Selection\n");
if (paramTarget.vals[strt_ind] == PARAM_UNSET) {
BMK_benchResult_t candidate;
int i;
for (i=1; i<=maxSeeds; i++) {
int ec;
CParams = overwriteParams(cParamsToPVals(ZSTD_getCParams(i, buf.maxBlockSize, ctx.dictSize)), paramTarget);
ec = BMK_benchParam(&candidate, buf, ctx, CParams);
BMK_printWinnerOpt(stdout, i, candidate, CParams, target, buf.srcSize);
if(!ec && compareResultLT(winner.result, candidate, relaxTarget(target), buf.srcSize)) {
winner.result = candidate;
winner.params = CParams;
}
CHECKTIMEGT(ret, 0, _displayCleanUp); /* if pass time limit, stop */
/* if the current params are too slow, just stop. */
if(target.cSpeed > candidate.cSpeed * 3 / 2) { break; }
}
BMK_printWinnerOpt(stdout, CUSTOM_LEVEL, winner.result, winner.params, target, buf.srcSize);
}
}
DEBUGOUTPUT("Real Opt\n");
/* start 'real' optimization */
{ int bestStrategy = (int)winner.params.vals[strt_ind];
if (paramTarget.vals[strt_ind] == PARAM_UNSET) {
int st = bestStrategy;
int tries = g_maxTries;
/* one iterations of hill climbing with the level-defined parameters. */
{ winnerInfo_t const w1 = climbOnce(target, allMT, buf, ctx, winner.params);
if (compareResultLT(winner.result, w1.result, target, buf.srcSize)) {
winner = w1;
}
CHECKTIMEGT(ret, 0, _displayCleanUp);
}
while(st && tries > 0) {
winnerInfo_t wc;
DEBUGOUTPUT("StrategySwitch: %s\n", g_stratName[st]);
wc = optimizeFixedStrategy(buf, ctx, target, paramBase, st, allMT, tries);
if(compareResultLT(winner.result, wc.result, target, buf.srcSize)) {
winner = wc;
tries = g_maxTries;
bestStrategy = st;
} else {
st = nextStrategy(st, bestStrategy);
tries -= TRY_DECAY;
}
CHECKTIMEGT(ret, 0, _displayCleanUp);
}
} else {
winner = optimizeFixedStrategy(buf, ctx, target, paramBase, paramTarget.vals[strt_ind], allMT, g_maxTries);
}
}
/* no solution found */
if(winner.result.cSize == (size_t)-1) {
ret = 1;
DISPLAY("No feasible solution found\n");
goto _cleanUp;
}
/* end summary */
_displayCleanUp:
if (g_displayLevel >= 0) {
BMK_displayOneResult(stdout, winner, buf.srcSize);
}
BMK_paramValues_into_commandLine(stdout, winner.params);
DISPLAYLEVEL(1, "grillParams size - optimizer completed \n");
}
_cleanUp:
freeContexts(ctx);
freeBuffers(buf);
freeMemoTableArray(allMT);
return ret;
}
/*-************************************
* CLI parsing functions
**************************************/
/** longCommandWArg() :
* check if *stringPtr is the same as longCommand.
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
* @return 0 and doesn't modify *stringPtr otherwise.
* from zstdcli.c
*/
static int longCommandWArg(const char** stringPtr, const char* longCommand)
{
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
static void errorOut(const char* msg)
{
DISPLAY("%s \n", msg); exit(1);
}
/*! readU32FromChar() :
* @return : unsigned integer value read from input in `char` format.
* allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to position where it stopped reading.
* Note : function will exit() program if digit sequence overflows */
static unsigned readU32FromChar(const char** stringPtr)
{
const char errorMsg[] = "error: numeric value too large";
unsigned sign = 1;
unsigned result = 0;
if(**stringPtr == '-') { sign = (unsigned)-1; (*stringPtr)++; }
while ((**stringPtr >='0') && (**stringPtr <='9')) {
unsigned const max = (((unsigned)(-1)) / 10) - 1;
if (result > max) errorOut(errorMsg);
result *= 10;
assert(**stringPtr >= '0');
result += (unsigned)(**stringPtr - '0');
(*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M')) {
unsigned const maxK = ((unsigned)(-1)) >> 10;
if (result > maxK) errorOut(errorMsg);
result <<= 10;
if (**stringPtr=='M') {
if (result > maxK) errorOut(errorMsg);
result <<= 10;
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result * sign;
}
static double readDoubleFromChar(const char** stringPtr)
{
double result = 0, divide = 10;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
result *= 10, result += **stringPtr - '0', (*stringPtr)++ ;
}
if(**stringPtr!='.') {
return result;
}
(*stringPtr)++;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
result += (double)(**stringPtr - '0') / divide, divide *= 10, (*stringPtr)++ ;
}
return result;
}
static int usage(const char* exename)
{
DISPLAY( "Usage :\n");
DISPLAY( " %s [arg] file\n", exename);
DISPLAY( "Arguments :\n");
DISPLAY( " file : path to the file used as reference (if none, generates a compressible sample)\n");
DISPLAY( " -H/-h : Help (this text + advanced options)\n");
return 0;
}
static int usage_advanced(void)
{
DISPLAY( "\nAdvanced options :\n");
DISPLAY( " -T# : set level 1 speed objective \n");
DISPLAY( " -B# : cut input into blocks of size # (default : single block) \n");
DISPLAY( " --optimize= : same as -O with more verbose syntax (see README.md)\n");
DISPLAY( " -S : Single run \n");
DISPLAY( " --zstd : Single run, parameter selection same as zstdcli \n");
DISPLAY( " -P# : generated sample compressibility (default : %.1f%%) \n", COMPRESSIBILITY_DEFAULT * 100);
DISPLAY( " -t# : Caps runtime of operation in seconds (default : %u seconds (%.1f hours)) \n",
(unsigned)g_timeLimit_s, (double)g_timeLimit_s / 3600);
DISPLAY( " -v : Prints Benchmarking output\n");
DISPLAY( " -D : Next argument dictionary file\n");
DISPLAY( " -s : Separate Files\n");
return 0;
}
static int badusage(const char* exename)
{
DISPLAY("Wrong parameters\n");
usage(exename);
return 1;
}
#define PARSE_SUB_ARGS(stringLong, stringShort, variable) { \
if ( longCommandWArg(&argument, stringLong) \
|| longCommandWArg(&argument, stringShort) ) { \
variable = readU32FromChar(&argument); \
if (argument[0]==',') { \
argument++; continue; \
} else break; \
} }
/* 1 if successful parse, 0 otherwise */
static int parse_params(const char** argptr, paramValues_t* pv) {
int matched = 0;
const char* argOrig = *argptr;
varInds_t v;
for(v = 0; v < NUM_PARAMS; v++) {
if ( longCommandWArg(argptr,g_shortParamNames[v])
|| longCommandWArg(argptr, g_paramNames[v]) ) {
if(**argptr == '=') {
(*argptr)++;
pv->vals[v] = readU32FromChar(argptr);
matched = 1;
break;
}
}
/* reset and try again */
*argptr = argOrig;
}
return matched;
}
/*-************************************
* Main
**************************************/
int main(int argc, const char** argv)
{
int i,
filenamesStart=0,
result;
const char* exename=argv[0];
const char* input_filename = NULL;
const char* dictFileName = NULL;
U32 main_pause = 0;
int cLevelOpt = 0, cLevelRun = 0;
int separateFiles = 0;
double compressibility = COMPRESSIBILITY_DEFAULT;
U32 memoTableLog = PARAM_UNSET;
constraint_t target = { 0, 0, (U32)-1 };
paramValues_t paramTarget = emptyParams();
g_params = emptyParams();
assert(argc>=1); /* for exename */
for(i=1; i<argc; i++) {
const char* argument = argv[i];
DEBUGOUTPUT("%d: %s\n", i, argument);
assert(argument != NULL);
if(!strcmp(argument,"--no-seed")) { g_noSeed = 1; continue; }
if (longCommandWArg(&argument, "--optimize=")) {
g_optimizer = 1;
for ( ; ;) {
if(parse_params(&argument, &paramTarget)) { if(argument[0] == ',') { argument++; continue; } else break; }
PARSE_SUB_ARGS("compressionSpeed=" , "cSpeed=", target.cSpeed);
PARSE_SUB_ARGS("decompressionSpeed=", "dSpeed=", target.dSpeed);
PARSE_SUB_ARGS("compressionMemory=" , "cMem=", target.cMem);
PARSE_SUB_ARGS("strict=", "stc=", g_strictness);
PARSE_SUB_ARGS("maxTries=", "tries=", g_maxTries);
PARSE_SUB_ARGS("memoLimitLog=", "memLog=", memoTableLog);
if (longCommandWArg(&argument, "level=") || longCommandWArg(&argument, "lvl=")) { cLevelOpt = (int)readU32FromChar(&argument); g_optmode = 1; if (argument[0]==',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "speedForRatio=") || longCommandWArg(&argument, "speedRatio=")) { g_ratioMultiplier = readDoubleFromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
DISPLAY("invalid optimization parameter \n");
return 1;
}
if (argument[0] != 0) {
DISPLAY("invalid --optimize= format\n");
return 1; /* check the end of string */
}
continue;
} else if (longCommandWArg(&argument, "--zstd=")) {
/* Decode command (note : aggregated commands are allowed) */
g_singleRun = 1;
for ( ; ;) {
if(parse_params(&argument, &g_params)) { if(argument[0] == ',') { argument++; continue; } else break; }
if (longCommandWArg(&argument, "level=") || longCommandWArg(&argument, "lvl=")) { cLevelRun = (int)readU32FromChar(&argument); g_params = emptyParams(); if (argument[0]==',') { argument++; continue; } else break; }
DISPLAY("invalid compression parameter \n");
return 1;
}
if (argument[0] != 0) {
DISPLAY("invalid --zstd= format\n");
return 1; /* check the end of string */
}
continue;
/* if not return, success */
} else if (longCommandWArg(&argument, "--display=")) {
/* Decode command (note : aggregated commands are allowed) */
memset(g_silenceParams, 1, sizeof(g_silenceParams));
for ( ; ;) {
int found = 0;
varInds_t v;
for(v = 0; v < NUM_PARAMS; v++) {
if(longCommandWArg(&argument, g_shortParamNames[v]) || longCommandWArg(&argument, g_paramNames[v])) {
g_silenceParams[v] = 0;
found = 1;
}
}
if(longCommandWArg(&argument, "compressionParameters") || longCommandWArg(&argument, "cParams")) {
for(v = 0; v <= strt_ind; v++) {
g_silenceParams[v] = 0;
}
found = 1;
}
if(found) {
if(argument[0]==',') {
continue;
} else {
break;
}
}
DISPLAY("invalid parameter name parameter \n");
return 1;
}
if (argument[0] != 0) {
DISPLAY("invalid --display format\n");
return 1; /* check the end of string */
}
continue;
} else if (argument[0]=='-') {
argument++;
while (argument[0]!=0) {
switch(argument[0])
{
/* Display help on usage */
case 'h' :
case 'H': usage(exename); usage_advanced(); return 0;
/* Pause at the end (hidden option) */
case 'p': main_pause = 1; argument++; break;
/* Sample compressibility (when no file provided) */
case 'P':
argument++;
{ U32 const proba32 = readU32FromChar(&argument);
compressibility = (double)proba32 / 100.;
}
break;
/* Run Single conf */
case 'S':
g_singleRun = 1;
argument++;
for ( ; ; ) {
switch(*argument)
{
case 'w':
argument++;
g_params.vals[wlog_ind] = readU32FromChar(&argument);
continue;
case 'c':
argument++;
g_params.vals[clog_ind] = readU32FromChar(&argument);
continue;
case 'h':
argument++;
g_params.vals[hlog_ind] = readU32FromChar(&argument);
continue;
case 's':
argument++;
g_params.vals[slog_ind] = readU32FromChar(&argument);
continue;
case 'l': /* search length */
argument++;
g_params.vals[mml_ind] = readU32FromChar(&argument);
continue;
case 't': /* target length */
argument++;
g_params.vals[tlen_ind] = readU32FromChar(&argument);
continue;
case 'S': /* strategy */
argument++;
g_params.vals[strt_ind] = readU32FromChar(&argument);
continue;
case 'f': /* forceAttachDict */
argument++;
g_params.vals[fadt_ind] = readU32FromChar(&argument);
continue;
case 'L':
{ argument++;
cLevelRun = (int)readU32FromChar(&argument);
g_params = emptyParams();
continue;
}
default : ;
}
break;
}
break;
/* target level1 speed objective, in MB/s */
case 'T':
argument++;
g_target = readU32FromChar(&argument);
break;
/* cut input into blocks */
case 'B':
argument++;
g_blockSize = readU32FromChar(&argument);
DISPLAY("using %u KB block size \n", (unsigned)(g_blockSize>>10));
break;
/* caps runtime (in seconds) */
case 't':
argument++;
g_timeLimit_s = readU32FromChar(&argument);
break;
case 's':
argument++;
separateFiles = 1;
break;
case 'q':
while (argument[0] == 'q') { argument++; g_displayLevel--; }
break;
case 'v':
while (argument[0] == 'v') { argument++; g_displayLevel++; }
break;
/* load dictionary file (only applicable for optimizer rn) */
case 'D':
if(i == argc - 1) { /* last argument, return error. */
DISPLAY("Dictionary file expected but not given : %d\n", i);
return 1;
} else {
i++;
dictFileName = argv[i];
argument += strlen(argument);
}
break;
/* Unknown command */
default : return badusage(exename);
}
}
continue;
} /* if (argument[0]=='-') */
/* first provided filename is input */
if (!input_filename) { input_filename=argument; filenamesStart=i; continue; }
}
/* Welcome message */
DISPLAYLEVEL(2, WELCOME_MESSAGE);
if (filenamesStart==0) {
if (g_optimizer) {
DISPLAY("Optimizer Expects File\n");
return 1;
} else {
result = benchSample(compressibility, cLevelRun);
}
} else {
if(separateFiles) {
for(i = 0; i < argc - filenamesStart; i++) {
if (g_optimizer) {
result = optimizeForSize(argv+filenamesStart + i, 1, dictFileName, target, paramTarget, cLevelOpt, cLevelRun, memoTableLog);
if(result) { DISPLAY("Error on File %d", i); return result; }
} else {
result = benchFiles(argv+filenamesStart + i, 1, dictFileName, cLevelRun);
if(result) { DISPLAY("Error on File %d", i); return result; }
}
}
} else {
if (g_optimizer) {
assert(filenamesStart < argc);
result = optimizeForSize(argv+filenamesStart, (size_t)(argc-filenamesStart), dictFileName, target, paramTarget, cLevelOpt, cLevelRun, memoTableLog);
} else {
result = benchFiles(argv+filenamesStart, argc-filenamesStart, dictFileName, cLevelRun);
}
}
}
if (main_pause) { int unused; printf("press enter...\n"); unused = getchar(); (void)unused; }
return result;
}