iw5-mod/deps/zstd/contrib/linux-kernel/test/include/linux/xxhash.h

746 lines
21 KiB
C

/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2012-2016, Yann Collet.
*
* BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation. This program is dual-licensed; you may select
* either version 2 of the GNU General Public License ("GPL") or BSD license
* ("BSD").
*
* You can contact the author at:
* - xxHash homepage: https://cyan4973.github.io/xxHash/
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
/*
* Notice extracted from xxHash homepage:
*
* xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
* It also successfully passes all tests from the SMHasher suite.
*
* Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2
* Duo @3GHz)
*
* Name Speed Q.Score Author
* xxHash 5.4 GB/s 10
* CrapWow 3.2 GB/s 2 Andrew
* MumurHash 3a 2.7 GB/s 10 Austin Appleby
* SpookyHash 2.0 GB/s 10 Bob Jenkins
* SBox 1.4 GB/s 9 Bret Mulvey
* Lookup3 1.2 GB/s 9 Bob Jenkins
* SuperFastHash 1.2 GB/s 1 Paul Hsieh
* CityHash64 1.05 GB/s 10 Pike & Alakuijala
* FNV 0.55 GB/s 5 Fowler, Noll, Vo
* CRC32 0.43 GB/s 9
* MD5-32 0.33 GB/s 10 Ronald L. Rivest
* SHA1-32 0.28 GB/s 10
*
* Q.Score is a measure of quality of the hash function.
* It depends on successfully passing SMHasher test set.
* 10 is a perfect score.
*
* A 64-bits version, named xxh64 offers much better speed,
* but for 64-bits applications only.
* Name Speed on 64 bits Speed on 32 bits
* xxh64 13.8 GB/s 1.9 GB/s
* xxh32 6.8 GB/s 6.0 GB/s
*/
#ifndef XXHASH_H
#define XXHASH_H
#include <linux/types.h>
#define XXH_API static inline __attribute__((unused))
/*-****************************
* Simple Hash Functions
*****************************/
/**
* xxh32() - calculate the 32-bit hash of the input with a given seed.
*
* @input: The data to hash.
* @length: The length of the data to hash.
* @seed: The seed can be used to alter the result predictably.
*
* Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
*
* Return: The 32-bit hash of the data.
*/
XXH_API uint32_t xxh32(const void *input, size_t length, uint32_t seed);
/**
* xxh64() - calculate the 64-bit hash of the input with a given seed.
*
* @input: The data to hash.
* @length: The length of the data to hash.
* @seed: The seed can be used to alter the result predictably.
*
* This function runs 2x faster on 64-bit systems, but slower on 32-bit systems.
*
* Return: The 64-bit hash of the data.
*/
XXH_API uint64_t xxh64(const void *input, size_t length, uint64_t seed);
/**
* xxhash() - calculate wordsize hash of the input with a given seed
* @input: The data to hash.
* @length: The length of the data to hash.
* @seed: The seed can be used to alter the result predictably.
*
* If the hash does not need to be comparable between machines with
* different word sizes, this function will call whichever of xxh32()
* or xxh64() is faster.
*
* Return: wordsize hash of the data.
*/
static inline unsigned long xxhash(const void *input, size_t length,
uint64_t seed)
{
if (sizeof(size_t) == 8)
return xxh64(input, length, seed);
else
return xxh32(input, length, seed);
}
/*-****************************
* Streaming Hash Functions
*****************************/
/*
* These definitions are only meant to allow allocation of XXH state
* statically, on stack, or in a struct for example.
* Do not use members directly.
*/
/**
* struct xxh32_state - private xxh32 state, do not use members directly
*/
struct xxh32_state {
uint32_t total_len_32;
uint32_t large_len;
uint32_t v1;
uint32_t v2;
uint32_t v3;
uint32_t v4;
uint32_t mem32[4];
uint32_t memsize;
};
/**
* struct xxh32_state - private xxh64 state, do not use members directly
*/
struct xxh64_state {
uint64_t total_len;
uint64_t v1;
uint64_t v2;
uint64_t v3;
uint64_t v4;
uint64_t mem64[4];
uint32_t memsize;
};
/**
* xxh32_reset() - reset the xxh32 state to start a new hashing operation
*
* @state: The xxh32 state to reset.
* @seed: Initialize the hash state with this seed.
*
* Call this function on any xxh32_state to prepare for a new hashing operation.
*/
XXH_API void xxh32_reset(struct xxh32_state *state, uint32_t seed);
/**
* xxh32_update() - hash the data given and update the xxh32 state
*
* @state: The xxh32 state to update.
* @input: The data to hash.
* @length: The length of the data to hash.
*
* After calling xxh32_reset() call xxh32_update() as many times as necessary.
*
* Return: Zero on success, otherwise an error code.
*/
XXH_API int xxh32_update(struct xxh32_state *state, const void *input, size_t length);
/**
* xxh32_digest() - produce the current xxh32 hash
*
* @state: Produce the current xxh32 hash of this state.
*
* A hash value can be produced at any time. It is still possible to continue
* inserting input into the hash state after a call to xxh32_digest(), and
* generate new hashes later on, by calling xxh32_digest() again.
*
* Return: The xxh32 hash stored in the state.
*/
XXH_API uint32_t xxh32_digest(const struct xxh32_state *state);
/**
* xxh64_reset() - reset the xxh64 state to start a new hashing operation
*
* @state: The xxh64 state to reset.
* @seed: Initialize the hash state with this seed.
*/
XXH_API void xxh64_reset(struct xxh64_state *state, uint64_t seed);
/**
* xxh64_update() - hash the data given and update the xxh64 state
* @state: The xxh64 state to update.
* @input: The data to hash.
* @length: The length of the data to hash.
*
* After calling xxh64_reset() call xxh64_update() as many times as necessary.
*
* Return: Zero on success, otherwise an error code.
*/
XXH_API int xxh64_update(struct xxh64_state *state, const void *input, size_t length);
/**
* xxh64_digest() - produce the current xxh64 hash
*
* @state: Produce the current xxh64 hash of this state.
*
* A hash value can be produced at any time. It is still possible to continue
* inserting input into the hash state after a call to xxh64_digest(), and
* generate new hashes later on, by calling xxh64_digest() again.
*
* Return: The xxh64 hash stored in the state.
*/
XXH_API uint64_t xxh64_digest(const struct xxh64_state *state);
/*-**************************
* Utils
***************************/
/**
* xxh32_copy_state() - copy the source state into the destination state
*
* @src: The source xxh32 state.
* @dst: The destination xxh32 state.
*/
XXH_API void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src);
/**
* xxh64_copy_state() - copy the source state into the destination state
*
* @src: The source xxh64 state.
* @dst: The destination xxh64 state.
*/
XXH_API void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src);
/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2012-2016, Yann Collet.
*
* BSD 2-Clause License (https://opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation. This program is dual-licensed; you may select
* either version 2 of the GNU General Public License ("GPL") or BSD license
* ("BSD").
*
* You can contact the author at:
* - xxHash homepage: https://cyan4973.github.io/xxHash/
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
#include <asm/unaligned.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/xxhash.h>
/*-*************************************
* Macros
**************************************/
#define xxh_rotl32(x, r) ((x << r) | (x >> (32 - r)))
#define xxh_rotl64(x, r) ((x << r) | (x >> (64 - r)))
#ifdef __LITTLE_ENDIAN
# define XXH_CPU_LITTLE_ENDIAN 1
#else
# define XXH_CPU_LITTLE_ENDIAN 0
#endif
/*-*************************************
* Constants
**************************************/
static const uint32_t PRIME32_1 = 2654435761U;
static const uint32_t PRIME32_2 = 2246822519U;
static const uint32_t PRIME32_3 = 3266489917U;
static const uint32_t PRIME32_4 = 668265263U;
static const uint32_t PRIME32_5 = 374761393U;
static const uint64_t PRIME64_1 = 11400714785074694791ULL;
static const uint64_t PRIME64_2 = 14029467366897019727ULL;
static const uint64_t PRIME64_3 = 1609587929392839161ULL;
static const uint64_t PRIME64_4 = 9650029242287828579ULL;
static const uint64_t PRIME64_5 = 2870177450012600261ULL;
/*-**************************
* Utils
***************************/
XXH_API void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src)
{
__builtin_memcpy(dst, src, sizeof(*dst));
}
XXH_API void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src)
{
__builtin_memcpy(dst, src, sizeof(*dst));
}
/*-***************************
* Simple Hash Functions
****************************/
static uint32_t xxh32_round(uint32_t seed, const uint32_t input)
{
seed += input * PRIME32_2;
seed = xxh_rotl32(seed, 13);
seed *= PRIME32_1;
return seed;
}
XXH_API uint32_t xxh32(const void *input, const size_t len, const uint32_t seed)
{
const uint8_t *p = (const uint8_t *)input;
const uint8_t *b_end = p + len;
uint32_t h32;
if (len >= 16) {
const uint8_t *const limit = b_end - 16;
uint32_t v1 = seed + PRIME32_1 + PRIME32_2;
uint32_t v2 = seed + PRIME32_2;
uint32_t v3 = seed + 0;
uint32_t v4 = seed - PRIME32_1;
do {
v1 = xxh32_round(v1, get_unaligned_le32(p));
p += 4;
v2 = xxh32_round(v2, get_unaligned_le32(p));
p += 4;
v3 = xxh32_round(v3, get_unaligned_le32(p));
p += 4;
v4 = xxh32_round(v4, get_unaligned_le32(p));
p += 4;
} while (p <= limit);
h32 = xxh_rotl32(v1, 1) + xxh_rotl32(v2, 7) +
xxh_rotl32(v3, 12) + xxh_rotl32(v4, 18);
} else {
h32 = seed + PRIME32_5;
}
h32 += (uint32_t)len;
while (p + 4 <= b_end) {
h32 += get_unaligned_le32(p) * PRIME32_3;
h32 = xxh_rotl32(h32, 17) * PRIME32_4;
p += 4;
}
while (p < b_end) {
h32 += (*p) * PRIME32_5;
h32 = xxh_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
static uint64_t xxh64_round(uint64_t acc, const uint64_t input)
{
acc += input * PRIME64_2;
acc = xxh_rotl64(acc, 31);
acc *= PRIME64_1;
return acc;
}
static uint64_t xxh64_merge_round(uint64_t acc, uint64_t val)
{
val = xxh64_round(0, val);
acc ^= val;
acc = acc * PRIME64_1 + PRIME64_4;
return acc;
}
XXH_API uint64_t xxh64(const void *input, const size_t len, const uint64_t seed)
{
const uint8_t *p = (const uint8_t *)input;
const uint8_t *const b_end = p + len;
uint64_t h64;
if (len >= 32) {
const uint8_t *const limit = b_end - 32;
uint64_t v1 = seed + PRIME64_1 + PRIME64_2;
uint64_t v2 = seed + PRIME64_2;
uint64_t v3 = seed + 0;
uint64_t v4 = seed - PRIME64_1;
do {
v1 = xxh64_round(v1, get_unaligned_le64(p));
p += 8;
v2 = xxh64_round(v2, get_unaligned_le64(p));
p += 8;
v3 = xxh64_round(v3, get_unaligned_le64(p));
p += 8;
v4 = xxh64_round(v4, get_unaligned_le64(p));
p += 8;
} while (p <= limit);
h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
h64 = xxh64_merge_round(h64, v1);
h64 = xxh64_merge_round(h64, v2);
h64 = xxh64_merge_round(h64, v3);
h64 = xxh64_merge_round(h64, v4);
} else {
h64 = seed + PRIME64_5;
}
h64 += (uint64_t)len;
while (p + 8 <= b_end) {
const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
h64 ^= k1;
h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
p += 8;
}
if (p + 4 <= b_end) {
h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p += 4;
}
while (p < b_end) {
h64 ^= (*p) * PRIME64_5;
h64 = xxh_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
/*-**************************************************
* Advanced Hash Functions
***************************************************/
XXH_API void xxh32_reset(struct xxh32_state *statePtr, const uint32_t seed)
{
/* use a local state for memcpy() to avoid strict-aliasing warnings */
struct xxh32_state state;
__builtin_memset(&state, 0, sizeof(state));
state.v1 = seed + PRIME32_1 + PRIME32_2;
state.v2 = seed + PRIME32_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME32_1;
__builtin_memcpy(statePtr, &state, sizeof(state));
}
XXH_API void xxh64_reset(struct xxh64_state *statePtr, const uint64_t seed)
{
/* use a local state for memcpy() to avoid strict-aliasing warnings */
struct xxh64_state state;
__builtin_memset(&state, 0, sizeof(state));
state.v1 = seed + PRIME64_1 + PRIME64_2;
state.v2 = seed + PRIME64_2;
state.v3 = seed + 0;
state.v4 = seed - PRIME64_1;
__builtin_memcpy(statePtr, &state, sizeof(state));
}
XXH_API int xxh32_update(struct xxh32_state *state, const void *input, const size_t len)
{
const uint8_t *p = (const uint8_t *)input;
const uint8_t *const b_end = p + len;
if (input == NULL)
return -EINVAL;
state->total_len_32 += (uint32_t)len;
state->large_len |= (len >= 16) | (state->total_len_32 >= 16);
if (state->memsize + len < 16) { /* fill in tmp buffer */
__builtin_memcpy((uint8_t *)(state->mem32) + state->memsize, input, len);
state->memsize += (uint32_t)len;
return 0;
}
if (state->memsize) { /* some data left from previous update */
const uint32_t *p32 = state->mem32;
__builtin_memcpy((uint8_t *)(state->mem32) + state->memsize, input,
16 - state->memsize);
state->v1 = xxh32_round(state->v1, get_unaligned_le32(p32));
p32++;
state->v2 = xxh32_round(state->v2, get_unaligned_le32(p32));
p32++;
state->v3 = xxh32_round(state->v3, get_unaligned_le32(p32));
p32++;
state->v4 = xxh32_round(state->v4, get_unaligned_le32(p32));
p32++;
p += 16-state->memsize;
state->memsize = 0;
}
if (p <= b_end - 16) {
const uint8_t *const limit = b_end - 16;
uint32_t v1 = state->v1;
uint32_t v2 = state->v2;
uint32_t v3 = state->v3;
uint32_t v4 = state->v4;
do {
v1 = xxh32_round(v1, get_unaligned_le32(p));
p += 4;
v2 = xxh32_round(v2, get_unaligned_le32(p));
p += 4;
v3 = xxh32_round(v3, get_unaligned_le32(p));
p += 4;
v4 = xxh32_round(v4, get_unaligned_le32(p));
p += 4;
} while (p <= limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < b_end) {
__builtin_memcpy(state->mem32, p, (size_t)(b_end-p));
state->memsize = (uint32_t)(b_end-p);
}
return 0;
}
XXH_API uint32_t xxh32_digest(const struct xxh32_state *state)
{
const uint8_t *p = (const uint8_t *)state->mem32;
const uint8_t *const b_end = (const uint8_t *)(state->mem32) +
state->memsize;
uint32_t h32;
if (state->large_len) {
h32 = xxh_rotl32(state->v1, 1) + xxh_rotl32(state->v2, 7) +
xxh_rotl32(state->v3, 12) + xxh_rotl32(state->v4, 18);
} else {
h32 = state->v3 /* == seed */ + PRIME32_5;
}
h32 += state->total_len_32;
while (p + 4 <= b_end) {
h32 += get_unaligned_le32(p) * PRIME32_3;
h32 = xxh_rotl32(h32, 17) * PRIME32_4;
p += 4;
}
while (p < b_end) {
h32 += (*p) * PRIME32_5;
h32 = xxh_rotl32(h32, 11) * PRIME32_1;
p++;
}
h32 ^= h32 >> 15;
h32 *= PRIME32_2;
h32 ^= h32 >> 13;
h32 *= PRIME32_3;
h32 ^= h32 >> 16;
return h32;
}
XXH_API int xxh64_update(struct xxh64_state *state, const void *input, const size_t len)
{
const uint8_t *p = (const uint8_t *)input;
const uint8_t *const b_end = p + len;
if (input == NULL)
return -EINVAL;
state->total_len += len;
if (state->memsize + len < 32) { /* fill in tmp buffer */
__builtin_memcpy(((uint8_t *)state->mem64) + state->memsize, input, len);
state->memsize += (uint32_t)len;
return 0;
}
if (state->memsize) { /* tmp buffer is full */
uint64_t *p64 = state->mem64;
__builtin_memcpy(((uint8_t *)p64) + state->memsize, input,
32 - state->memsize);
state->v1 = xxh64_round(state->v1, get_unaligned_le64(p64));
p64++;
state->v2 = xxh64_round(state->v2, get_unaligned_le64(p64));
p64++;
state->v3 = xxh64_round(state->v3, get_unaligned_le64(p64));
p64++;
state->v4 = xxh64_round(state->v4, get_unaligned_le64(p64));
p += 32 - state->memsize;
state->memsize = 0;
}
if (p + 32 <= b_end) {
const uint8_t *const limit = b_end - 32;
uint64_t v1 = state->v1;
uint64_t v2 = state->v2;
uint64_t v3 = state->v3;
uint64_t v4 = state->v4;
do {
v1 = xxh64_round(v1, get_unaligned_le64(p));
p += 8;
v2 = xxh64_round(v2, get_unaligned_le64(p));
p += 8;
v3 = xxh64_round(v3, get_unaligned_le64(p));
p += 8;
v4 = xxh64_round(v4, get_unaligned_le64(p));
p += 8;
} while (p <= limit);
state->v1 = v1;
state->v2 = v2;
state->v3 = v3;
state->v4 = v4;
}
if (p < b_end) {
__builtin_memcpy(state->mem64, p, (size_t)(b_end-p));
state->memsize = (uint32_t)(b_end - p);
}
return 0;
}
XXH_API uint64_t xxh64_digest(const struct xxh64_state *state)
{
const uint8_t *p = (const uint8_t *)state->mem64;
const uint8_t *const b_end = (const uint8_t *)state->mem64 +
state->memsize;
uint64_t h64;
if (state->total_len >= 32) {
const uint64_t v1 = state->v1;
const uint64_t v2 = state->v2;
const uint64_t v3 = state->v3;
const uint64_t v4 = state->v4;
h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
h64 = xxh64_merge_round(h64, v1);
h64 = xxh64_merge_round(h64, v2);
h64 = xxh64_merge_round(h64, v3);
h64 = xxh64_merge_round(h64, v4);
} else {
h64 = state->v3 + PRIME64_5;
}
h64 += (uint64_t)state->total_len;
while (p + 8 <= b_end) {
const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
h64 ^= k1;
h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
p += 8;
}
if (p + 4 <= b_end) {
h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
p += 4;
}
while (p < b_end) {
h64 ^= (*p) * PRIME64_5;
h64 = xxh_rotl64(h64, 11) * PRIME64_1;
p++;
}
h64 ^= h64 >> 33;
h64 *= PRIME64_2;
h64 ^= h64 >> 29;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
#endif /* XXHASH_H */