iw5-mod/deps/zstd/lib/compress/zstd_ldm.c

725 lines
28 KiB
C

/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_ldm.h"
#include "../common/debug.h"
#include "../common/xxhash.h"
#include "zstd_fast.h" /* ZSTD_fillHashTable() */
#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
#include "zstd_ldm_geartab.h"
#define LDM_BUCKET_SIZE_LOG 3
#define LDM_MIN_MATCH_LENGTH 64
#define LDM_HASH_RLOG 7
typedef struct {
U64 rolling;
U64 stopMask;
} ldmRollingHashState_t;
/** ZSTD_ldm_gear_init():
*
* Initializes the rolling hash state such that it will honor the
* settings in params. */
static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
{
unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
unsigned hashRateLog = params->hashRateLog;
state->rolling = ~(U32)0;
/* The choice of the splitting criterion is subject to two conditions:
* 1. it has to trigger on average every 2^(hashRateLog) bytes;
* 2. ideally, it has to depend on a window of minMatchLength bytes.
*
* In the gear hash algorithm, bit n depends on the last n bytes;
* so in order to obtain a good quality splitting criterion it is
* preferable to use bits with high weight.
*
* To match condition 1 we use a mask with hashRateLog bits set
* and, because of the previous remark, we make sure these bits
* have the highest possible weight while still respecting
* condition 2.
*/
if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
} else {
/* In this degenerate case we simply honor the hash rate. */
state->stopMask = ((U64)1 << hashRateLog) - 1;
}
}
/** ZSTD_ldm_gear_reset()
* Feeds [data, data + minMatchLength) into the hash without registering any
* splits. This effectively resets the hash state. This is used when skipping
* over data, either at the beginning of a block, or skipping sections.
*/
static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state,
BYTE const* data, size_t minMatchLength)
{
U64 hash = state->rolling;
size_t n = 0;
#define GEAR_ITER_ONCE() do { \
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
n += 1; \
} while (0)
while (n + 3 < minMatchLength) {
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
}
while (n < minMatchLength) {
GEAR_ITER_ONCE();
}
#undef GEAR_ITER_ONCE
}
/** ZSTD_ldm_gear_feed():
*
* Registers in the splits array all the split points found in the first
* size bytes following the data pointer. This function terminates when
* either all the data has been processed or LDM_BATCH_SIZE splits are
* present in the splits array.
*
* Precondition: The splits array must not be full.
* Returns: The number of bytes processed. */
static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
BYTE const* data, size_t size,
size_t* splits, unsigned* numSplits)
{
size_t n;
U64 hash, mask;
hash = state->rolling;
mask = state->stopMask;
n = 0;
#define GEAR_ITER_ONCE() do { \
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
n += 1; \
if (UNLIKELY((hash & mask) == 0)) { \
splits[*numSplits] = n; \
*numSplits += 1; \
if (*numSplits == LDM_BATCH_SIZE) \
goto done; \
} \
} while (0)
while (n + 3 < size) {
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
}
while (n < size) {
GEAR_ITER_ONCE();
}
#undef GEAR_ITER_ONCE
done:
state->rolling = hash;
return n;
}
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams)
{
params->windowLog = cParams->windowLog;
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
if (params->hashLog == 0) {
params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
}
if (params->hashRateLog == 0) {
params->hashRateLog = params->windowLog < params->hashLog
? 0
: params->windowLog - params->hashLog;
}
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
}
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
size_t const ldmHSize = ((size_t)1) << params.hashLog;
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
+ ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
return params.enableLdm == ZSTD_ps_enable ? totalSize : 0;
}
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{
return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0;
}
/** ZSTD_ldm_getBucket() :
* Returns a pointer to the start of the bucket associated with hash. */
static ldmEntry_t* ZSTD_ldm_getBucket(
ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
{
return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
}
/** ZSTD_ldm_insertEntry() :
* Insert the entry with corresponding hash into the hash table */
static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
size_t const hash, const ldmEntry_t entry,
ldmParams_t const ldmParams)
{
BYTE* const pOffset = ldmState->bucketOffsets + hash;
unsigned const offset = *pOffset;
*(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
*pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));
}
/** ZSTD_ldm_countBackwardsMatch() :
* Returns the number of bytes that match backwards before pIn and pMatch.
*
* We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
static size_t ZSTD_ldm_countBackwardsMatch(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase)
{
size_t matchLength = 0;
while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
pIn--;
pMatch--;
matchLength++;
}
return matchLength;
}
/** ZSTD_ldm_countBackwardsMatch_2segments() :
* Returns the number of bytes that match backwards from pMatch,
* even with the backwards match spanning 2 different segments.
*
* On reaching `pMatchBase`, start counting from mEnd */
static size_t ZSTD_ldm_countBackwardsMatch_2segments(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase,
const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
{
size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
/* If backwards match is entirely in the extDict or prefix, immediately return */
return matchLength;
}
DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
DEBUGLOG(7, "final backwards match length = %zu", matchLength);
return matchLength;
}
/** ZSTD_ldm_fillFastTables() :
*
* Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
* This is similar to ZSTD_loadDictionaryContent.
*
* The tables for the other strategies are filled within their
* block compressors. */
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
void const* end)
{
const BYTE* const iend = (const BYTE*)end;
switch(ms->cParams.strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
break;
case ZSTD_dfast:
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
return 0;
}
void ZSTD_ldm_fillHashTable(
ldmState_t* ldmState, const BYTE* ip,
const BYTE* iend, ldmParams_t const* params)
{
U32 const minMatchLength = params->minMatchLength;
U32 const hBits = params->hashLog - params->bucketSizeLog;
BYTE const* const base = ldmState->window.base;
BYTE const* const istart = ip;
ldmRollingHashState_t hashState;
size_t* const splits = ldmState->splitIndices;
unsigned numSplits;
DEBUGLOG(5, "ZSTD_ldm_fillHashTable");
ZSTD_ldm_gear_init(&hashState, params);
while (ip < iend) {
size_t hashed;
unsigned n;
numSplits = 0;
hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);
for (n = 0; n < numSplits; n++) {
if (ip + splits[n] >= istart + minMatchLength) {
BYTE const* const split = ip + splits[n] - minMatchLength;
U64 const xxhash = XXH64(split, minMatchLength, 0);
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
ldmEntry_t entry;
entry.offset = (U32)(split - base);
entry.checksum = (U32)(xxhash >> 32);
ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
}
}
ip += hashed;
}
}
/** ZSTD_ldm_limitTableUpdate() :
*
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
* if it is far way
* (after a long match, only update tables a limited amount). */
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
{
U32 const curr = (U32)(anchor - ms->window.base);
if (curr > ms->nextToUpdate + 1024) {
ms->nextToUpdate =
curr - MIN(512, curr - ms->nextToUpdate - 1024);
}
}
static size_t ZSTD_ldm_generateSequences_internal(
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
ldmParams_t const* params, void const* src, size_t srcSize)
{
/* LDM parameters */
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
U32 const minMatchLength = params->minMatchLength;
U32 const entsPerBucket = 1U << params->bucketSizeLog;
U32 const hBits = params->hashLog - params->bucketSizeLog;
/* Prefix and extDict parameters */
U32 const dictLimit = ldmState->window.dictLimit;
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
BYTE const* const base = ldmState->window.base;
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
BYTE const* const lowPrefixPtr = base + dictLimit;
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
BYTE const* const ilimit = iend - HASH_READ_SIZE;
/* Input positions */
BYTE const* anchor = istart;
BYTE const* ip = istart;
/* Rolling hash state */
ldmRollingHashState_t hashState;
/* Arrays for staged-processing */
size_t* const splits = ldmState->splitIndices;
ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
unsigned numSplits;
if (srcSize < minMatchLength)
return iend - anchor;
/* Initialize the rolling hash state with the first minMatchLength bytes */
ZSTD_ldm_gear_init(&hashState, params);
ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength);
ip += minMatchLength;
while (ip < ilimit) {
size_t hashed;
unsigned n;
numSplits = 0;
hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
splits, &numSplits);
for (n = 0; n < numSplits; n++) {
BYTE const* const split = ip + splits[n] - minMatchLength;
U64 const xxhash = XXH64(split, minMatchLength, 0);
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
candidates[n].split = split;
candidates[n].hash = hash;
candidates[n].checksum = (U32)(xxhash >> 32);
candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
PREFETCH_L1(candidates[n].bucket);
}
for (n = 0; n < numSplits; n++) {
size_t forwardMatchLength = 0, backwardMatchLength = 0,
bestMatchLength = 0, mLength;
U32 offset;
BYTE const* const split = candidates[n].split;
U32 const checksum = candidates[n].checksum;
U32 const hash = candidates[n].hash;
ldmEntry_t* const bucket = candidates[n].bucket;
ldmEntry_t const* cur;
ldmEntry_t const* bestEntry = NULL;
ldmEntry_t newEntry;
newEntry.offset = (U32)(split - base);
newEntry.checksum = checksum;
/* If a split point would generate a sequence overlapping with
* the previous one, we merely register it in the hash table and
* move on */
if (split < anchor) {
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
continue;
}
for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
size_t curForwardMatchLength, curBackwardMatchLength,
curTotalMatchLength;
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
continue;
}
if (extDict) {
BYTE const* const curMatchBase =
cur->offset < dictLimit ? dictBase : base;
BYTE const* const pMatch = curMatchBase + cur->offset;
BYTE const* const matchEnd =
cur->offset < dictLimit ? dictEnd : iend;
BYTE const* const lowMatchPtr =
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
curForwardMatchLength =
ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
} else { /* !extDict */
BYTE const* const pMatch = base + cur->offset;
curForwardMatchLength = ZSTD_count(split, pMatch, iend);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
}
curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;
if (curTotalMatchLength > bestMatchLength) {
bestMatchLength = curTotalMatchLength;
forwardMatchLength = curForwardMatchLength;
backwardMatchLength = curBackwardMatchLength;
bestEntry = cur;
}
}
/* No match found -- insert an entry into the hash table
* and process the next candidate match */
if (bestEntry == NULL) {
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
continue;
}
/* Match found */
offset = (U32)(split - base) - bestEntry->offset;
mLength = forwardMatchLength + backwardMatchLength;
{
rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
/* Out of sequence storage */
if (rawSeqStore->size == rawSeqStore->capacity)
return ERROR(dstSize_tooSmall);
seq->litLength = (U32)(split - backwardMatchLength - anchor);
seq->matchLength = (U32)mLength;
seq->offset = offset;
rawSeqStore->size++;
}
/* Insert the current entry into the hash table --- it must be
* done after the previous block to avoid clobbering bestEntry */
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
anchor = split + forwardMatchLength;
/* If we find a match that ends after the data that we've hashed
* then we have a repeating, overlapping, pattern. E.g. all zeros.
* If one repetition of the pattern matches our `stopMask` then all
* repetitions will. We don't need to insert them all into out table,
* only the first one. So skip over overlapping matches.
* This is a major speed boost (20x) for compressing a single byte
* repeated, when that byte ends up in the table.
*/
if (anchor > ip + hashed) {
ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength);
/* Continue the outer loop at anchor (ip + hashed == anchor). */
ip = anchor - hashed;
break;
}
}
ip += hashed;
}
return iend - anchor;
}
/*! ZSTD_ldm_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u].offset < reducerValue) table[u].offset = 0;
else table[u].offset -= reducerValue;
}
}
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldmState, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize)
{
U32 const maxDist = 1U << params->windowLog;
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
size_t const kMaxChunkSize = 1 << 20;
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
size_t chunk;
size_t leftoverSize = 0;
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
/* Check that ZSTD_window_update() has been called for this chunk prior
* to passing it to this function.
*/
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
/* The input could be very large (in zstdmt), so it must be broken up into
* chunks to enforce the maximum distance and handle overflow correction.
*/
assert(sequences->pos <= sequences->size);
assert(sequences->size <= sequences->capacity);
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
size_t const remaining = (size_t)(iend - chunkStart);
BYTE const *const chunkEnd =
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
size_t const chunkSize = chunkEnd - chunkStart;
size_t newLeftoverSize;
size_t const prevSize = sequences->size;
assert(chunkStart < iend);
/* 1. Perform overflow correction if necessary. */
if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) {
U32 const ldmHSize = 1U << params->hashLog;
U32 const correction = ZSTD_window_correctOverflow(
&ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
/* invalidate dictionaries on overflow correction */
ldmState->loadedDictEnd = 0;
}
/* 2. We enforce the maximum offset allowed.
*
* kMaxChunkSize should be small enough that we don't lose too much of
* the window through early invalidation.
* TODO: * Test the chunk size.
* * Try invalidation after the sequence generation and test the
* offset against maxDist directly.
*
* NOTE: Because of dictionaries + sequence splitting we MUST make sure
* that any offset used is valid at the END of the sequence, since it may
* be split into two sequences. This condition holds when using
* ZSTD_window_enforceMaxDist(), but if we move to checking offsets
* against maxDist directly, we'll have to carefully handle that case.
*/
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
ldmState, sequences, params, chunkStart, chunkSize);
if (ZSTD_isError(newLeftoverSize))
return newLeftoverSize;
/* 4. We add the leftover literals from previous iterations to the first
* newly generated sequence, or add the `newLeftoverSize` if none are
* generated.
*/
/* Prepend the leftover literals from the last call */
if (prevSize < sequences->size) {
sequences->seq[prevSize].litLength += (U32)leftoverSize;
leftoverSize = newLeftoverSize;
} else {
assert(newLeftoverSize == chunkSize);
leftoverSize += chunkSize;
}
}
return 0;
}
void
ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch)
{
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
if (srcSize <= seq->litLength) {
/* Skip past srcSize literals */
seq->litLength -= (U32)srcSize;
return;
}
srcSize -= seq->litLength;
seq->litLength = 0;
if (srcSize < seq->matchLength) {
/* Skip past the first srcSize of the match */
seq->matchLength -= (U32)srcSize;
if (seq->matchLength < minMatch) {
/* The match is too short, omit it */
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
seq[1].litLength += seq[0].matchLength;
}
rawSeqStore->pos++;
}
return;
}
srcSize -= seq->matchLength;
seq->matchLength = 0;
rawSeqStore->pos++;
}
}
/**
* If the sequence length is longer than remaining then the sequence is split
* between this block and the next.
*
* Returns the current sequence to handle, or if the rest of the block should
* be literals, it returns a sequence with offset == 0.
*/
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
U32 const remaining, U32 const minMatch)
{
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
assert(sequence.offset > 0);
/* Likely: No partial sequence */
if (remaining >= sequence.litLength + sequence.matchLength) {
rawSeqStore->pos++;
return sequence;
}
/* Cut the sequence short (offset == 0 ==> rest is literals). */
if (remaining <= sequence.litLength) {
sequence.offset = 0;
} else if (remaining < sequence.litLength + sequence.matchLength) {
sequence.matchLength = remaining - sequence.litLength;
if (sequence.matchLength < minMatch) {
sequence.offset = 0;
}
}
/* Skip past `remaining` bytes for the future sequences. */
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
return sequence;
}
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
while (currPos && rawSeqStore->pos < rawSeqStore->size) {
rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
if (currPos >= currSeq.litLength + currSeq.matchLength) {
currPos -= currSeq.litLength + currSeq.matchLength;
rawSeqStore->pos++;
} else {
rawSeqStore->posInSequence = currPos;
break;
}
}
if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
rawSeqStore->posInSequence = 0;
}
}
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
unsigned const minMatch = cParams->minMatch;
ZSTD_blockCompressor const blockCompressor =
ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms));
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
/* Input positions */
BYTE const* ip = istart;
DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
/* If using opt parser, use LDMs only as candidates rather than always accepting them */
if (cParams->strategy >= ZSTD_btopt) {
size_t lastLLSize;
ms->ldmSeqStore = rawSeqStore;
lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
return lastLLSize;
}
assert(rawSeqStore->pos <= rawSeqStore->size);
assert(rawSeqStore->size <= rawSeqStore->capacity);
/* Loop through each sequence and apply the block compressor to the literals */
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
/* maybeSplitSequence updates rawSeqStore->pos */
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
(U32)(iend - ip), minMatch);
int i;
/* End signal */
if (sequence.offset == 0)
break;
assert(ip + sequence.litLength + sequence.matchLength <= iend);
/* Fill tables for block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Run the block compressor */
DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
{
size_t const newLitLength =
blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
ip += sequence.litLength;
/* Update the repcodes */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
rep[i] = rep[i-1];
rep[0] = sequence.offset;
/* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
OFFSET_TO_OFFBASE(sequence.offset),
sequence.matchLength);
ip += sequence.matchLength;
}
}
/* Fill the tables for the block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Compress the last literals */
return blockCompressor(ms, seqStore, rep, ip, iend - ip);
}