1403 lines
46 KiB
C
1403 lines
46 KiB
C
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2014 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "message.h"
|
|
|
|
#include "convert.h"
|
|
#include "defs.h"
|
|
#include "map.h"
|
|
#include "protobuf.h"
|
|
#include "repeated_field.h"
|
|
|
|
static VALUE cParseError = Qnil;
|
|
static ID descriptor_instancevar_interned;
|
|
|
|
static VALUE initialize_rb_class_with_no_args(VALUE klass) {
|
|
return rb_funcall(klass, rb_intern("new"), 0);
|
|
}
|
|
|
|
VALUE MessageOrEnum_GetDescriptor(VALUE klass) {
|
|
return rb_ivar_get(klass, descriptor_instancevar_interned);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Class/module creation from msgdefs and enumdefs, respectively.
|
|
// -----------------------------------------------------------------------------
|
|
|
|
typedef struct {
|
|
VALUE arena;
|
|
const upb_Message* msg; // Can get as mutable when non-frozen.
|
|
const upb_MessageDef*
|
|
msgdef; // kept alive by self.class.descriptor reference.
|
|
} Message;
|
|
|
|
static void Message_mark(void* _self) {
|
|
Message* self = (Message*)_self;
|
|
rb_gc_mark(self->arena);
|
|
}
|
|
|
|
static rb_data_type_t Message_type = {
|
|
"Message",
|
|
{Message_mark, RUBY_DEFAULT_FREE, NULL},
|
|
.flags = RUBY_TYPED_FREE_IMMEDIATELY,
|
|
};
|
|
|
|
static Message* ruby_to_Message(VALUE msg_rb) {
|
|
Message* msg;
|
|
TypedData_Get_Struct(msg_rb, Message, &Message_type, msg);
|
|
return msg;
|
|
}
|
|
|
|
static VALUE Message_alloc(VALUE klass) {
|
|
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
|
|
Message* msg = ALLOC(Message);
|
|
VALUE ret;
|
|
|
|
msg->msgdef = Descriptor_GetMsgDef(descriptor);
|
|
msg->arena = Qnil;
|
|
msg->msg = NULL;
|
|
|
|
ret = TypedData_Wrap_Struct(klass, &Message_type, msg);
|
|
rb_ivar_set(ret, descriptor_instancevar_interned, descriptor);
|
|
|
|
return ret;
|
|
}
|
|
|
|
const upb_Message* Message_Get(VALUE msg_rb, const upb_MessageDef** m) {
|
|
Message* msg = ruby_to_Message(msg_rb);
|
|
if (m) *m = msg->msgdef;
|
|
return msg->msg;
|
|
}
|
|
|
|
upb_Message* Message_GetMutable(VALUE msg_rb, const upb_MessageDef** m) {
|
|
rb_check_frozen(msg_rb);
|
|
return (upb_Message*)Message_Get(msg_rb, m);
|
|
}
|
|
|
|
void Message_InitPtr(VALUE self_, upb_Message* msg, VALUE arena) {
|
|
Message* self = ruby_to_Message(self_);
|
|
self->msg = msg;
|
|
self->arena = arena;
|
|
ObjectCache_Add(msg, self_);
|
|
}
|
|
|
|
VALUE Message_GetArena(VALUE msg_rb) {
|
|
Message* msg = ruby_to_Message(msg_rb);
|
|
return msg->arena;
|
|
}
|
|
|
|
void Message_CheckClass(VALUE klass) {
|
|
if (rb_get_alloc_func(klass) != &Message_alloc) {
|
|
rb_raise(rb_eArgError,
|
|
"Message class was not returned by the DescriptorPool.");
|
|
}
|
|
}
|
|
|
|
VALUE Message_GetRubyWrapper(upb_Message* msg, const upb_MessageDef* m,
|
|
VALUE arena) {
|
|
if (msg == NULL) return Qnil;
|
|
|
|
VALUE val = ObjectCache_Get(msg);
|
|
|
|
if (val == Qnil) {
|
|
VALUE klass = Descriptor_DefToClass(m);
|
|
val = Message_alloc(klass);
|
|
Message_InitPtr(val, msg, arena);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
void Message_PrintMessage(StringBuilder* b, const upb_Message* msg,
|
|
const upb_MessageDef* m) {
|
|
bool first = true;
|
|
int n = upb_MessageDef_FieldCount(m);
|
|
VALUE klass = Descriptor_DefToClass(m);
|
|
StringBuilder_Printf(b, "<%s: ", rb_class2name(klass));
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
const upb_FieldDef* field = upb_MessageDef_Field(m, i);
|
|
|
|
if (upb_FieldDef_HasPresence(field) && !upb_Message_Has(msg, field)) {
|
|
continue;
|
|
}
|
|
|
|
if (!first) {
|
|
StringBuilder_Printf(b, ", ");
|
|
} else {
|
|
first = false;
|
|
}
|
|
|
|
upb_MessageValue msgval = upb_Message_Get(msg, field);
|
|
|
|
StringBuilder_Printf(b, "%s: ", upb_FieldDef_Name(field));
|
|
|
|
if (upb_FieldDef_IsMap(field)) {
|
|
const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(field);
|
|
const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1);
|
|
const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2);
|
|
TypeInfo val_info = TypeInfo_get(val_f);
|
|
Map_Inspect(b, msgval.map_val, upb_FieldDef_CType(key_f), val_info);
|
|
} else if (upb_FieldDef_IsRepeated(field)) {
|
|
RepeatedField_Inspect(b, msgval.array_val, TypeInfo_get(field));
|
|
} else {
|
|
StringBuilder_PrintMsgval(b, msgval, TypeInfo_get(field));
|
|
}
|
|
}
|
|
|
|
StringBuilder_Printf(b, ">");
|
|
}
|
|
|
|
// Helper functions for #method_missing ////////////////////////////////////////
|
|
|
|
enum {
|
|
METHOD_UNKNOWN = 0,
|
|
METHOD_GETTER = 1,
|
|
METHOD_SETTER = 2,
|
|
METHOD_CLEAR = 3,
|
|
METHOD_PRESENCE = 4,
|
|
METHOD_ENUM_GETTER = 5,
|
|
METHOD_WRAPPER_GETTER = 6,
|
|
METHOD_WRAPPER_SETTER = 7
|
|
};
|
|
|
|
// Check if the field is a well known wrapper type
|
|
static bool IsWrapper(const upb_MessageDef* m) {
|
|
if (!m) return false;
|
|
switch (upb_MessageDef_WellKnownType(m)) {
|
|
case kUpb_WellKnown_DoubleValue:
|
|
case kUpb_WellKnown_FloatValue:
|
|
case kUpb_WellKnown_Int64Value:
|
|
case kUpb_WellKnown_UInt64Value:
|
|
case kUpb_WellKnown_Int32Value:
|
|
case kUpb_WellKnown_UInt32Value:
|
|
case kUpb_WellKnown_StringValue:
|
|
case kUpb_WellKnown_BytesValue:
|
|
case kUpb_WellKnown_BoolValue:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool IsFieldWrapper(const upb_FieldDef* f) {
|
|
return IsWrapper(upb_FieldDef_MessageSubDef(f));
|
|
}
|
|
|
|
static bool Match(const upb_MessageDef* m, const char* name,
|
|
const upb_FieldDef** f, const upb_OneofDef** o,
|
|
const char* prefix, const char* suffix) {
|
|
size_t sp = strlen(prefix);
|
|
size_t ss = strlen(suffix);
|
|
size_t sn = strlen(name);
|
|
|
|
if (sn <= sp + ss) return false;
|
|
|
|
if (memcmp(name, prefix, sp) != 0 ||
|
|
memcmp(name + sn - ss, suffix, ss) != 0) {
|
|
return false;
|
|
}
|
|
|
|
return upb_MessageDef_FindByNameWithSize(m, name + sp, sn - sp - ss, f, o);
|
|
}
|
|
|
|
static int extract_method_call(VALUE method_name, Message* self,
|
|
const upb_FieldDef** f, const upb_OneofDef** o) {
|
|
const upb_MessageDef* m = self->msgdef;
|
|
const char* name;
|
|
|
|
Check_Type(method_name, T_SYMBOL);
|
|
name = rb_id2name(SYM2ID(method_name));
|
|
|
|
if (Match(m, name, f, o, "", "")) return METHOD_GETTER;
|
|
if (Match(m, name, f, o, "", "=")) return METHOD_SETTER;
|
|
if (Match(m, name, f, o, "clear_", "")) return METHOD_CLEAR;
|
|
if (Match(m, name, f, o, "has_", "?") &&
|
|
(*o || (*f && upb_FieldDef_HasPresence(*f)))) {
|
|
// Disallow oneof hazzers for proto3.
|
|
// TODO(haberman): remove this test when we are enabling oneof hazzers for
|
|
// proto3.
|
|
if (*f && !upb_FieldDef_IsSubMessage(*f) &&
|
|
upb_FieldDef_RealContainingOneof(*f) &&
|
|
upb_MessageDef_Syntax(upb_FieldDef_ContainingType(*f)) !=
|
|
kUpb_Syntax_Proto2) {
|
|
return METHOD_UNKNOWN;
|
|
}
|
|
return METHOD_PRESENCE;
|
|
}
|
|
if (Match(m, name, f, o, "", "_as_value") && *f &&
|
|
!upb_FieldDef_IsRepeated(*f) && IsFieldWrapper(*f)) {
|
|
return METHOD_WRAPPER_GETTER;
|
|
}
|
|
if (Match(m, name, f, o, "", "_as_value=") && *f &&
|
|
!upb_FieldDef_IsRepeated(*f) && IsFieldWrapper(*f)) {
|
|
return METHOD_WRAPPER_SETTER;
|
|
}
|
|
if (Match(m, name, f, o, "", "_const") && *f &&
|
|
upb_FieldDef_CType(*f) == kUpb_CType_Enum) {
|
|
return METHOD_ENUM_GETTER;
|
|
}
|
|
|
|
return METHOD_UNKNOWN;
|
|
}
|
|
|
|
static VALUE Message_oneof_accessor(VALUE _self, const upb_OneofDef* o,
|
|
int accessor_type) {
|
|
Message* self = ruby_to_Message(_self);
|
|
const upb_FieldDef* oneof_field = upb_Message_WhichOneof(self->msg, o);
|
|
|
|
switch (accessor_type) {
|
|
case METHOD_PRESENCE:
|
|
return oneof_field == NULL ? Qfalse : Qtrue;
|
|
case METHOD_CLEAR:
|
|
if (oneof_field != NULL) {
|
|
upb_Message_ClearField(Message_GetMutable(_self, NULL), oneof_field);
|
|
}
|
|
return Qnil;
|
|
case METHOD_GETTER:
|
|
return oneof_field == NULL
|
|
? Qnil
|
|
: ID2SYM(rb_intern(upb_FieldDef_Name(oneof_field)));
|
|
case METHOD_SETTER:
|
|
rb_raise(rb_eRuntimeError, "Oneof accessors are read-only.");
|
|
}
|
|
rb_raise(rb_eRuntimeError, "Invalid access of oneof field.");
|
|
}
|
|
|
|
static void Message_setfield(upb_Message* msg, const upb_FieldDef* f, VALUE val,
|
|
upb_Arena* arena) {
|
|
upb_MessageValue msgval;
|
|
if (upb_FieldDef_IsMap(f)) {
|
|
msgval.map_val = Map_GetUpbMap(val, f, arena);
|
|
} else if (upb_FieldDef_IsRepeated(f)) {
|
|
msgval.array_val = RepeatedField_GetUpbArray(val, f, arena);
|
|
} else {
|
|
if (val == Qnil &&
|
|
(upb_FieldDef_IsSubMessage(f) || upb_FieldDef_RealContainingOneof(f))) {
|
|
upb_Message_ClearField(msg, f);
|
|
return;
|
|
}
|
|
msgval =
|
|
Convert_RubyToUpb(val, upb_FieldDef_Name(f), TypeInfo_get(f), arena);
|
|
}
|
|
upb_Message_Set(msg, f, msgval, arena);
|
|
}
|
|
|
|
VALUE Message_getfield(VALUE _self, const upb_FieldDef* f) {
|
|
Message* self = ruby_to_Message(_self);
|
|
// This is a special-case: upb_Message_Mutable() for map & array are logically
|
|
// const (they will not change what is serialized) but physically
|
|
// non-const, as they do allocate a repeated field or map. The logical
|
|
// constness means it's ok to do even if the message is frozen.
|
|
upb_Message* msg = (upb_Message*)self->msg;
|
|
upb_Arena* arena = Arena_get(self->arena);
|
|
if (upb_FieldDef_IsMap(f)) {
|
|
upb_Map* map = upb_Message_Mutable(msg, f, arena).map;
|
|
const upb_FieldDef* key_f = map_field_key(f);
|
|
const upb_FieldDef* val_f = map_field_value(f);
|
|
upb_CType key_type = upb_FieldDef_CType(key_f);
|
|
TypeInfo value_type_info = TypeInfo_get(val_f);
|
|
return Map_GetRubyWrapper(map, key_type, value_type_info, self->arena);
|
|
} else if (upb_FieldDef_IsRepeated(f)) {
|
|
upb_Array* arr = upb_Message_Mutable(msg, f, arena).array;
|
|
return RepeatedField_GetRubyWrapper(arr, TypeInfo_get(f), self->arena);
|
|
} else if (upb_FieldDef_IsSubMessage(f)) {
|
|
if (!upb_Message_Has(self->msg, f)) return Qnil;
|
|
upb_Message* submsg = upb_Message_Mutable(msg, f, arena).msg;
|
|
const upb_MessageDef* m = upb_FieldDef_MessageSubDef(f);
|
|
return Message_GetRubyWrapper(submsg, m, self->arena);
|
|
} else {
|
|
upb_MessageValue msgval = upb_Message_Get(self->msg, f);
|
|
return Convert_UpbToRuby(msgval, TypeInfo_get(f), self->arena);
|
|
}
|
|
}
|
|
|
|
static VALUE Message_field_accessor(VALUE _self, const upb_FieldDef* f,
|
|
int accessor_type, int argc, VALUE* argv) {
|
|
upb_Arena* arena = Arena_get(Message_GetArena(_self));
|
|
|
|
switch (accessor_type) {
|
|
case METHOD_SETTER:
|
|
Message_setfield(Message_GetMutable(_self, NULL), f, argv[1], arena);
|
|
return Qnil;
|
|
case METHOD_CLEAR:
|
|
upb_Message_ClearField(Message_GetMutable(_self, NULL), f);
|
|
return Qnil;
|
|
case METHOD_PRESENCE:
|
|
if (!upb_FieldDef_HasPresence(f)) {
|
|
rb_raise(rb_eRuntimeError, "Field does not have presence.");
|
|
}
|
|
return upb_Message_Has(Message_Get(_self, NULL), f);
|
|
case METHOD_WRAPPER_GETTER: {
|
|
Message* self = ruby_to_Message(_self);
|
|
if (upb_Message_Has(self->msg, f)) {
|
|
PBRUBY_ASSERT(upb_FieldDef_IsSubMessage(f) &&
|
|
!upb_FieldDef_IsRepeated(f));
|
|
upb_MessageValue wrapper = upb_Message_Get(self->msg, f);
|
|
const upb_MessageDef* wrapper_m = upb_FieldDef_MessageSubDef(f);
|
|
const upb_FieldDef* value_f =
|
|
upb_MessageDef_FindFieldByNumber(wrapper_m, 1);
|
|
upb_MessageValue value = upb_Message_Get(wrapper.msg_val, value_f);
|
|
return Convert_UpbToRuby(value, TypeInfo_get(value_f), self->arena);
|
|
} else {
|
|
return Qnil;
|
|
}
|
|
}
|
|
case METHOD_WRAPPER_SETTER: {
|
|
upb_Message* msg = Message_GetMutable(_self, NULL);
|
|
if (argv[1] == Qnil) {
|
|
upb_Message_ClearField(msg, f);
|
|
} else {
|
|
const upb_FieldDef* val_f =
|
|
upb_MessageDef_FindFieldByNumber(upb_FieldDef_MessageSubDef(f), 1);
|
|
upb_MessageValue msgval = Convert_RubyToUpb(
|
|
argv[1], upb_FieldDef_Name(f), TypeInfo_get(val_f), arena);
|
|
upb_Message* wrapper = upb_Message_Mutable(msg, f, arena).msg;
|
|
upb_Message_Set(wrapper, val_f, msgval, arena);
|
|
}
|
|
return Qnil;
|
|
}
|
|
case METHOD_ENUM_GETTER: {
|
|
upb_MessageValue msgval = upb_Message_Get(Message_Get(_self, NULL), f);
|
|
|
|
if (upb_FieldDef_Label(f) == kUpb_Label_Repeated) {
|
|
// Map repeated fields to a new type with ints
|
|
VALUE arr = rb_ary_new();
|
|
size_t i, n = upb_Array_Size(msgval.array_val);
|
|
for (i = 0; i < n; i++) {
|
|
upb_MessageValue elem = upb_Array_Get(msgval.array_val, i);
|
|
rb_ary_push(arr, INT2NUM(elem.int32_val));
|
|
}
|
|
return arr;
|
|
} else {
|
|
return INT2NUM(msgval.int32_val);
|
|
}
|
|
}
|
|
case METHOD_GETTER:
|
|
return Message_getfield(_self, f);
|
|
default:
|
|
rb_raise(rb_eRuntimeError, "Internal error, no such accessor: %d",
|
|
accessor_type);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.method_missing(*args)
|
|
*
|
|
* Provides accessors and setters and methods to clear and check for presence of
|
|
* message fields according to their field names.
|
|
*
|
|
* For any field whose name does not conflict with a built-in method, an
|
|
* accessor is provided with the same name as the field, and a setter is
|
|
* provided with the name of the field plus the '=' suffix. Thus, given a
|
|
* message instance 'msg' with field 'foo', the following code is valid:
|
|
*
|
|
* msg.foo = 42
|
|
* puts msg.foo
|
|
*
|
|
* This method also provides read-only accessors for oneofs. If a oneof exists
|
|
* with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to
|
|
* the name of the field in that oneof that is currently set, or nil if none.
|
|
*
|
|
* It also provides methods of the form 'clear_fieldname' to clear the value
|
|
* of the field 'fieldname'. For basic data types, this will set the default
|
|
* value of the field.
|
|
*
|
|
* Additionally, it provides methods of the form 'has_fieldname?', which returns
|
|
* true if the field 'fieldname' is set in the message object, else false. For
|
|
* 'proto3' syntax, calling this for a basic type field will result in an error.
|
|
*/
|
|
static VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
const upb_OneofDef* o;
|
|
const upb_FieldDef* f;
|
|
int accessor_type;
|
|
|
|
if (argc < 1) {
|
|
rb_raise(rb_eArgError, "Expected method name as first argument.");
|
|
}
|
|
|
|
accessor_type = extract_method_call(argv[0], self, &f, &o);
|
|
|
|
if (accessor_type == METHOD_UNKNOWN) return rb_call_super(argc, argv);
|
|
|
|
// Validate argument count.
|
|
switch (accessor_type) {
|
|
case METHOD_SETTER:
|
|
case METHOD_WRAPPER_SETTER:
|
|
if (argc != 2) {
|
|
rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc);
|
|
}
|
|
rb_check_frozen(_self);
|
|
break;
|
|
default:
|
|
if (argc != 1) {
|
|
rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Dispatch accessor.
|
|
if (o != NULL) {
|
|
return Message_oneof_accessor(_self, o, accessor_type);
|
|
} else {
|
|
return Message_field_accessor(_self, f, accessor_type, argc, argv);
|
|
}
|
|
}
|
|
|
|
static VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
const upb_OneofDef* o;
|
|
const upb_FieldDef* f;
|
|
int accessor_type;
|
|
|
|
if (argc < 1) {
|
|
rb_raise(rb_eArgError, "Expected method name as first argument.");
|
|
}
|
|
|
|
accessor_type = extract_method_call(argv[0], self, &f, &o);
|
|
|
|
if (accessor_type == METHOD_UNKNOWN) {
|
|
return rb_call_super(argc, argv);
|
|
} else if (o != NULL) {
|
|
return accessor_type == METHOD_SETTER ? Qfalse : Qtrue;
|
|
} else {
|
|
return Qtrue;
|
|
}
|
|
}
|
|
|
|
void Message_InitFromValue(upb_Message* msg, const upb_MessageDef* m, VALUE val,
|
|
upb_Arena* arena);
|
|
|
|
typedef struct {
|
|
upb_Map* map;
|
|
TypeInfo key_type;
|
|
TypeInfo val_type;
|
|
upb_Arena* arena;
|
|
} MapInit;
|
|
|
|
static int Map_initialize_kwarg(VALUE key, VALUE val, VALUE _self) {
|
|
MapInit* map_init = (MapInit*)_self;
|
|
upb_MessageValue k, v;
|
|
k = Convert_RubyToUpb(key, "", map_init->key_type, NULL);
|
|
|
|
if (map_init->val_type.type == kUpb_CType_Message && TYPE(val) == T_HASH) {
|
|
upb_Message* msg =
|
|
upb_Message_New(map_init->val_type.def.msgdef, map_init->arena);
|
|
Message_InitFromValue(msg, map_init->val_type.def.msgdef, val,
|
|
map_init->arena);
|
|
v.msg_val = msg;
|
|
} else {
|
|
v = Convert_RubyToUpb(val, "", map_init->val_type, map_init->arena);
|
|
}
|
|
upb_Map_Set(map_init->map, k, v, map_init->arena);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
static void Map_InitFromValue(upb_Map* map, const upb_FieldDef* f, VALUE val,
|
|
upb_Arena* arena) {
|
|
const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(f);
|
|
const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1);
|
|
const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2);
|
|
if (TYPE(val) != T_HASH) {
|
|
rb_raise(rb_eArgError,
|
|
"Expected Hash object as initializer value for map field '%s' "
|
|
"(given %s).",
|
|
upb_FieldDef_Name(f), rb_class2name(CLASS_OF(val)));
|
|
}
|
|
MapInit map_init = {map, TypeInfo_get(key_f), TypeInfo_get(val_f), arena};
|
|
rb_hash_foreach(val, Map_initialize_kwarg, (VALUE)&map_init);
|
|
}
|
|
|
|
static upb_MessageValue MessageValue_FromValue(VALUE val, TypeInfo info,
|
|
upb_Arena* arena) {
|
|
if (info.type == kUpb_CType_Message) {
|
|
upb_MessageValue msgval;
|
|
upb_Message* msg = upb_Message_New(info.def.msgdef, arena);
|
|
Message_InitFromValue(msg, info.def.msgdef, val, arena);
|
|
msgval.msg_val = msg;
|
|
return msgval;
|
|
} else {
|
|
return Convert_RubyToUpb(val, "", info, arena);
|
|
}
|
|
}
|
|
|
|
static void RepeatedField_InitFromValue(upb_Array* arr, const upb_FieldDef* f,
|
|
VALUE val, upb_Arena* arena) {
|
|
TypeInfo type_info = TypeInfo_get(f);
|
|
|
|
if (TYPE(val) != T_ARRAY) {
|
|
rb_raise(rb_eArgError,
|
|
"Expected array as initializer value for repeated field '%s' "
|
|
"(given %s).",
|
|
upb_FieldDef_Name(f), rb_class2name(CLASS_OF(val)));
|
|
}
|
|
|
|
for (int i = 0; i < RARRAY_LEN(val); i++) {
|
|
VALUE entry = rb_ary_entry(val, i);
|
|
upb_MessageValue msgval;
|
|
if (upb_FieldDef_IsSubMessage(f) && TYPE(entry) == T_HASH) {
|
|
msgval = MessageValue_FromValue(entry, type_info, arena);
|
|
} else {
|
|
msgval = Convert_RubyToUpb(entry, upb_FieldDef_Name(f), type_info, arena);
|
|
}
|
|
upb_Array_Append(arr, msgval, arena);
|
|
}
|
|
}
|
|
|
|
static void Message_InitFieldFromValue(upb_Message* msg, const upb_FieldDef* f,
|
|
VALUE val, upb_Arena* arena) {
|
|
if (TYPE(val) == T_NIL) return;
|
|
|
|
if (upb_FieldDef_IsMap(f)) {
|
|
upb_Map* map = upb_Message_Mutable(msg, f, arena).map;
|
|
Map_InitFromValue(map, f, val, arena);
|
|
} else if (upb_FieldDef_Label(f) == kUpb_Label_Repeated) {
|
|
upb_Array* arr = upb_Message_Mutable(msg, f, arena).array;
|
|
RepeatedField_InitFromValue(arr, f, val, arena);
|
|
} else if (upb_FieldDef_IsSubMessage(f)) {
|
|
if (TYPE(val) == T_HASH) {
|
|
upb_Message* submsg = upb_Message_Mutable(msg, f, arena).msg;
|
|
Message_InitFromValue(submsg, upb_FieldDef_MessageSubDef(f), val, arena);
|
|
} else {
|
|
Message_setfield(msg, f, val, arena);
|
|
}
|
|
} else {
|
|
upb_MessageValue msgval =
|
|
Convert_RubyToUpb(val, upb_FieldDef_Name(f), TypeInfo_get(f), arena);
|
|
upb_Message_Set(msg, f, msgval, arena);
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
upb_Message* msg;
|
|
const upb_MessageDef* msgdef;
|
|
upb_Arena* arena;
|
|
} MsgInit;
|
|
|
|
static int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) {
|
|
MsgInit* msg_init = (MsgInit*)_self;
|
|
const char* name;
|
|
|
|
if (TYPE(key) == T_STRING) {
|
|
name = RSTRING_PTR(key);
|
|
} else if (TYPE(key) == T_SYMBOL) {
|
|
name = RSTRING_PTR(rb_id2str(SYM2ID(key)));
|
|
} else {
|
|
rb_raise(rb_eArgError,
|
|
"Expected string or symbols as hash keys when initializing proto "
|
|
"from hash.");
|
|
}
|
|
|
|
const upb_FieldDef* f =
|
|
upb_MessageDef_FindFieldByName(msg_init->msgdef, name);
|
|
|
|
if (f == NULL) {
|
|
rb_raise(rb_eArgError,
|
|
"Unknown field name '%s' in initialization map entry.", name);
|
|
}
|
|
|
|
Message_InitFieldFromValue(msg_init->msg, f, val, msg_init->arena);
|
|
return ST_CONTINUE;
|
|
}
|
|
|
|
void Message_InitFromValue(upb_Message* msg, const upb_MessageDef* m, VALUE val,
|
|
upb_Arena* arena) {
|
|
MsgInit msg_init = {msg, m, arena};
|
|
if (TYPE(val) == T_HASH) {
|
|
rb_hash_foreach(val, Message_initialize_kwarg, (VALUE)&msg_init);
|
|
} else {
|
|
rb_raise(rb_eArgError, "Expected hash arguments or message, not %s",
|
|
rb_class2name(CLASS_OF(val)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.new(kwargs) => new_message
|
|
*
|
|
* Creates a new instance of the given message class. Keyword arguments may be
|
|
* provided with keywords corresponding to field names.
|
|
*
|
|
* Note that no literal Message class exists. Only concrete classes per message
|
|
* type exist, as provided by the #msgclass method on Descriptors after they
|
|
* have been added to a pool. The method definitions described here on the
|
|
* Message class are provided on each concrete message class.
|
|
*/
|
|
static VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
VALUE arena_rb = Arena_new();
|
|
upb_Arena* arena = Arena_get(arena_rb);
|
|
upb_Message* msg = upb_Message_New(self->msgdef, arena);
|
|
|
|
Message_InitPtr(_self, msg, arena_rb);
|
|
|
|
if (argc == 0) {
|
|
return Qnil;
|
|
}
|
|
if (argc != 1) {
|
|
rb_raise(rb_eArgError, "Expected 0 or 1 arguments.");
|
|
}
|
|
Message_InitFromValue((upb_Message*)self->msg, self->msgdef, argv[0], arena);
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.dup => new_message
|
|
*
|
|
* Performs a shallow copy of this message and returns the new copy.
|
|
*/
|
|
static VALUE Message_dup(VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
VALUE new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
|
|
Message* new_msg_self = ruby_to_Message(new_msg);
|
|
size_t size = upb_MessageDef_MiniTable(self->msgdef)->size;
|
|
|
|
// TODO(copy unknown fields?)
|
|
// TODO(use official upb msg copy function)
|
|
memcpy((upb_Message*)new_msg_self->msg, self->msg, size);
|
|
Arena_fuse(self->arena, Arena_get(new_msg_self->arena));
|
|
return new_msg;
|
|
}
|
|
|
|
// Support function for Message_eq, and also used by other #eq functions.
|
|
bool Message_Equal(const upb_Message* m1, const upb_Message* m2,
|
|
const upb_MessageDef* m) {
|
|
if (m1 == m2) return true;
|
|
|
|
size_t size1, size2;
|
|
int encode_opts = kUpb_Encode_SkipUnknown | kUpb_Encode_Deterministic;
|
|
upb_Arena* arena_tmp = upb_Arena_New();
|
|
const upb_MiniTable* layout = upb_MessageDef_MiniTable(m);
|
|
|
|
// Compare deterministically serialized payloads with no unknown fields.
|
|
char* data1 = upb_Encode(m1, layout, encode_opts, arena_tmp, &size1);
|
|
char* data2 = upb_Encode(m2, layout, encode_opts, arena_tmp, &size2);
|
|
|
|
if (data1 && data2) {
|
|
bool ret = (size1 == size2) && (memcmp(data1, data2, size1) == 0);
|
|
upb_Arena_Free(arena_tmp);
|
|
return ret;
|
|
} else {
|
|
upb_Arena_Free(arena_tmp);
|
|
rb_raise(cParseError, "Error comparing messages");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.==(other) => boolean
|
|
*
|
|
* Performs a deep comparison of this message with another. Messages are equal
|
|
* if they have the same type and if each field is equal according to the :==
|
|
* method's semantics (a more efficient comparison may actually be done if the
|
|
* field is of a primitive type).
|
|
*/
|
|
static VALUE Message_eq(VALUE _self, VALUE _other) {
|
|
if (CLASS_OF(_self) != CLASS_OF(_other)) return Qfalse;
|
|
|
|
Message* self = ruby_to_Message(_self);
|
|
Message* other = ruby_to_Message(_other);
|
|
assert(self->msgdef == other->msgdef);
|
|
|
|
return Message_Equal(self->msg, other->msg, self->msgdef) ? Qtrue : Qfalse;
|
|
}
|
|
|
|
uint64_t Message_Hash(const upb_Message* msg, const upb_MessageDef* m,
|
|
uint64_t seed) {
|
|
upb_Arena* arena = upb_Arena_New();
|
|
const char* data;
|
|
size_t size;
|
|
|
|
// Hash a deterministically serialized payloads with no unknown fields.
|
|
data = upb_Encode(msg, upb_MessageDef_MiniTable(m),
|
|
kUpb_Encode_SkipUnknown | kUpb_Encode_Deterministic, arena,
|
|
&size);
|
|
|
|
if (data) {
|
|
uint64_t ret = _upb_Hash(data, size, seed);
|
|
upb_Arena_Free(arena);
|
|
return ret;
|
|
} else {
|
|
upb_Arena_Free(arena);
|
|
rb_raise(cParseError, "Error calculating hash");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.hash => hash_value
|
|
*
|
|
* Returns a hash value that represents this message's field values.
|
|
*/
|
|
static VALUE Message_hash(VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
uint64_t hash_value = Message_Hash(self->msg, self->msgdef, 0);
|
|
// RUBY_FIXNUM_MAX should be one less than a power of 2.
|
|
assert((RUBY_FIXNUM_MAX & (RUBY_FIXNUM_MAX + 1)) == 0);
|
|
return INT2FIX(hash_value & RUBY_FIXNUM_MAX);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.inspect => string
|
|
*
|
|
* Returns a human-readable string representing this message. It will be
|
|
* formatted as "<MessageType: field1: value1, field2: value2, ...>". Each
|
|
* field's value is represented according to its own #inspect method.
|
|
*/
|
|
static VALUE Message_inspect(VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
|
|
StringBuilder* builder = StringBuilder_New();
|
|
Message_PrintMessage(builder, self->msg, self->msgdef);
|
|
VALUE ret = StringBuilder_ToRubyString(builder);
|
|
StringBuilder_Free(builder);
|
|
return ret;
|
|
}
|
|
|
|
// Support functions for Message_to_h //////////////////////////////////////////
|
|
|
|
static VALUE RepeatedField_CreateArray(const upb_Array* arr,
|
|
TypeInfo type_info) {
|
|
int size = arr ? upb_Array_Size(arr) : 0;
|
|
VALUE ary = rb_ary_new2(size);
|
|
|
|
for (int i = 0; i < size; i++) {
|
|
upb_MessageValue msgval = upb_Array_Get(arr, i);
|
|
VALUE val = Scalar_CreateHash(msgval, type_info);
|
|
rb_ary_push(ary, val);
|
|
}
|
|
|
|
return ary;
|
|
}
|
|
|
|
static VALUE Message_CreateHash(const upb_Message* msg,
|
|
const upb_MessageDef* m) {
|
|
if (!msg) return Qnil;
|
|
|
|
VALUE hash = rb_hash_new();
|
|
int n = upb_MessageDef_FieldCount(m);
|
|
bool is_proto2;
|
|
|
|
// We currently have a few behaviors that are specific to proto2.
|
|
// This is unfortunate, we should key behaviors off field attributes (like
|
|
// whether a field has presence), not proto2 vs. proto3. We should see if we
|
|
// can change this without breaking users.
|
|
is_proto2 = upb_MessageDef_Syntax(m) == kUpb_Syntax_Proto2;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
const upb_FieldDef* field = upb_MessageDef_Field(m, i);
|
|
TypeInfo type_info = TypeInfo_get(field);
|
|
upb_MessageValue msgval;
|
|
VALUE msg_value;
|
|
VALUE msg_key;
|
|
|
|
if (!is_proto2 && upb_FieldDef_IsSubMessage(field) &&
|
|
!upb_FieldDef_IsRepeated(field) && !upb_Message_Has(msg, field)) {
|
|
// TODO: Legacy behavior, remove when we fix the is_proto2 differences.
|
|
msg_key = ID2SYM(rb_intern(upb_FieldDef_Name(field)));
|
|
rb_hash_aset(hash, msg_key, Qnil);
|
|
continue;
|
|
}
|
|
|
|
// Do not include fields that are not present (oneof or optional fields).
|
|
if (is_proto2 && upb_FieldDef_HasPresence(field) &&
|
|
!upb_Message_Has(msg, field)) {
|
|
continue;
|
|
}
|
|
|
|
msg_key = ID2SYM(rb_intern(upb_FieldDef_Name(field)));
|
|
msgval = upb_Message_Get(msg, field);
|
|
|
|
// Proto2 omits empty map/repeated filds also.
|
|
|
|
if (upb_FieldDef_IsMap(field)) {
|
|
const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(field);
|
|
const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1);
|
|
const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2);
|
|
upb_CType key_type = upb_FieldDef_CType(key_f);
|
|
msg_value = Map_CreateHash(msgval.map_val, key_type, TypeInfo_get(val_f));
|
|
} else if (upb_FieldDef_IsRepeated(field)) {
|
|
if (is_proto2 &&
|
|
(!msgval.array_val || upb_Array_Size(msgval.array_val) == 0)) {
|
|
continue;
|
|
}
|
|
msg_value = RepeatedField_CreateArray(msgval.array_val, type_info);
|
|
} else {
|
|
msg_value = Scalar_CreateHash(msgval, type_info);
|
|
}
|
|
|
|
rb_hash_aset(hash, msg_key, msg_value);
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
VALUE Scalar_CreateHash(upb_MessageValue msgval, TypeInfo type_info) {
|
|
if (type_info.type == kUpb_CType_Message) {
|
|
return Message_CreateHash(msgval.msg_val, type_info.def.msgdef);
|
|
} else {
|
|
return Convert_UpbToRuby(msgval, type_info, Qnil);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.to_h => {}
|
|
*
|
|
* Returns the message as a Ruby Hash object, with keys as symbols.
|
|
*/
|
|
static VALUE Message_to_h(VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
return Message_CreateHash(self->msg, self->msgdef);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.freeze => self
|
|
*
|
|
* Freezes the message object. We have to intercept this so we can pin the
|
|
* Ruby object into memory so we don't forget it's frozen.
|
|
*/
|
|
static VALUE Message_freeze(VALUE _self) {
|
|
Message* self = ruby_to_Message(_self);
|
|
if (!RB_OBJ_FROZEN(_self)) {
|
|
Arena_Pin(self->arena, _self);
|
|
RB_OBJ_FREEZE(_self);
|
|
}
|
|
return _self;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.[](index) => value
|
|
*
|
|
* Accesses a field's value by field name. The provided field name should be a
|
|
* string.
|
|
*/
|
|
static VALUE Message_index(VALUE _self, VALUE field_name) {
|
|
Message* self = ruby_to_Message(_self);
|
|
const upb_FieldDef* field;
|
|
|
|
Check_Type(field_name, T_STRING);
|
|
field = upb_MessageDef_FindFieldByName(self->msgdef, RSTRING_PTR(field_name));
|
|
|
|
if (field == NULL) {
|
|
return Qnil;
|
|
}
|
|
|
|
return Message_getfield(_self, field);
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.[]=(index, value)
|
|
*
|
|
* Sets a field's value by field name. The provided field name should be a
|
|
* string.
|
|
*/
|
|
static VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) {
|
|
Message* self = ruby_to_Message(_self);
|
|
const upb_FieldDef* f;
|
|
upb_MessageValue val;
|
|
upb_Arena* arena = Arena_get(self->arena);
|
|
|
|
Check_Type(field_name, T_STRING);
|
|
f = upb_MessageDef_FindFieldByName(self->msgdef, RSTRING_PTR(field_name));
|
|
|
|
if (f == NULL) {
|
|
rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name));
|
|
}
|
|
|
|
val = Convert_RubyToUpb(value, upb_FieldDef_Name(f), TypeInfo_get(f), arena);
|
|
upb_Message_Set(Message_GetMutable(_self, NULL), f, val, arena);
|
|
|
|
return Qnil;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.decode(data, options) => message
|
|
*
|
|
* Decodes the given data (as a string containing bytes in protocol buffers wire
|
|
* format) under the interpretration given by this message class's definition
|
|
* and returns a message object with the corresponding field values.
|
|
* @param options [Hash] options for the decoder
|
|
* recursion_limit: set to maximum decoding depth for message (default is 64)
|
|
*/
|
|
static VALUE Message_decode(int argc, VALUE* argv, VALUE klass) {
|
|
VALUE data = argv[0];
|
|
int options = 0;
|
|
|
|
if (argc < 1 || argc > 2) {
|
|
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
|
|
}
|
|
|
|
if (argc == 2) {
|
|
VALUE hash_args = argv[1];
|
|
if (TYPE(hash_args) != T_HASH) {
|
|
rb_raise(rb_eArgError, "Expected hash arguments.");
|
|
}
|
|
|
|
VALUE depth = rb_hash_lookup(hash_args, ID2SYM(rb_intern("recursion_limit")));
|
|
|
|
if (depth != Qnil && TYPE(depth) == T_FIXNUM) {
|
|
options |= UPB_DECODE_MAXDEPTH(FIX2INT(depth));
|
|
}
|
|
}
|
|
|
|
if (TYPE(data) != T_STRING) {
|
|
rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
|
|
}
|
|
|
|
VALUE msg_rb = initialize_rb_class_with_no_args(klass);
|
|
Message* msg = ruby_to_Message(msg_rb);
|
|
|
|
upb_DecodeStatus status = upb_Decode(
|
|
RSTRING_PTR(data), RSTRING_LEN(data), (upb_Message*)msg->msg,
|
|
upb_MessageDef_MiniTable(msg->msgdef), NULL, options, Arena_get(msg->arena));
|
|
|
|
if (status != kUpb_DecodeStatus_Ok) {
|
|
rb_raise(cParseError, "Error occurred during parsing");
|
|
}
|
|
|
|
return msg_rb;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.decode_json(data, options = {}) => message
|
|
*
|
|
* Decodes the given data (as a string containing bytes in protocol buffers wire
|
|
* format) under the interpretration given by this message class's definition
|
|
* and returns a message object with the corresponding field values.
|
|
*
|
|
* @param options [Hash] options for the decoder
|
|
* ignore_unknown_fields: set true to ignore unknown fields (default is to
|
|
* raise an error)
|
|
*/
|
|
static VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) {
|
|
VALUE data = argv[0];
|
|
int options = 0;
|
|
upb_Status status;
|
|
|
|
// TODO(haberman): use this message's pool instead.
|
|
const upb_DefPool* symtab = DescriptorPool_GetSymtab(generated_pool);
|
|
|
|
if (argc < 1 || argc > 2) {
|
|
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
|
|
}
|
|
|
|
if (argc == 2) {
|
|
VALUE hash_args = argv[1];
|
|
if (TYPE(hash_args) != T_HASH) {
|
|
rb_raise(rb_eArgError, "Expected hash arguments.");
|
|
}
|
|
|
|
if (RTEST(rb_hash_lookup2(
|
|
hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse))) {
|
|
options |= upb_JsonDecode_IgnoreUnknown;
|
|
}
|
|
}
|
|
|
|
if (TYPE(data) != T_STRING) {
|
|
rb_raise(rb_eArgError, "Expected string for JSON data.");
|
|
}
|
|
|
|
// TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
|
|
// convert, because string handlers pass data directly to message string
|
|
// fields.
|
|
|
|
VALUE msg_rb = initialize_rb_class_with_no_args(klass);
|
|
Message* msg = ruby_to_Message(msg_rb);
|
|
|
|
// We don't allow users to decode a wrapper type directly.
|
|
if (IsWrapper(msg->msgdef)) {
|
|
rb_raise(rb_eRuntimeError, "Cannot parse a wrapper directly.");
|
|
}
|
|
|
|
upb_Status_Clear(&status);
|
|
if (!upb_JsonDecode(RSTRING_PTR(data), RSTRING_LEN(data),
|
|
(upb_Message*)msg->msg, msg->msgdef, symtab, options,
|
|
Arena_get(msg->arena), &status)) {
|
|
rb_raise(cParseError, "Error occurred during parsing: %s",
|
|
upb_Status_ErrorMessage(&status));
|
|
}
|
|
|
|
return msg_rb;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.encode(msg, options) => bytes
|
|
*
|
|
* Encodes the given message object to its serialized form in protocol buffers
|
|
* wire format.
|
|
* @param options [Hash] options for the encoder
|
|
* recursion_limit: set to maximum encoding depth for message (default is 64)
|
|
*/
|
|
static VALUE Message_encode(int argc, VALUE* argv, VALUE klass) {
|
|
Message* msg = ruby_to_Message(argv[0]);
|
|
int options = 0;
|
|
const char* data;
|
|
size_t size;
|
|
|
|
if (CLASS_OF(argv[0]) != klass) {
|
|
rb_raise(rb_eArgError, "Message of wrong type.");
|
|
}
|
|
|
|
if (argc < 1 || argc > 2) {
|
|
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
|
|
}
|
|
|
|
if (argc == 2) {
|
|
VALUE hash_args = argv[1];
|
|
if (TYPE(hash_args) != T_HASH) {
|
|
rb_raise(rb_eArgError, "Expected hash arguments.");
|
|
}
|
|
VALUE depth = rb_hash_lookup(hash_args, ID2SYM(rb_intern("recursion_limit")));
|
|
|
|
if (depth != Qnil && TYPE(depth) == T_FIXNUM) {
|
|
options |= UPB_DECODE_MAXDEPTH(FIX2INT(depth));
|
|
}
|
|
}
|
|
|
|
upb_Arena *arena = upb_Arena_New();
|
|
|
|
data = upb_Encode(msg->msg, upb_MessageDef_MiniTable(msg->msgdef),
|
|
options, arena, &size);
|
|
|
|
if (data) {
|
|
VALUE ret = rb_str_new(data, size);
|
|
rb_enc_associate(ret, rb_ascii8bit_encoding());
|
|
upb_Arena_Free(arena);
|
|
return ret;
|
|
} else {
|
|
upb_Arena_Free(arena);
|
|
rb_raise(rb_eRuntimeError, "Exceeded maximum depth (possibly cycle)");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* MessageClass.encode_json(msg, options = {}) => json_string
|
|
*
|
|
* Encodes the given message object into its serialized JSON representation.
|
|
* @param options [Hash] options for the decoder
|
|
* preserve_proto_fieldnames: set true to use original fieldnames (default is
|
|
* to camelCase) emit_defaults: set true to emit 0/false values (default is to
|
|
* omit them)
|
|
*/
|
|
static VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
|
|
Message* msg = ruby_to_Message(argv[0]);
|
|
int options = 0;
|
|
char buf[1024];
|
|
size_t size;
|
|
upb_Status status;
|
|
|
|
// TODO(haberman): use this message's pool instead.
|
|
const upb_DefPool* symtab = DescriptorPool_GetSymtab(generated_pool);
|
|
|
|
if (argc < 1 || argc > 2) {
|
|
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
|
|
}
|
|
|
|
if (argc == 2) {
|
|
VALUE hash_args = argv[1];
|
|
if (TYPE(hash_args) != T_HASH) {
|
|
if (RTEST(rb_funcall(hash_args, rb_intern("respond_to?"), 1, rb_str_new2("to_h")))) {
|
|
hash_args = rb_funcall(hash_args, rb_intern("to_h"), 0);
|
|
} else {
|
|
rb_raise(rb_eArgError, "Expected hash arguments.");
|
|
}
|
|
}
|
|
|
|
if (RTEST(rb_hash_lookup2(hash_args,
|
|
ID2SYM(rb_intern("preserve_proto_fieldnames")),
|
|
Qfalse))) {
|
|
options |= upb_JsonEncode_UseProtoNames;
|
|
}
|
|
|
|
if (RTEST(rb_hash_lookup2(hash_args, ID2SYM(rb_intern("emit_defaults")),
|
|
Qfalse))) {
|
|
options |= upb_JsonEncode_EmitDefaults;
|
|
}
|
|
}
|
|
|
|
upb_Status_Clear(&status);
|
|
size = upb_JsonEncode(msg->msg, msg->msgdef, symtab, options, buf,
|
|
sizeof(buf), &status);
|
|
|
|
if (!upb_Status_IsOk(&status)) {
|
|
rb_raise(cParseError, "Error occurred during encoding: %s",
|
|
upb_Status_ErrorMessage(&status));
|
|
}
|
|
|
|
VALUE ret;
|
|
if (size >= sizeof(buf)) {
|
|
char* buf2 = malloc(size + 1);
|
|
upb_JsonEncode(msg->msg, msg->msgdef, symtab, options, buf2, size + 1,
|
|
&status);
|
|
ret = rb_str_new(buf2, size);
|
|
free(buf2);
|
|
} else {
|
|
ret = rb_str_new(buf, size);
|
|
}
|
|
|
|
rb_enc_associate(ret, rb_utf8_encoding());
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Message.descriptor => descriptor
|
|
*
|
|
* Class method that returns the Descriptor instance corresponding to this
|
|
* message class's type.
|
|
*/
|
|
static VALUE Message_descriptor(VALUE klass) {
|
|
return rb_ivar_get(klass, descriptor_instancevar_interned);
|
|
}
|
|
|
|
VALUE build_class_from_descriptor(VALUE descriptor) {
|
|
const char* name;
|
|
VALUE klass;
|
|
|
|
name = upb_MessageDef_FullName(Descriptor_GetMsgDef(descriptor));
|
|
if (name == NULL) {
|
|
rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name.");
|
|
}
|
|
|
|
klass = rb_define_class_id(
|
|
// Docs say this parameter is ignored. User will assign return value to
|
|
// their own toplevel constant class name.
|
|
rb_intern("Message"), rb_cObject);
|
|
rb_ivar_set(klass, descriptor_instancevar_interned, descriptor);
|
|
rb_define_alloc_func(klass, Message_alloc);
|
|
rb_require("google/protobuf/message_exts");
|
|
rb_include_module(klass, rb_eval_string("::Google::Protobuf::MessageExts"));
|
|
rb_extend_object(
|
|
klass, rb_eval_string("::Google::Protobuf::MessageExts::ClassMethods"));
|
|
|
|
rb_define_method(klass, "method_missing", Message_method_missing, -1);
|
|
rb_define_method(klass, "respond_to_missing?", Message_respond_to_missing,
|
|
-1);
|
|
rb_define_method(klass, "initialize", Message_initialize, -1);
|
|
rb_define_method(klass, "dup", Message_dup, 0);
|
|
// Also define #clone so that we don't inherit Object#clone.
|
|
rb_define_method(klass, "clone", Message_dup, 0);
|
|
rb_define_method(klass, "==", Message_eq, 1);
|
|
rb_define_method(klass, "eql?", Message_eq, 1);
|
|
rb_define_method(klass, "freeze", Message_freeze, 0);
|
|
rb_define_method(klass, "hash", Message_hash, 0);
|
|
rb_define_method(klass, "to_h", Message_to_h, 0);
|
|
rb_define_method(klass, "inspect", Message_inspect, 0);
|
|
rb_define_method(klass, "to_s", Message_inspect, 0);
|
|
rb_define_method(klass, "[]", Message_index, 1);
|
|
rb_define_method(klass, "[]=", Message_index_set, 2);
|
|
rb_define_singleton_method(klass, "decode", Message_decode, -1);
|
|
rb_define_singleton_method(klass, "encode", Message_encode, -1);
|
|
rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1);
|
|
rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1);
|
|
rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0);
|
|
|
|
return klass;
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Enum.lookup(number) => name
|
|
*
|
|
* This module method, provided on each generated enum module, looks up an enum
|
|
* value by number and returns its name as a Ruby symbol, or nil if not found.
|
|
*/
|
|
static VALUE enum_lookup(VALUE self, VALUE number) {
|
|
int32_t num = NUM2INT(number);
|
|
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
|
|
const upb_EnumDef* e = EnumDescriptor_GetEnumDef(desc);
|
|
const upb_EnumValueDef* ev = upb_EnumDef_FindValueByNumber(e, num);
|
|
if (ev) {
|
|
return ID2SYM(rb_intern(upb_EnumValueDef_Name(ev)));
|
|
} else {
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Enum.resolve(name) => number
|
|
*
|
|
* This module method, provided on each generated enum module, looks up an enum
|
|
* value by name (as a Ruby symbol) and returns its name, or nil if not found.
|
|
*/
|
|
static VALUE enum_resolve(VALUE self, VALUE sym) {
|
|
const char* name = rb_id2name(SYM2ID(sym));
|
|
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
|
|
const upb_EnumDef* e = EnumDescriptor_GetEnumDef(desc);
|
|
const upb_EnumValueDef* ev = upb_EnumDef_FindValueByName(e, name);
|
|
if (ev) {
|
|
return INT2NUM(upb_EnumValueDef_Number(ev));
|
|
} else {
|
|
return Qnil;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* call-seq:
|
|
* Enum.descriptor
|
|
*
|
|
* This module method, provided on each generated enum module, returns the
|
|
* EnumDescriptor corresponding to this enum type.
|
|
*/
|
|
static VALUE enum_descriptor(VALUE self) {
|
|
return rb_ivar_get(self, descriptor_instancevar_interned);
|
|
}
|
|
|
|
VALUE build_module_from_enumdesc(VALUE _enumdesc) {
|
|
const upb_EnumDef* e = EnumDescriptor_GetEnumDef(_enumdesc);
|
|
VALUE mod = rb_define_module_id(rb_intern(upb_EnumDef_FullName(e)));
|
|
|
|
int n = upb_EnumDef_ValueCount(e);
|
|
for (int i = 0; i < n; i++) {
|
|
const upb_EnumValueDef* ev = upb_EnumDef_Value(e, i);
|
|
const char* name = upb_EnumValueDef_Name(ev);
|
|
int32_t value = upb_EnumValueDef_Number(ev);
|
|
if (name[0] < 'A' || name[0] > 'Z') {
|
|
rb_warn(
|
|
"Enum value '%s' does not start with an uppercase letter "
|
|
"as is required for Ruby constants.",
|
|
name);
|
|
}
|
|
rb_define_const(mod, name, INT2NUM(value));
|
|
}
|
|
|
|
rb_define_singleton_method(mod, "lookup", enum_lookup, 1);
|
|
rb_define_singleton_method(mod, "resolve", enum_resolve, 1);
|
|
rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0);
|
|
rb_ivar_set(mod, descriptor_instancevar_interned, _enumdesc);
|
|
|
|
return mod;
|
|
}
|
|
|
|
// Internal only; used by Google::Protobuf.deep_copy.
|
|
upb_Message* Message_deep_copy(const upb_Message* msg, const upb_MessageDef* m,
|
|
upb_Arena* arena) {
|
|
// Serialize and parse.
|
|
upb_Arena* tmp_arena = upb_Arena_New();
|
|
const upb_MiniTable* layout = upb_MessageDef_MiniTable(m);
|
|
size_t size;
|
|
|
|
char* data = upb_Encode(msg, layout, 0, tmp_arena, &size);
|
|
upb_Message* new_msg = upb_Message_New(m, arena);
|
|
|
|
if (!data || upb_Decode(data, size, new_msg, layout, NULL, 0, arena) !=
|
|
kUpb_DecodeStatus_Ok) {
|
|
upb_Arena_Free(tmp_arena);
|
|
rb_raise(cParseError, "Error occurred copying proto");
|
|
}
|
|
|
|
upb_Arena_Free(tmp_arena);
|
|
return new_msg;
|
|
}
|
|
|
|
const upb_Message* Message_GetUpbMessage(VALUE value, const upb_MessageDef* m,
|
|
const char* name, upb_Arena* arena) {
|
|
if (value == Qnil) {
|
|
rb_raise(cTypeError, "nil message not allowed here.");
|
|
}
|
|
|
|
VALUE klass = CLASS_OF(value);
|
|
VALUE desc_rb = rb_ivar_get(klass, descriptor_instancevar_interned);
|
|
const upb_MessageDef* val_m =
|
|
desc_rb == Qnil ? NULL : Descriptor_GetMsgDef(desc_rb);
|
|
|
|
if (val_m != m) {
|
|
// Check for possible implicit conversions
|
|
// TODO: hash conversion?
|
|
|
|
switch (upb_MessageDef_WellKnownType(m)) {
|
|
case kUpb_WellKnown_Timestamp: {
|
|
// Time -> Google::Protobuf::Timestamp
|
|
upb_Message* msg = upb_Message_New(m, arena);
|
|
upb_MessageValue sec, nsec;
|
|
struct timespec time;
|
|
const upb_FieldDef* sec_f = upb_MessageDef_FindFieldByNumber(m, 1);
|
|
const upb_FieldDef* nsec_f = upb_MessageDef_FindFieldByNumber(m, 2);
|
|
|
|
if (!rb_obj_is_kind_of(value, rb_cTime)) goto badtype;
|
|
|
|
time = rb_time_timespec(value);
|
|
sec.int64_val = time.tv_sec;
|
|
nsec.int32_val = time.tv_nsec;
|
|
upb_Message_Set(msg, sec_f, sec, arena);
|
|
upb_Message_Set(msg, nsec_f, nsec, arena);
|
|
return msg;
|
|
}
|
|
case kUpb_WellKnown_Duration: {
|
|
// Numeric -> Google::Protobuf::Duration
|
|
upb_Message* msg = upb_Message_New(m, arena);
|
|
upb_MessageValue sec, nsec;
|
|
const upb_FieldDef* sec_f = upb_MessageDef_FindFieldByNumber(m, 1);
|
|
const upb_FieldDef* nsec_f = upb_MessageDef_FindFieldByNumber(m, 2);
|
|
|
|
if (!rb_obj_is_kind_of(value, rb_cNumeric)) goto badtype;
|
|
|
|
sec.int64_val = NUM2LL(value);
|
|
nsec.int32_val = round((NUM2DBL(value) - NUM2LL(value)) * 1000000000);
|
|
upb_Message_Set(msg, sec_f, sec, arena);
|
|
upb_Message_Set(msg, nsec_f, nsec, arena);
|
|
return msg;
|
|
}
|
|
default:
|
|
badtype:
|
|
rb_raise(cTypeError,
|
|
"Invalid type %s to assign to submessage field '%s'.",
|
|
rb_class2name(CLASS_OF(value)), name);
|
|
}
|
|
}
|
|
|
|
Message* self = ruby_to_Message(value);
|
|
Arena_fuse(self->arena, arena);
|
|
|
|
return self->msg;
|
|
}
|
|
|
|
void Message_register(VALUE protobuf) {
|
|
cParseError = rb_const_get(protobuf, rb_intern("ParseError"));
|
|
|
|
// Ruby-interned string: "descriptor". We use this identifier to store an
|
|
// instance variable on message classes we create in order to link them back
|
|
// to their descriptors.
|
|
descriptor_instancevar_interned = rb_intern("descriptor");
|
|
}
|