iw4-sp/src/common/utils/cryptography.cpp
2023-05-30 15:56:55 +02:00

561 lines
14 KiB
C++

#include "string.hpp"
#include "cryptography.hpp"
#include "nt.hpp"
#include <gsl/gsl>
#undef max
using namespace std::string_literals;
/// http://www.opensource.apple.com/source/CommonCrypto/CommonCrypto-55010/Source/libtomcrypt/doc/libTomCryptDoc.pdf
namespace utils::cryptography {
namespace {
struct __ {
__() {
ltc_mp = ltm_desc;
register_cipher(&aes_desc);
register_cipher(&des3_desc);
register_prng(&sprng_desc);
register_prng(&fortuna_desc);
register_prng(&yarrow_desc);
register_hash(&sha1_desc);
register_hash(&sha256_desc);
register_hash(&sha512_desc);
}
} ___;
[[maybe_unused]] const char* cs(const std::uint8_t* data) {
return reinterpret_cast<const char*>(data);
}
[[maybe_unused]] char* cs(std::uint8_t* data) {
return reinterpret_cast<char*>(data);
}
[[maybe_unused]] const std::uint8_t* cs(const char* data) {
return reinterpret_cast<const std::uint8_t*>(data);
}
[[maybe_unused]] std::uint8_t* cs(char* data) {
return reinterpret_cast<std::uint8_t*>(data);
}
[[maybe_unused]] unsigned long ul(const std::size_t value) {
return static_cast<unsigned long>(value);
}
class prng {
public:
prng(const ltc_prng_descriptor& descriptor, const bool autoseed = true)
: state_(std::make_unique<prng_state>()), descriptor_(descriptor) {
this->id_ = register_prng(&descriptor);
if (this->id_ == -1) {
throw std::runtime_error("PRNG "s + this->descriptor_.name +
" could not be registered!");
}
if (autoseed) {
this->auto_seed();
} else {
this->descriptor_.start(this->state_.get());
}
}
~prng() { this->descriptor_.done(this->state_.get()); }
[[nodiscard]] prng_state* get_state() const {
this->descriptor_.ready(this->state_.get());
return this->state_.get();
}
[[nodiscard]] int get_id() const { return this->id_; }
void add_entropy(const void* data, const std::size_t length) const {
this->descriptor_.add_entropy(static_cast<const std::uint8_t*>(data),
ul(length), this->state_.get());
}
void read(void* data, const std::size_t length) const {
this->descriptor_.read(static_cast<std::uint8_t*>(data), ul(length),
this->get_state());
}
private:
int id_;
std::unique_ptr<prng_state> state_;
const ltc_prng_descriptor& descriptor_;
void auto_seed() const {
rng_make_prng(128, this->id_, this->state_.get(), nullptr);
int i[4]; // uninitialized data
auto* i_ptr = &i;
this->add_entropy(reinterpret_cast<std::uint8_t*>(&i), sizeof(i));
this->add_entropy(reinterpret_cast<std::uint8_t*>(&i_ptr), sizeof(i_ptr));
auto t = time(nullptr);
this->add_entropy(reinterpret_cast<std::uint8_t*>(&t), sizeof(t));
}
};
const prng prng_(fortuna_desc);
} // namespace
ecc::key::key() { ZeroMemory(&this->key_storage_, sizeof(this->key_storage_)); }
ecc::key::~key() { this->free(); }
ecc::key::key(key&& obj) noexcept : key() { this->operator=(std::move(obj)); }
ecc::key::key(const key& obj) : key() { this->operator=(obj); }
ecc::key& ecc::key::operator=(key&& obj) noexcept {
if (this != &obj) {
std::memmove(&this->key_storage_, &obj.key_storage_,
sizeof(this->key_storage_));
ZeroMemory(&obj.key_storage_, sizeof(obj.key_storage_));
}
return *this;
}
ecc::key& ecc::key::operator=(const key& obj) {
if (this != &obj && obj.is_valid()) {
this->deserialize(obj.serialize(obj.key_storage_.type));
}
return *this;
}
bool ecc::key::operator==(key& key) const {
return (this->is_valid() && key.is_valid() &&
this->serialize(PK_PUBLIC) == key.serialize(PK_PUBLIC));
}
bool ecc::key::is_valid() const {
return (!memory::is_set(&this->key_storage_, 0, sizeof(this->key_storage_)));
}
ecc_key& ecc::key::get() { return this->key_storage_; }
const ecc_key& ecc::key::get() const { return this->key_storage_; }
std::string ecc::key::get_public_key() const {
std::uint8_t buffer[512]{};
unsigned long length = sizeof(buffer);
if (ecc_ansi_x963_export(&this->key_storage_, buffer, &length) == CRYPT_OK) {
return {cs(buffer), length};
}
return {};
}
void ecc::key::set(const std::string& pub_key_buffer) {
this->free();
if (ecc_ansi_x963_import(cs(pub_key_buffer.data()), ul(pub_key_buffer.size()),
&this->key_storage_) != CRYPT_OK) {
ZeroMemory(&this->key_storage_, sizeof(this->key_storage_));
}
}
void ecc::key::deserialize(const std::string& key) {
this->free();
if (ecc_import(cs(key.data()), ul(key.size()), &this->key_storage_) !=
CRYPT_OK) {
ZeroMemory(&this->key_storage_, sizeof(this->key_storage_));
}
}
std::string ecc::key::serialize(const int type) const {
std::uint8_t buffer[4096]{};
unsigned long length = sizeof(buffer);
if (ecc_export(buffer, &length, type, &this->key_storage_) == CRYPT_OK) {
return {cs(buffer), length};
}
return {};
}
void ecc::key::free() {
if (this->is_valid()) {
ecc_free(&this->key_storage_);
}
ZeroMemory(&this->key_storage_, sizeof(this->key_storage_));
}
std::uint64_t ecc::key::get_hash() const {
const auto hash = sha1::compute(this->get_public_key());
if (hash.size() >= 8) {
return *reinterpret_cast<const std::uint64_t*>(hash.data());
}
return 0;
}
ecc::key ecc::generate_key(const int bits) {
key key;
ecc_make_key(prng_.get_state(), prng_.get_id(), bits / 8, &key.get());
return key;
}
ecc::key ecc::generate_key(const int bits, const std::string& entropy) {
key key{};
const prng yarrow(yarrow_desc, false);
yarrow.add_entropy(entropy.data(), entropy.size());
ecc_make_key(yarrow.get_state(), yarrow.get_id(), bits / 8, &key.get());
return key;
}
std::string ecc::sign_message(const key& key, const std::string& message) {
if (!key.is_valid())
return {};
std::uint8_t buffer[512];
unsigned long length = sizeof(buffer);
const auto hash = sha512::compute(message);
ecc_sign_hash(cs(hash.data()), ul(hash.size()), buffer, &length,
prng_.get_state(), prng_.get_id(), &key.get());
return {cs(buffer), length};
}
bool ecc::verify_message(const key& key, const std::string& message,
const std::string& signature) {
if (!key.is_valid())
return false;
const auto hash = sha512::compute(message);
auto result = 0;
return (ecc_verify_hash(cs(signature.data()), ul(signature.size()),
cs(hash.data()), ul(hash.size()), &result,
&key.get()) == CRYPT_OK &&
result != 0);
}
bool ecc::encrypt(const key& key, std::string& data) {
std::string out_data{};
out_data.resize(std::max(ul(data.size() * 3), ul(0x100)));
auto out_len = ul(out_data.size());
auto crypt = [&]() {
return ecc_encrypt_key(cs(data.data()), ul(data.size()),
cs(out_data.data()), &out_len, prng_.get_state(),
prng_.get_id(), find_hash("sha512"), &key.get());
};
auto res = crypt();
if (res == CRYPT_BUFFER_OVERFLOW) {
out_data.resize(out_len);
res = crypt();
}
if (res != CRYPT_OK) {
return false;
}
out_data.resize(out_len);
data = std::move(out_data);
return true;
}
bool ecc::decrypt(const key& key, std::string& data) {
std::string out_data{};
out_data.resize(std::max(ul(data.size() * 3), ul(0x100)));
auto out_len = ul(out_data.size());
auto crypt = [&]() {
return ecc_decrypt_key(cs(data.data()), ul(data.size()),
cs(out_data.data()), &out_len, &key.get());
};
auto res = crypt();
if (res == CRYPT_BUFFER_OVERFLOW) {
out_data.resize(out_len);
res = crypt();
}
if (res != CRYPT_OK) {
return false;
}
out_data.resize(out_len);
data = std::move(out_data);
return true;
}
std::string rsa::encrypt(const std::string& data, const std::string& hash,
const std::string& key) {
rsa_key new_key;
rsa_import(cs(key.data()), ul(key.size()), &new_key);
const auto _ = gsl::finally([&]() { rsa_free(&new_key); });
std::string out_data{};
out_data.resize(std::max(ul(data.size() * 3), ul(0x100)));
auto out_len = ul(out_data.size());
auto crypt = [&]() {
return rsa_encrypt_key(cs(data.data()), ul(data.size()),
cs(out_data.data()), &out_len, cs(hash.data()),
ul(hash.size()), prng_.get_state(), prng_.get_id(),
find_hash("sha512"), &new_key);
};
auto res = crypt();
if (res == CRYPT_BUFFER_OVERFLOW) {
out_data.resize(out_len);
res = crypt();
}
if (res == CRYPT_OK) {
out_data.resize(out_len);
return out_data;
}
return {};
}
std::string des3::encrypt(const std::string& data, const std::string& iv,
const std::string& key) {
std::string enc_data;
enc_data.resize(data.size());
symmetric_CBC cbc;
const auto des3 = find_cipher("3des");
cbc_start(des3, cs(iv.data()), cs(key.data()), static_cast<int>(key.size()),
0, &cbc);
cbc_encrypt(cs(data.data()), cs(enc_data.data()), ul(data.size()), &cbc);
cbc_done(&cbc);
return enc_data;
}
std::string des3::decrypt(const std::string& data, const std::string& iv,
const std::string& key) {
std::string dec_data;
dec_data.resize(data.size());
symmetric_CBC cbc;
const auto des3 = find_cipher("3des");
cbc_start(des3, cs(iv.data()), cs(key.data()), static_cast<int>(key.size()),
0, &cbc);
cbc_decrypt(cs(data.data()), cs(dec_data.data()), ul(data.size()), &cbc);
cbc_done(&cbc);
return dec_data;
}
std::string tiger::compute(const std::string& data, const bool hex) {
return compute(cs(data.data()), data.size(), hex);
}
std::string tiger::compute(const std::uint8_t* data, const std::size_t length,
const bool hex) {
std::uint8_t buffer[24]{};
hash_state state;
tiger_init(&state);
tiger_process(&state, data, ul(length));
tiger_done(&state, buffer);
std::string hash(cs(buffer), sizeof(buffer));
if (!hex)
return hash;
return string::dump_hex(hash, {});
}
std::string aes::encrypt(const std::string& data, const std::string& iv,
const std::string& key) {
std::string enc_data;
enc_data.resize(data.size());
symmetric_CBC cbc;
const auto aes = find_cipher("aes");
cbc_start(aes, cs(iv.data()), cs(key.data()), static_cast<int>(key.size()), 0,
&cbc);
cbc_encrypt(cs(data.data()), cs(enc_data.data()), ul(data.size()), &cbc);
cbc_done(&cbc);
return enc_data;
}
std::string aes::decrypt(const std::string& data, const std::string& iv,
const std::string& key) {
std::string dec_data;
dec_data.resize(data.size());
symmetric_CBC cbc;
const auto aes = find_cipher("aes");
cbc_start(aes, cs(iv.data()), cs(key.data()), static_cast<int>(key.size()), 0,
&cbc);
cbc_decrypt(cs(data.data()), cs(dec_data.data()), ul(data.size()), &cbc);
cbc_done(&cbc);
return dec_data;
}
std::string hmac_sha1::compute(const std::string& data,
const std::string& key) {
std::string buffer;
buffer.resize(20);
hmac_state state;
hmac_init(&state, find_hash("sha1"), cs(key.data()), ul(key.size()));
hmac_process(&state, cs(data.data()), static_cast<int>(data.size()));
auto out_len = ul(buffer.size());
hmac_done(&state, cs(buffer.data()), &out_len);
buffer.resize(out_len);
return buffer;
}
std::string sha1::compute(const std::string& data, const bool hex) {
return compute(cs(data.data()), data.size(), hex);
}
std::string sha1::compute(const std::uint8_t* data, const std::size_t length,
const bool hex) {
std::uint8_t buffer[20]{};
hash_state state;
sha1_init(&state);
sha1_process(&state, data, ul(length));
sha1_done(&state, buffer);
std::string hash(cs(buffer), sizeof(buffer));
if (!hex)
return hash;
return string::dump_hex(hash, {});
}
std::string sha256::compute(const std::string& data, const bool hex) {
return compute(cs(data.data()), data.size(), hex);
}
std::string sha256::compute(const std::uint8_t* data, const std::size_t length,
const bool hex) {
std::uint8_t buffer[32]{};
hash_state state;
sha256_init(&state);
sha256_process(&state, data, ul(length));
sha256_done(&state, buffer);
std::string hash(cs(buffer), sizeof(buffer));
if (!hex)
return hash;
return string::dump_hex(hash, {});
}
std::string sha512::compute(const std::string& data, const bool hex) {
return compute(cs(data.data()), data.size(), hex);
}
std::string sha512::compute(const std::uint8_t* data, const std::size_t length,
const bool hex) {
std::uint8_t buffer[64]{};
hash_state state;
sha512_init(&state);
sha512_process(&state, data, ul(length));
sha512_done(&state, buffer);
std::string hash(cs(buffer), sizeof(buffer));
if (!hex)
return hash;
return string::dump_hex(hash, {});
}
std::string base64::encode(const std::uint8_t* data, const std::size_t len) {
std::string result;
result.resize((len + 2) * 2);
auto out_len = ul(result.size());
if (base64_encode(data, ul(len), result.data(), &out_len) != CRYPT_OK) {
return {};
}
result.resize(out_len);
return result;
}
std::string base64::encode(const std::string& data) {
return encode(cs(data.data()), data.size());
}
std::string base64::decode(const std::string& data) {
std::string result;
result.resize((data.size() + 2) * 2);
auto out_len = ul(result.size());
if (base64_decode(data.data(), ul(data.size()), cs(result.data()),
&out_len) != CRYPT_OK) {
return {};
}
result.resize(out_len);
return result;
}
unsigned int jenkins_one_at_a_time::compute(const std::string& data) {
return compute(data.data(), data.size());
}
unsigned int jenkins_one_at_a_time::compute(const char* key,
const std::size_t len) {
std::uint32_t hash, i;
for (hash = i = 0; i < len; ++i) {
hash += key[i];
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
std::uint32_t random::get_integer() {
std::uint32_t result;
get_data(&result, sizeof(result));
return result;
}
std::string random::get_challenge() {
std::string result;
result.resize(sizeof(std::uint32_t));
get_data(result.data(), result.size());
return string::dump_hex(result, {});
}
void random::get_data(void* data, const std::size_t size) {
prng_.read(data, size);
}
} // namespace utils::cryptography