#include "tommath_private.h" #ifdef S_MP_MUL_COMBA_C /* LibTomMath, multiple-precision integer library -- Tom St Denis */ /* SPDX-License-Identifier: Unlicense */ /* Fast (comba) multiplier * * This is the fast column-array [comba] multiplier. It is * designed to compute the columns of the product first * then handle the carries afterwards. This has the effect * of making the nested loops that compute the columns very * simple and schedulable on super-scalar processors. * * This has been modified to produce a variable number of * digits of output so if say only a half-product is required * you don't have to compute the upper half (a feature * required for fast Barrett reduction). * * Based on Algorithm 14.12 on pp.595 of HAC. * */ mp_err s_mp_mul_comba(const mp_int *a, const mp_int *b, mp_int *c, int digs) { int oldused, pa, ix; mp_err err; mp_digit W[MP_WARRAY]; mp_word _W; /* grow the destination as required */ if ((err = mp_grow(c, digs)) != MP_OKAY) { return err; } /* number of output digits to produce */ pa = MP_MIN(digs, a->used + b->used); /* clear the carry */ _W = 0; for (ix = 0; ix < pa; ix++) { int tx, ty, iy, iz; /* get offsets into the two bignums */ ty = MP_MIN(b->used-1, ix); tx = ix - ty; /* this is the number of times the loop will iterate, essentially while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MP_MIN(a->used-tx, ty+1); /* execute loop */ for (iz = 0; iz < iy; ++iz) { _W += (mp_word)a->dp[tx + iz] * (mp_word)b->dp[ty - iz]; } /* store term */ W[ix] = (mp_digit)_W & MP_MASK; /* make next carry */ _W = _W >> (mp_word)MP_DIGIT_BIT; } /* setup dest */ oldused = c->used; c->used = pa; for (ix = 0; ix < pa; ix++) { /* now extract the previous digit [below the carry] */ c->dp[ix] = W[ix]; } /* clear unused digits [that existed in the old copy of c] */ s_mp_zero_digs(c->dp + c->used, oldused - c->used); mp_clamp(c); return MP_OKAY; } #endif