h2-mod/deps/asmjit/test/asmjit_test_misc.h
2024-03-07 03:33:59 -05:00

258 lines
6.3 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#ifndef ASMJIT_TEST_MISC_H_INCLUDED
#define ASMJIT_TEST_MISC_H_INCLUDED
#include <asmjit/x86.h>
namespace asmtest {
using namespace asmjit;
// Generates a typical alpha blend function that uses SSE2 instruction set.
// This function combines emitting instructions with control flow constructs
// like binding Labels and jumping to them. This should be pretty representative.
template<typename Emitter>
static void generateSseAlphaBlendInternal(
Emitter& cc,
const x86::Gp& dst, const x86::Gp& src, const x86::Gp& n,
const x86::Gp& gp0,
const x86::Xmm& simd0, const x86::Xmm& simd1, const x86::Xmm& simd2, const x86::Xmm& simd3,
const x86::Xmm& simd4, const x86::Xmm& simd5, const x86::Xmm& simd6, const x86::Xmm& simd7) {
x86::Gp i = n;
x86::Gp j = gp0;
x86::Xmm vzero = simd0;
x86::Xmm v0080 = simd1;
x86::Xmm v0101 = simd2;
Label L_SmallLoop = cc.newLabel();
Label L_SmallEnd = cc.newLabel();
Label L_LargeLoop = cc.newLabel();
Label L_LargeEnd = cc.newLabel();
Label L_Done = cc.newLabel();
// Load SIMD Constants.
cc.xorps(vzero, vzero);
cc.mov(gp0.r32(), 0x00800080);
cc.movd(v0080, gp0.r32());
cc.mov(gp0.r32(), 0x01010101);
cc.movd(v0101, gp0.r32());
cc.pshufd(v0080, v0080, x86::shuffleImm(0, 0, 0, 0));
cc.pshufd(v0101, v0101, x86::shuffleImm(0, 0, 0, 0));
// How many pixels have to be processed to make the loop aligned.
cc.xor_(j, j);
cc.sub(j, dst);
cc.and_(j, 15);
cc.shr(j, 2);
cc.jz(L_SmallEnd);
cc.cmp(j, i);
cc.cmovg(j, i); // j = min(i, j)
cc.sub(i, j); // i -= j
// Small loop.
cc.bind(L_SmallLoop);
{
x86::Xmm x0 = simd3;
x86::Xmm y0 = simd4;
x86::Xmm a0 = simd5;
cc.movd(y0, x86::ptr(src));
cc.movd(x0, x86::ptr(dst));
cc.pcmpeqb(a0, a0);
cc.pxor(a0, y0);
cc.psrlw(a0, 8);
cc.punpcklbw(x0, vzero);
cc.pshuflw(a0, a0, x86::shuffleImm(1, 1, 1, 1));
cc.punpcklbw(y0, vzero);
cc.pmullw(x0, a0);
cc.paddsw(x0, v0080);
cc.pmulhuw(x0, v0101);
cc.paddw(x0, y0);
cc.packuswb(x0, x0);
cc.movd(x86::ptr(dst), x0);
cc.add(dst, 4);
cc.add(src, 4);
cc.dec(j);
cc.jnz(L_SmallLoop);
}
// Second section, prepare for an aligned loop.
cc.bind(L_SmallEnd);
cc.test(i, i);
cc.mov(j, i);
cc.jz(L_Done);
cc.and_(j, 3);
cc.shr(i, 2);
cc.jz(L_LargeEnd);
// Aligned loop.
cc.bind(L_LargeLoop);
{
x86::Xmm x0 = simd3;
x86::Xmm x1 = simd4;
x86::Xmm y0 = simd5;
x86::Xmm a0 = simd6;
x86::Xmm a1 = simd7;
cc.movups(y0, x86::ptr(src));
cc.movaps(x0, x86::ptr(dst));
cc.pcmpeqb(a0, a0);
cc.xorps(a0, y0);
cc.movaps(x1, x0);
cc.psrlw(a0, 8);
cc.punpcklbw(x0, vzero);
cc.movaps(a1, a0);
cc.punpcklwd(a0, a0);
cc.punpckhbw(x1, vzero);
cc.punpckhwd(a1, a1);
cc.pshufd(a0, a0, x86::shuffleImm(3, 3, 1, 1));
cc.pshufd(a1, a1, x86::shuffleImm(3, 3, 1, 1));
cc.pmullw(x0, a0);
cc.pmullw(x1, a1);
cc.paddsw(x0, v0080);
cc.paddsw(x1, v0080);
cc.pmulhuw(x0, v0101);
cc.pmulhuw(x1, v0101);
cc.add(src, 16);
cc.packuswb(x0, x1);
cc.paddw(x0, y0);
cc.movaps(x86::ptr(dst), x0);
cc.add(dst, 16);
cc.dec(i);
cc.jnz(L_LargeLoop);
}
cc.bind(L_LargeEnd);
cc.test(j, j);
cc.jnz(L_SmallLoop);
cc.bind(L_Done);
}
static void generateSseAlphaBlend(asmjit::BaseEmitter& emitter, bool emitPrologEpilog) {
using namespace asmjit::x86;
if (emitter.isAssembler()) {
Assembler& cc = *emitter.as<Assembler>();
x86::Gp dst = cc.zax();
x86::Gp src = cc.zcx();
x86::Gp i = cc.zdx();
x86::Gp j = cc.zdi();
if (emitPrologEpilog) {
FuncDetail func;
func.init(FuncSignature::build<void, void*, const void*, size_t>(), cc.environment());
FuncFrame frame;
frame.init(func);
frame.addDirtyRegs(dst, src, i, j);
frame.addDirtyRegs(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
FuncArgsAssignment args(&func);
args.assignAll(dst, src, i);
args.updateFuncFrame(frame);
frame.finalize();
cc.emitProlog(frame);
cc.emitArgsAssignment(frame, args);
generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
cc.emitEpilog(frame);
}
else {
generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
}
}
#ifndef ASMJIT_NO_BUILDER
else if (emitter.isBuilder()) {
Builder& cc = *emitter.as<Builder>();
x86::Gp dst = cc.zax();
x86::Gp src = cc.zcx();
x86::Gp i = cc.zdx();
x86::Gp j = cc.zdi();
if (emitPrologEpilog) {
FuncDetail func;
func.init(FuncSignature::build<void, void*, const void*, size_t>(), cc.environment());
FuncFrame frame;
frame.init(func);
frame.addDirtyRegs(dst, src, i, j);
frame.addDirtyRegs(xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
FuncArgsAssignment args(&func);
args.assignAll(dst, src, i);
args.updateFuncFrame(frame);
frame.finalize();
cc.emitProlog(frame);
cc.emitArgsAssignment(frame, args);
generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
cc.emitEpilog(frame);
}
else {
generateSseAlphaBlendInternal(cc, dst, src, i, j, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7);
}
}
#endif
#ifndef ASMJIT_NO_COMPILER
else if (emitter.isCompiler()) {
Compiler& cc = *emitter.as<Compiler>();
Gp dst = cc.newIntPtr("dst");
Gp src = cc.newIntPtr("src");
Gp i = cc.newIntPtr("i");
Gp j = cc.newIntPtr("j");
Xmm v0 = cc.newXmm("v0");
Xmm v1 = cc.newXmm("v1");
Xmm v2 = cc.newXmm("v2");
Xmm v3 = cc.newXmm("v3");
Xmm v4 = cc.newXmm("v4");
Xmm v5 = cc.newXmm("v5");
Xmm v6 = cc.newXmm("v6");
Xmm v7 = cc.newXmm("v7");
FuncNode* funcNode = cc.addFunc(FuncSignature::build<void, void*, const void*, size_t>());
funcNode->setArg(0, dst);
funcNode->setArg(1, src);
funcNode->setArg(2, i);
generateSseAlphaBlendInternal(cc, dst, src, i, j, v0, v1, v2, v3, v4, v5, v6, v7);
cc.endFunc();
}
#endif
}
} // {asmtest}
#endif // ASMJIT_TEST_MISC_H_INCLUDED