/* ** $Id: lmathlib.c $ ** Standard mathematical library ** See Copyright Notice in lua.h */ #define lmathlib_c #define LUA_LIB #include "lprefix.h" #include #include #include #include #include #include "lua.h" #include "lauxlib.h" #include "lualib.h" #undef PI #define PI (l_mathop(3.141592653589793238462643383279502884)) static int math_abs (lua_State *L) { if (lua_isinteger(L, 1)) { lua_Integer n = lua_tointeger(L, 1); if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); lua_pushinteger(L, n); } else lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); return 1; } static int math_sin (lua_State *L) { lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); return 1; } static int math_cos (lua_State *L) { lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); return 1; } static int math_tan (lua_State *L) { lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); return 1; } static int math_asin (lua_State *L) { lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); return 1; } static int math_acos (lua_State *L) { lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); return 1; } static int math_atan (lua_State *L) { lua_Number y = luaL_checknumber(L, 1); lua_Number x = luaL_optnumber(L, 2, 1); lua_pushnumber(L, l_mathop(atan2)(y, x)); return 1; } static int math_toint (lua_State *L) { int valid; lua_Integer n = lua_tointegerx(L, 1, &valid); if (l_likely(valid)) lua_pushinteger(L, n); else { luaL_checkany(L, 1); luaL_pushfail(L); /* value is not convertible to integer */ } return 1; } static void pushnumint (lua_State *L, lua_Number d) { lua_Integer n; if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ lua_pushinteger(L, n); /* result is integer */ else lua_pushnumber(L, d); /* result is float */ } static int math_floor (lua_State *L) { if (lua_isinteger(L, 1)) lua_settop(L, 1); /* integer is its own floor */ else { lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); pushnumint(L, d); } return 1; } static int math_ceil (lua_State *L) { if (lua_isinteger(L, 1)) lua_settop(L, 1); /* integer is its own ceil */ else { lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); pushnumint(L, d); } return 1; } static int math_fmod (lua_State *L) { if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { lua_Integer d = lua_tointeger(L, 2); if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ luaL_argcheck(L, d != 0, 2, "zero"); lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ } else lua_pushinteger(L, lua_tointeger(L, 1) % d); } else lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), luaL_checknumber(L, 2))); return 1; } /* ** next function does not use 'modf', avoiding problems with 'double*' ** (which is not compatible with 'float*') when lua_Number is not ** 'double'. */ static int math_modf (lua_State *L) { if (lua_isinteger(L ,1)) { lua_settop(L, 1); /* number is its own integer part */ lua_pushnumber(L, 0); /* no fractional part */ } else { lua_Number n = luaL_checknumber(L, 1); /* integer part (rounds toward zero) */ lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); pushnumint(L, ip); /* fractional part (test needed for inf/-inf) */ lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); } return 2; } static int math_sqrt (lua_State *L) { lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); return 1; } static int math_ult (lua_State *L) { lua_Integer a = luaL_checkinteger(L, 1); lua_Integer b = luaL_checkinteger(L, 2); lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); return 1; } static int math_log (lua_State *L) { lua_Number x = luaL_checknumber(L, 1); lua_Number res; if (lua_isnoneornil(L, 2)) res = l_mathop(log)(x); else { lua_Number base = luaL_checknumber(L, 2); #if !defined(LUA_USE_C89) if (base == l_mathop(2.0)) res = l_mathop(log2)(x); else #endif if (base == l_mathop(10.0)) res = l_mathop(log10)(x); else res = l_mathop(log)(x)/l_mathop(log)(base); } lua_pushnumber(L, res); return 1; } static int math_exp (lua_State *L) { lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); return 1; } static int math_deg (lua_State *L) { lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); return 1; } static int math_rad (lua_State *L) { lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); return 1; } static int math_min (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ int imin = 1; /* index of current minimum value */ int i; luaL_argcheck(L, n >= 1, 1, "value expected"); for (i = 2; i <= n; i++) { if (lua_compare(L, i, imin, LUA_OPLT)) imin = i; } lua_pushvalue(L, imin); return 1; } static int math_max (lua_State *L) { int n = lua_gettop(L); /* number of arguments */ int imax = 1; /* index of current maximum value */ int i; luaL_argcheck(L, n >= 1, 1, "value expected"); for (i = 2; i <= n; i++) { if (lua_compare(L, imax, i, LUA_OPLT)) imax = i; } lua_pushvalue(L, imax); return 1; } static int math_type (lua_State *L) { if (lua_type(L, 1) == LUA_TNUMBER) lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); else { luaL_checkany(L, 1); luaL_pushfail(L); } return 1; } /* ** {================================================================== ** Pseudo-Random Number Generator based on 'xoshiro256**'. ** =================================================================== */ /* ** This code uses lots of shifts. ANSI C does not allow shifts greater ** than or equal to the width of the type being shifted, so some shifts ** are written in convoluted ways to match that restriction. For ** preprocessor tests, it assumes a width of 32 bits, so the maximum ** shift there is 31 bits. */ /* number of binary digits in the mantissa of a float */ #define FIGS l_floatatt(MANT_DIG) #if FIGS > 64 /* there are only 64 random bits; use them all */ #undef FIGS #define FIGS 64 #endif /* ** LUA_RAND32 forces the use of 32-bit integers in the implementation ** of the PRN generator (mainly for testing). */ #if !defined(LUA_RAND32) && !defined(Rand64) /* try to find an integer type with at least 64 bits */ #if ((ULONG_MAX >> 31) >> 31) >= 3 /* 'long' has at least 64 bits */ #define Rand64 unsigned long #define SRand64 long #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) /* there is a 'long long' type (which must have at least 64 bits) */ #define Rand64 unsigned long long #define SRand64 long long #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3 /* 'lua_Unsigned' has at least 64 bits */ #define Rand64 lua_Unsigned #define SRand64 lua_Integer #endif #endif #if defined(Rand64) /* { */ /* ** Standard implementation, using 64-bit integers. ** If 'Rand64' has more than 64 bits, the extra bits do not interfere ** with the 64 initial bits, except in a right shift. Moreover, the ** final result has to discard the extra bits. */ /* avoid using extra bits when needed */ #define trim64(x) ((x) & 0xffffffffffffffffu) /* rotate left 'x' by 'n' bits */ static Rand64 rotl (Rand64 x, int n) { return (x << n) | (trim64(x) >> (64 - n)); } static Rand64 nextrand (Rand64 *state) { Rand64 state0 = state[0]; Rand64 state1 = state[1]; Rand64 state2 = state[2] ^ state0; Rand64 state3 = state[3] ^ state1; Rand64 res = rotl(state1 * 5, 7) * 9; state[0] = state0 ^ state3; state[1] = state1 ^ state2; state[2] = state2 ^ (state1 << 17); state[3] = rotl(state3, 45); return res; } /* ** Convert bits from a random integer into a float in the ** interval [0,1), getting the higher FIG bits from the ** random unsigned integer and converting that to a float. ** Some old Microsoft compilers cannot cast an unsigned long ** to a floating-point number, so we use a signed long as an ** intermediary. When lua_Number is float or double, the shift ensures ** that 'sx' is non negative; in that case, a good compiler will remove ** the correction. */ /* must throw out the extra (64 - FIGS) bits */ #define shift64_FIG (64 - FIGS) /* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */ #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) static lua_Number I2d (Rand64 x) { SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG); lua_Number res = (lua_Number)(sx) * scaleFIG; if (sx < 0) res += 1.0; /* correct the two's complement if negative */ lua_assert(0 <= res && res < 1); return res; } /* convert a 'Rand64' to a 'lua_Unsigned' */ #define I2UInt(x) ((lua_Unsigned)trim64(x)) /* convert a 'lua_Unsigned' to a 'Rand64' */ #define Int2I(x) ((Rand64)(x)) #else /* no 'Rand64' }{ */ /* get an integer with at least 32 bits */ #if LUAI_IS32INT typedef unsigned int lu_int32; #else typedef unsigned long lu_int32; #endif /* ** Use two 32-bit integers to represent a 64-bit quantity. */ typedef struct Rand64 { lu_int32 h; /* higher half */ lu_int32 l; /* lower half */ } Rand64; /* ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere ** with the 32 initial bits, except in a right shift and comparisons. ** Moreover, the final result has to discard the extra bits. */ /* avoid using extra bits when needed */ #define trim32(x) ((x) & 0xffffffffu) /* ** basic operations on 'Rand64' values */ /* build a new Rand64 value */ static Rand64 packI (lu_int32 h, lu_int32 l) { Rand64 result; result.h = h; result.l = l; return result; } /* return i << n */ static Rand64 Ishl (Rand64 i, int n) { lua_assert(n > 0 && n < 32); return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); } /* i1 ^= i2 */ static void Ixor (Rand64 *i1, Rand64 i2) { i1->h ^= i2.h; i1->l ^= i2.l; } /* return i1 + i2 */ static Rand64 Iadd (Rand64 i1, Rand64 i2) { Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); if (trim32(result.l) < trim32(i1.l)) /* carry? */ result.h++; return result; } /* return i * 5 */ static Rand64 times5 (Rand64 i) { return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ } /* return i * 9 */ static Rand64 times9 (Rand64 i) { return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ } /* return 'i' rotated left 'n' bits */ static Rand64 rotl (Rand64 i, int n) { lua_assert(n > 0 && n < 32); return packI((i.h << n) | (trim32(i.l) >> (32 - n)), (trim32(i.h) >> (32 - n)) | (i.l << n)); } /* for offsets larger than 32, rotate right by 64 - offset */ static Rand64 rotl1 (Rand64 i, int n) { lua_assert(n > 32 && n < 64); n = 64 - n; return packI((trim32(i.h) >> n) | (i.l << (32 - n)), (i.h << (32 - n)) | (trim32(i.l) >> n)); } /* ** implementation of 'xoshiro256**' algorithm on 'Rand64' values */ static Rand64 nextrand (Rand64 *state) { Rand64 res = times9(rotl(times5(state[1]), 7)); Rand64 t = Ishl(state[1], 17); Ixor(&state[2], state[0]); Ixor(&state[3], state[1]); Ixor(&state[1], state[2]); Ixor(&state[0], state[3]); Ixor(&state[2], t); state[3] = rotl1(state[3], 45); return res; } /* ** Converts a 'Rand64' into a float. */ /* an unsigned 1 with proper type */ #define UONE ((lu_int32)1) #if FIGS <= 32 /* 2^(-FIGS) */ #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) /* ** get up to 32 bits from higher half, shifting right to ** throw out the extra bits. */ static lua_Number I2d (Rand64 x) { lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); return h * scaleFIG; } #else /* 32 < FIGS <= 64 */ /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ #define scaleFIG \ (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) /* ** use FIGS - 32 bits from lower half, throwing out the other ** (32 - (FIGS - 32)) = (64 - FIGS) bits */ #define shiftLOW (64 - FIGS) /* ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) */ #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) static lua_Number I2d (Rand64 x) { lua_Number h = (lua_Number)trim32(x.h) * shiftHI; lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); return (h + l) * scaleFIG; } #endif /* convert a 'Rand64' to a 'lua_Unsigned' */ static lua_Unsigned I2UInt (Rand64 x) { return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l); } /* convert a 'lua_Unsigned' to a 'Rand64' */ static Rand64 Int2I (lua_Unsigned n) { return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n); } #endif /* } */ /* ** A state uses four 'Rand64' values. */ typedef struct { Rand64 s[4]; } RanState; /* ** Project the random integer 'ran' into the interval [0, n]. ** Because 'ran' has 2^B possible values, the projection can only be ** uniform when the size of the interval is a power of 2 (exact ** division). Otherwise, to get a uniform projection into [0, n], we ** first compute 'lim', the smallest Mersenne number not smaller than ** 'n'. We then project 'ran' into the interval [0, lim]. If the result ** is inside [0, n], we are done. Otherwise, we try with another 'ran', ** until we have a result inside the interval. */ static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, RanState *state) { if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ return ran & n; /* no bias */ else { lua_Unsigned lim = n; /* compute the smallest (2^b - 1) not smaller than 'n' */ lim |= (lim >> 1); lim |= (lim >> 2); lim |= (lim >> 4); lim |= (lim >> 8); lim |= (lim >> 16); #if (LUA_MAXUNSIGNED >> 31) >= 3 lim |= (lim >> 32); /* integer type has more than 32 bits */ #endif lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ && lim >= n /* not smaller than 'n', */ && (lim >> 1) < n); /* and it is the smallest one */ while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ return ran; } } static int math_random (lua_State *L) { lua_Integer low, up; lua_Unsigned p; RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); Rand64 rv = nextrand(state->s); /* next pseudo-random value */ switch (lua_gettop(L)) { /* check number of arguments */ case 0: { /* no arguments */ lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ return 1; } case 1: { /* only upper limit */ low = 1; up = luaL_checkinteger(L, 1); if (up == 0) { /* single 0 as argument? */ lua_pushinteger(L, I2UInt(rv)); /* full random integer */ return 1; } break; } case 2: { /* lower and upper limits */ low = luaL_checkinteger(L, 1); up = luaL_checkinteger(L, 2); break; } default: return luaL_error(L, "wrong number of arguments"); } /* random integer in the interval [low, up] */ luaL_argcheck(L, low <= up, 1, "interval is empty"); /* project random integer into the interval [0, up - low] */ p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); lua_pushinteger(L, p + (lua_Unsigned)low); return 1; } static void setseed (lua_State *L, Rand64 *state, lua_Unsigned n1, lua_Unsigned n2) { int i; state[0] = Int2I(n1); state[1] = Int2I(0xff); /* avoid a zero state */ state[2] = Int2I(n2); state[3] = Int2I(0); for (i = 0; i < 16; i++) nextrand(state); /* discard initial values to "spread" seed */ lua_pushinteger(L, n1); lua_pushinteger(L, n2); } /* ** Set a "random" seed. To get some randomness, use the current time ** and the address of 'L' (in case the machine does address space layout ** randomization). */ static void randseed (lua_State *L, RanState *state) { lua_Unsigned seed1 = (lua_Unsigned)time(NULL); lua_Unsigned seed2 = (lua_Unsigned)(size_t)L; setseed(L, state->s, seed1, seed2); } static int math_randomseed (lua_State *L) { RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); if (lua_isnone(L, 1)) { randseed(L, state); } else { lua_Integer n1 = luaL_checkinteger(L, 1); lua_Integer n2 = luaL_optinteger(L, 2, 0); setseed(L, state->s, n1, n2); } return 2; /* return seeds */ } static const luaL_Reg randfuncs[] = { {"random", math_random}, {"randomseed", math_randomseed}, {NULL, NULL} }; /* ** Register the random functions and initialize their state. */ static void setrandfunc (lua_State *L) { RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); randseed(L, state); /* initialize with a "random" seed */ lua_pop(L, 2); /* remove pushed seeds */ luaL_setfuncs(L, randfuncs, 1); } /* }================================================================== */ /* ** {================================================================== ** Deprecated functions (for compatibility only) ** =================================================================== */ #if defined(LUA_COMPAT_MATHLIB) static int math_cosh (lua_State *L) { lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); return 1; } static int math_sinh (lua_State *L) { lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); return 1; } static int math_tanh (lua_State *L) { lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); return 1; } static int math_pow (lua_State *L) { lua_Number x = luaL_checknumber(L, 1); lua_Number y = luaL_checknumber(L, 2); lua_pushnumber(L, l_mathop(pow)(x, y)); return 1; } static int math_frexp (lua_State *L) { int e; lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); lua_pushinteger(L, e); return 2; } static int math_ldexp (lua_State *L) { lua_Number x = luaL_checknumber(L, 1); int ep = (int)luaL_checkinteger(L, 2); lua_pushnumber(L, l_mathop(ldexp)(x, ep)); return 1; } static int math_log10 (lua_State *L) { lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); return 1; } #endif /* }================================================================== */ static const luaL_Reg mathlib[] = { {"abs", math_abs}, {"acos", math_acos}, {"asin", math_asin}, {"atan", math_atan}, {"ceil", math_ceil}, {"cos", math_cos}, {"deg", math_deg}, {"exp", math_exp}, {"tointeger", math_toint}, {"floor", math_floor}, {"fmod", math_fmod}, {"ult", math_ult}, {"log", math_log}, {"max", math_max}, {"min", math_min}, {"modf", math_modf}, {"rad", math_rad}, {"sin", math_sin}, {"sqrt", math_sqrt}, {"tan", math_tan}, {"type", math_type}, #if defined(LUA_COMPAT_MATHLIB) {"atan2", math_atan}, {"cosh", math_cosh}, {"sinh", math_sinh}, {"tanh", math_tanh}, {"pow", math_pow}, {"frexp", math_frexp}, {"ldexp", math_ldexp}, {"log10", math_log10}, #endif /* placeholders */ {"random", NULL}, {"randomseed", NULL}, {"pi", NULL}, {"huge", NULL}, {"maxinteger", NULL}, {"mininteger", NULL}, {NULL, NULL} }; /* ** Open math library */ LUAMOD_API int luaopen_math (lua_State *L) { luaL_newlib(L, mathlib); lua_pushnumber(L, PI); lua_setfield(L, -2, "pi"); lua_pushnumber(L, (lua_Number)HUGE_VAL); lua_setfield(L, -2, "huge"); lua_pushinteger(L, LUA_MAXINTEGER); lua_setfield(L, -2, "maxinteger"); lua_pushinteger(L, LUA_MININTEGER); lua_setfield(L, -2, "mininteger"); setrandfunc(L); return 1; }