// sol3 // The MIT License (MIT) // Copyright (c) 2013-2022 Rapptz, ThePhD and contributors // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files (the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #ifndef SOL_TABLE_PROXY_HPP #define SOL_TABLE_PROXY_HPP #include <sol/traits.hpp> #include <sol/function.hpp> #include <sol/protected_function.hpp> #include <sol/proxy_base.hpp> namespace sol { template <typename Table, typename Key> struct table_proxy : public proxy_base<table_proxy<Table, Key>> { private: using key_type = detail::proxy_key_t<Key>; template <typename T, std::size_t... I> decltype(auto) tuple_get(std::index_sequence<I...>) const& { return tbl.template traverse_get<T>(std::get<I>(key)...); } template <typename T, std::size_t... I> decltype(auto) tuple_get(std::index_sequence<I...>) && { return tbl.template traverse_get<T>(std::get<I>(std::move(key))...); } template <std::size_t... I, typename T> void tuple_set(std::index_sequence<I...>, T&& value) & { tbl.traverse_set(std::get<I>(key)..., std::forward<T>(value)); } template <std::size_t... I, typename T> void tuple_set(std::index_sequence<I...>, T&& value) && { tbl.traverse_set(std::get<I>(std::move(key))..., std::forward<T>(value)); } auto setup_table(std::true_type) { auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, tbl.stack_index()); lua_pop(lua_state(), p.levels); return p; } bool is_valid(std::false_type) { auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same_v<meta::unqualified_t<Table>, global_table>>(lua_state(), key, lua_gettop(lua_state())); lua_pop(lua_state(), p.levels); return p; } public: Table tbl; key_type key; template <typename T> table_proxy(Table table, T&& k) : tbl(table), key(std::forward<T>(k)) { } table_proxy(const table_proxy&) = default; table_proxy(table_proxy&&) = default; table_proxy& operator=(const table_proxy& right) { return set(right); } table_proxy& operator=(table_proxy&& right) { return set(std::move(right)); } template <typename T> table_proxy& set(T&& item) & { tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item)); return *this; } template <typename T> table_proxy&& set(T&& item) && { std::move(*this).tuple_set(std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>(), std::forward<T>(item)); return std::move(*this); } template <typename... Args> table_proxy& set_function(Args&&... args) & { tbl.set_function(key, std::forward<Args>(args)...); return *this; } template <typename... Args> table_proxy&& set_function(Args&&... args) && { tbl.set_function(std::move(key), std::forward<Args>(args)...); return std::move(*this); } template <typename T, std::enable_if_t<!std::is_same_v<meta::unqualified_t<T>, table_proxy>>* = nullptr> table_proxy& operator=(T&& other) & { using Tu = meta::unwrap_unqualified_t<T>; if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_invocable_v<Tu>) { return set_function(std::forward<T>(other)); } else { return set(std::forward<T>(other)); } } template <typename T, std::enable_if_t<!std::is_same_v<meta::unqualified_t<T>, table_proxy>>* = nullptr> table_proxy&& operator=(T&& other) && { using Tu = meta::unwrap_unqualified_t<T>; if constexpr (!is_lua_reference_or_proxy_v<Tu> && meta::is_invocable_v<Tu> && !detail::is_msvc_callable_rigged_v<T>) { return std::move(*this).set_function(std::forward<T>(other)); } else { return std::move(*this).set(std::forward<T>(other)); } } template <typename T> table_proxy& operator=(std::initializer_list<T> other) & { return set(std::move(other)); } template <typename T> table_proxy&& operator=(std::initializer_list<T> other) && { return std::move(*this).set(std::move(other)); } template <typename T> bool is() const { typedef decltype(get<T>()) U; optional<U> option = this->get<optional<U>>(); return option.has_value(); } template <typename T> decltype(auto) get() const& { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; return tuple_get<T>(idx_seq()); } template <typename T> decltype(auto) get() && { using idx_seq = std::make_index_sequence<std::tuple_size_v<meta::unqualified_t<key_type>>>; return std::move(*this).template tuple_get<T>(idx_seq()); } template <typename T> decltype(auto) get_or(T&& otherwise) const { typedef decltype(get<T>()) U; optional<U> option = get<optional<U>>(); if (option) { return static_cast<U>(option.value()); } return static_cast<U>(std::forward<T>(otherwise)); } template <typename T, typename D> decltype(auto) get_or(D&& otherwise) const { optional<T> option = get<optional<T>>(); if (option) { return static_cast<T>(option.value()); } return static_cast<T>(std::forward<D>(otherwise)); } template <typename T> decltype(auto) get_or_create() { return get_or_create<T>(new_table()); } template <typename T, typename Otherwise> decltype(auto) get_or_create(Otherwise&& other) { if (!this->valid()) { this->set(std::forward<Otherwise>(other)); } return get<T>(); } template <typename K> decltype(auto) operator[](K&& k) const& { auto keys = meta::tuplefy(key, std::forward<K>(k)); return table_proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename K> decltype(auto) operator[](K&& k) & { auto keys = meta::tuplefy(key, std::forward<K>(k)); return table_proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename K> decltype(auto) operator[](K&& k) && { auto keys = meta::tuplefy(std::move(key), std::forward<K>(k)); return table_proxy<Table, decltype(keys)>(tbl, std::move(keys)); } template <typename... Ret, typename... Args> decltype(auto) call(Args&&... args) { lua_State* L = this->lua_state(); push(L); int idx = lua_gettop(L); stack_aligned_function func(L, idx); return func.call<Ret...>(std::forward<Args>(args)...); } template <typename... Args> decltype(auto) operator()(Args&&... args) { return call<>(std::forward<Args>(args)...); } bool valid() const { auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); lua_pop(lua_state(), p.levels); return p; } int push() const noexcept { return push(this->lua_state()); } int push(lua_State* L) const noexcept { if constexpr (std::is_same_v<meta::unqualified_t<Table>, global_table> || is_stack_table_v<meta::unqualified_t<Table>>) { auto pp = stack::push_pop<true>(tbl); int tableindex = pp.index_of(tbl); int top_index = lua_gettop(L); stack::get_field<true>(lua_state(), key, tableindex); lua_replace(L, top_index + 1); lua_settop(L, top_index + 1); } else { auto pp = stack::push_pop<false>(tbl); int tableindex = pp.index_of(tbl); int aftertableindex = lua_gettop(L); stack::get_field<false>(lua_state(), key, tableindex); lua_replace(L, tableindex); lua_settop(L, aftertableindex + 1); } return 1; } type get_type() const { type t = type::none; auto pp = stack::push_pop(tbl); auto p = stack::probe_get_field<std::is_same<meta::unqualified_t<Table>, global_table>::value>(lua_state(), key, lua_gettop(lua_state())); if (p) { t = type_of(lua_state(), -1); } lua_pop(lua_state(), p.levels); return t; } lua_State* lua_state() const { return tbl.lua_state(); } table_proxy& force() { if (!this->valid()) { this->set(new_table()); } return *this; } }; template <typename Table, typename Key, typename T> inline bool operator==(T&& left, const table_proxy<Table, Key>& right) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() == left; } template <typename Table, typename Key, typename T> inline bool operator==(const table_proxy<Table, Key>& right, T&& left) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() == left; } template <typename Table, typename Key, typename T> inline bool operator!=(T&& left, const table_proxy<Table, Key>& right) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() != left; } template <typename Table, typename Key, typename T> inline bool operator!=(const table_proxy<Table, Key>& right, T&& left) { using G = decltype(stack::get<T>(nullptr, 0)); return right.template get<optional<G>>() != left; } template <typename Table, typename Key> inline bool operator==(lua_nil_t, const table_proxy<Table, Key>& right) { return !right.valid(); } template <typename Table, typename Key> inline bool operator==(const table_proxy<Table, Key>& right, lua_nil_t) { return !right.valid(); } template <typename Table, typename Key> inline bool operator!=(lua_nil_t, const table_proxy<Table, Key>& right) { return right.valid(); } template <typename Table, typename Key> inline bool operator!=(const table_proxy<Table, Key>& right, lua_nil_t) { return right.valid(); } template <bool b> template <typename Super> basic_reference<b>& basic_reference<b>::operator=(proxy_base<Super>&& r) { basic_reference<b> v = r; this->operator=(std::move(v)); return *this; } template <bool b> template <typename Super> basic_reference<b>& basic_reference<b>::operator=(const proxy_base<Super>& r) { basic_reference<b> v = r; this->operator=(std::move(v)); return *this; } namespace stack { template <typename Table, typename Key> struct unqualified_pusher<table_proxy<Table, Key>> { static int push(lua_State* L, const table_proxy<Table, Key>& p) { return p.push(L); } }; } // namespace stack } // namespace sol #endif // SOL_TABLE_PROXY_HPP