12cf2e8247
Add IsEvadedOffense to EFPenalty Fix remote log reading in not Windows
74 lines
2.1 KiB
Python
74 lines
2.1 KiB
Python
from math import log, pi, sqrt
|
|
|
|
|
|
def erfinv(x, a=.147):
|
|
"""Approximation of the inverse error function
|
|
https://en.wikipedia.org/wiki/Error_function
|
|
#Approximation_with_elementary_functions
|
|
"""
|
|
lnx = log(1 - x * x)
|
|
part1 = (2 / (a * pi) + lnx / 2)
|
|
part2 = lnx / a
|
|
sgn = 1 if x > 0 else -1
|
|
return sgn * sqrt(sqrt(part1 * part1 - part2) - part1)
|
|
|
|
|
|
def norm_ppf(x):
|
|
if not 0 < x < 1:
|
|
raise ValueError("Can't compute the percentage point for value %d" % x)
|
|
return sqrt(2) * erfinv(2 * x - 1)
|
|
|
|
|
|
def ppf(x, n):
|
|
try:
|
|
from scipy import stats
|
|
except ImportError:
|
|
stats = None
|
|
|
|
if stats:
|
|
if n < 30:
|
|
return stats.t.ppf(x, n)
|
|
return stats.norm.ppf(x)
|
|
else:
|
|
if n < 30:
|
|
# TODO: implement power series:
|
|
# http://eprints.maths.ox.ac.uk/184/1/tdist.pdf
|
|
raise ImportError(
|
|
'You must have scipy installed to use t-student '
|
|
'when sample_size is below 30')
|
|
return norm_ppf(x)
|
|
|
|
# According to http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/
|
|
# BS704_Confidence_Intervals/BS704_Confidence_Intervals_print.html
|
|
|
|
|
|
def confidence_interval_continuous(
|
|
point_estimate, stddev, sample_size, confidence=.95, **kwargs):
|
|
"""Continuous confidence interval from sample size and standard error"""
|
|
alpha = ppf((confidence + 1) / 2, sample_size - 1)
|
|
|
|
margin = stddev / sqrt(sample_size)
|
|
return (point_estimate - alpha * margin, point_estimate + alpha * margin)
|
|
|
|
|
|
def confidence_interval_dichotomous(
|
|
point_estimate, sample_size, confidence=.95, bias=False,
|
|
percentage=True, **kwargs):
|
|
"""Dichotomous confidence interval from sample size and maybe a bias"""
|
|
alpha = ppf((confidence + 1) / 2, sample_size - 1)
|
|
p = point_estimate
|
|
if percentage:
|
|
p /= 100
|
|
|
|
margin = sqrt(p * (1 - p) / sample_size)
|
|
if bias:
|
|
margin += .5 / sample_size
|
|
if percentage:
|
|
margin *= 100
|
|
|
|
return (point_estimate - alpha * margin, point_estimate + alpha * margin)
|
|
|
|
|
|
def confidence_interval_manual(point_estimate, low, high):
|
|
return (low, high)
|