Defcon/hook_lib/asmjit/core/compiler.h
MatrixMMOfficial 9631e4ca40 Initial commit
2023-11-26 08:54:06 -05:00

738 lines
26 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#ifndef ASMJIT_CORE_COMPILER_H_INCLUDED
#define ASMJIT_CORE_COMPILER_H_INCLUDED
#include "../core/api-config.h"
#ifndef ASMJIT_NO_COMPILER
#include "../core/assembler.h"
#include "../core/builder.h"
#include "../core/constpool.h"
#include "../core/compilerdefs.h"
#include "../core/func.h"
#include "../core/inst.h"
#include "../core/operand.h"
#include "../core/support.h"
#include "../core/zone.h"
#include "../core/zonevector.h"
ASMJIT_BEGIN_NAMESPACE
class JumpAnnotation;
class JumpNode;
class FuncNode;
class FuncRetNode;
class InvokeNode;
//! \addtogroup asmjit_compiler
//! \{
//! Code emitter that uses virtual registers and performs register allocation.
//!
//! Compiler is a high-level code-generation tool that provides register allocation and automatic handling of function
//! calling conventions. It was primarily designed for merging multiple parts of code into a function without worrying
//! about registers and function calling conventions.
//!
//! BaseCompiler can be used, with a minimum effort, to handle 32-bit and 64-bit code generation within a single code
//! base.
//!
//! BaseCompiler is based on BaseBuilder and contains all the features it provides. It means that the code it stores
//! can be modified (removed, added, injected) and analyzed. When the code is finalized the compiler can emit the code
//! into an Assembler to translate the abstract representation into a machine code.
//!
//! Check out architecture specific compilers for more details and examples:
//!
//! - \ref x86::Compiler - X86/X64 compiler implementation.
class ASMJIT_VIRTAPI BaseCompiler : public BaseBuilder {
public:
ASMJIT_NONCOPYABLE(BaseCompiler)
typedef BaseBuilder Base;
//! \name Members
//! \{
//! Current function.
FuncNode* _func;
//! Allocates `VirtReg` objects.
Zone _vRegZone;
//! Stores array of `VirtReg` pointers.
ZoneVector<VirtReg*> _vRegArray;
//! Stores jump annotations.
ZoneVector<JumpAnnotation*> _jumpAnnotations;
//! Local and global constant pools.
//!
//! Local constant pool is flushed with each function, global constant pool is flushed only by \ref finalize().
ConstPoolNode* _constPools[2];
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `BaseCompiler` instance.
ASMJIT_API BaseCompiler() noexcept;
//! Destroys the `BaseCompiler` instance.
ASMJIT_API virtual ~BaseCompiler() noexcept;
//! \}
//! \name Function Management
//! \{
//! Creates a new \ref FuncNode.
ASMJIT_API Error newFuncNode(FuncNode** ASMJIT_NONNULL(out), const FuncSignature& signature);
//! Creates a new \ref FuncNode adds it to the instruction stream.
ASMJIT_API Error addFuncNode(FuncNode** ASMJIT_NONNULL(out), const FuncSignature& signature);
//! Creates a new \ref FuncRetNode.
ASMJIT_API Error newFuncRetNode(FuncRetNode** ASMJIT_NONNULL(out), const Operand_& o0, const Operand_& o1);
//! Creates a new \ref FuncRetNode and adds it to the instruction stream.
ASMJIT_API Error addFuncRetNode(FuncRetNode** ASMJIT_NONNULL(out), const Operand_& o0, const Operand_& o1);
//! Returns the current function.
inline FuncNode* func() const noexcept { return _func; }
//! Creates a new \ref FuncNode with the given `signature` and returns it.
inline FuncNode* newFunc(const FuncSignature& signature) {
FuncNode* node;
newFuncNode(&node, signature);
return node;
}
//! Creates a new \ref FuncNode with the given `signature`, adds it to the instruction stream by using
//! the \ref addFunc(FuncNode*) overload, and returns it.
inline FuncNode* addFunc(const FuncSignature& signature) {
FuncNode* node;
addFuncNode(&node, signature);
return node;
}
//! Adds a function `node` to the instruction stream.
ASMJIT_API FuncNode* addFunc(FuncNode* ASMJIT_NONNULL(func));
//! Emits a sentinel that marks the end of the current function.
ASMJIT_API Error endFunc();
#if !defined(ASMJIT_NO_DEPRECATED)
inline Error _setArg(size_t argIndex, size_t valueIndex, const BaseReg& reg);
//! Sets a function argument at `argIndex` to `reg`.
ASMJIT_DEPRECATED("Setting arguments through Compiler is deprecated, use FuncNode->setArg() instead")
inline Error setArg(size_t argIndex, const BaseReg& reg) { return _setArg(argIndex, 0, reg); }
//! Sets a function argument at `argIndex` at `valueIndex` to `reg`.
ASMJIT_DEPRECATED("Setting arguments through Compiler is deprecated, use FuncNode->setArg() instead")
inline Error setArg(size_t argIndex, size_t valueIndex, const BaseReg& reg) { return _setArg(argIndex, valueIndex, reg); }
#endif
inline Error addRet(const Operand_& o0, const Operand_& o1) {
FuncRetNode* node;
return addFuncRetNode(&node, o0, o1);
}
//! \}
//! \name Function Invocation
//! \{
//! Creates a new \ref InvokeNode.
ASMJIT_API Error newInvokeNode(InvokeNode** ASMJIT_NONNULL(out), InstId instId, const Operand_& o0, const FuncSignature& signature);
//! Creates a new \ref InvokeNode and adds it to the instruction stream.
ASMJIT_API Error addInvokeNode(InvokeNode** ASMJIT_NONNULL(out), InstId instId, const Operand_& o0, const FuncSignature& signature);
//! \}
//! \name Virtual Registers
//! \{
//! Creates a new virtual register representing the given `typeId` and `signature`.
//!
//! \note This function is public, but it's not generally recommended to be used by AsmJit users, use architecture
//! specific `newReg()` functionality instead or functions like \ref _newReg() and \ref _newRegFmt().
ASMJIT_API Error newVirtReg(VirtReg** ASMJIT_NONNULL(out), TypeId typeId, OperandSignature signature, const char* name);
//! Creates a new virtual register of the given `typeId` and stores it to `out` operand.
ASMJIT_API Error _newReg(BaseReg* ASMJIT_NONNULL(out), TypeId typeId, const char* name = nullptr);
//! Creates a new virtual register of the given `typeId` and stores it to `out` operand.
//!
//! \note This version accepts a snprintf() format `fmt` followed by a variadic arguments.
ASMJIT_API Error _newRegFmt(BaseReg* ASMJIT_NONNULL(out), TypeId typeId, const char* fmt, ...);
//! Creates a new virtual register compatible with the provided reference register `ref`.
ASMJIT_API Error _newReg(BaseReg* ASMJIT_NONNULL(out), const BaseReg& ref, const char* name = nullptr);
//! Creates a new virtual register compatible with the provided reference register `ref`.
//!
//! \note This version accepts a snprintf() format `fmt` followed by a variadic arguments.
ASMJIT_API Error _newRegFmt(BaseReg* ASMJIT_NONNULL(out), const BaseReg& ref, const char* fmt, ...);
//! Tests whether the given `id` is a valid virtual register id.
inline bool isVirtIdValid(uint32_t id) const noexcept {
uint32_t index = Operand::virtIdToIndex(id);
return index < _vRegArray.size();
}
//! Tests whether the given `reg` is a virtual register having a valid id.
inline bool isVirtRegValid(const BaseReg& reg) const noexcept {
return isVirtIdValid(reg.id());
}
//! Returns \ref VirtReg associated with the given `id`.
inline VirtReg* virtRegById(uint32_t id) const noexcept {
ASMJIT_ASSERT(isVirtIdValid(id));
return _vRegArray[Operand::virtIdToIndex(id)];
}
//! Returns \ref VirtReg associated with the given `reg`.
inline VirtReg* virtRegByReg(const BaseReg& reg) const noexcept { return virtRegById(reg.id()); }
//! Returns \ref VirtReg associated with the given virtual register `index`.
//!
//! \note This is not the same as virtual register id. The conversion between id and its index is implemented
//! by \ref Operand_::virtIdToIndex() and \ref Operand_::indexToVirtId() functions.
inline VirtReg* virtRegByIndex(uint32_t index) const noexcept { return _vRegArray[index]; }
//! Returns an array of all virtual registers managed by the Compiler.
inline const ZoneVector<VirtReg*>& virtRegs() const noexcept { return _vRegArray; }
//! \name Stack
//! \{
//! Creates a new stack of the given `size` and `alignment` and stores it to `out`.
//!
//! \note `name` can be used to give the stack a name, for debugging purposes.
ASMJIT_API Error _newStack(BaseMem* ASMJIT_NONNULL(out), uint32_t size, uint32_t alignment, const char* name = nullptr);
//! Updates the stack size of a stack created by `_newStack()` by its `virtId`.
ASMJIT_API Error setStackSize(uint32_t virtId, uint32_t newSize, uint32_t newAlignment = 0);
//! Updates the stack size of a stack created by `_newStack()`.
inline Error setStackSize(const BaseMem& mem, uint32_t newSize, uint32_t newAlignment = 0) {
return setStackSize(mem.id(), newSize, newAlignment);
}
//! \}
//! \name Constants
//! \{
//! Creates a new constant of the given `scope` (see \ref ConstPoolScope).
//!
//! This function adds a constant of the given `size` to the built-in \ref ConstPool and stores the reference to that
//! constant to the `out` operand.
ASMJIT_API Error _newConst(BaseMem* ASMJIT_NONNULL(out), ConstPoolScope scope, const void* data, size_t size);
//! \}
//! \name Miscellaneous
//! \{
//! Rename the given virtual register `reg` to a formatted string `fmt`.
ASMJIT_API void rename(const BaseReg& reg, const char* fmt, ...);
//! \}
//! \name Jump Annotations
//! \{
inline const ZoneVector<JumpAnnotation*>& jumpAnnotations() const noexcept {
return _jumpAnnotations;
}
ASMJIT_API Error newJumpNode(JumpNode** ASMJIT_NONNULL(out), InstId instId, InstOptions instOptions, const Operand_& o0, JumpAnnotation* annotation);
ASMJIT_API Error emitAnnotatedJump(InstId instId, const Operand_& o0, JumpAnnotation* annotation);
//! Returns a new `JumpAnnotation` instance, which can be used to aggregate possible targets of a jump where the
//! target is not a label, for example to implement jump tables.
ASMJIT_API JumpAnnotation* newJumpAnnotation();
//! \}
//! \name Events
//! \{
ASMJIT_API Error onAttach(CodeHolder* code) noexcept override;
ASMJIT_API Error onDetach(CodeHolder* code) noexcept override;
//! \}
};
//! Jump annotation used to annotate jumps.
//!
//! \ref BaseCompiler allows to emit jumps where the target is either register or memory operand. Such jumps cannot be
//! trivially inspected, so instead of doing heuristics AsmJit allows to annotate such jumps with possible targets.
//! Register allocator then uses the annotation to construct control-flow, which is then used by liveness analysis and
//! other tools to prepare ground for register allocation.
class JumpAnnotation {
public:
ASMJIT_NONCOPYABLE(JumpAnnotation)
//! \name Members
//! \{
//! Compiler that owns this JumpAnnotation.
BaseCompiler* _compiler;
//! Annotation identifier.
uint32_t _annotationId;
//! Vector of label identifiers, see \ref labelIds().
ZoneVector<uint32_t> _labelIds;
//! \}
//! \name Construction & Destruction
//! \{
inline JumpAnnotation(BaseCompiler* ASMJIT_NONNULL(compiler), uint32_t annotationId) noexcept
: _compiler(compiler),
_annotationId(annotationId) {}
//! \}
//! \name Accessors
//! \{
//! Returns the compiler that owns this JumpAnnotation.
inline BaseCompiler* compiler() const noexcept { return _compiler; }
//! Returns the annotation id.
inline uint32_t annotationId() const noexcept { return _annotationId; }
//! Returns a vector of label identifiers that lists all targets of the jump.
const ZoneVector<uint32_t>& labelIds() const noexcept { return _labelIds; }
//! Tests whether the given `label` is a target of this JumpAnnotation.
inline bool hasLabel(const Label& label) const noexcept { return hasLabelId(label.id()); }
//! Tests whether the given `labelId` is a target of this JumpAnnotation.
inline bool hasLabelId(uint32_t labelId) const noexcept { return _labelIds.contains(labelId); }
//! \}
//! \name Annotation Building API
//! \{
//! Adds the `label` to the list of targets of this JumpAnnotation.
inline Error addLabel(const Label& label) noexcept { return addLabelId(label.id()); }
//! Adds the `labelId` to the list of targets of this JumpAnnotation.
inline Error addLabelId(uint32_t labelId) noexcept { return _labelIds.append(&_compiler->_allocator, labelId); }
//! \}
};
//! Jump instruction with \ref JumpAnnotation.
//!
//! \note This node should be only used to represent jump where the jump target cannot be deduced by examining
//! instruction operands. For example if the jump target is register or memory location. This pattern is often
//! used to perform indirect jumps that use jump table, e.g. to implement `switch{}` statement.
class JumpNode : public InstNode {
public:
ASMJIT_NONCOPYABLE(JumpNode)
//! \name Members
//! \{
JumpAnnotation* _annotation;
//! \}
//! \name Construction & Destruction
//! \{
inline JumpNode(BaseCompiler* ASMJIT_NONNULL(cc), InstId instId, InstOptions options, uint32_t opCount, JumpAnnotation* annotation) noexcept
: InstNode(cc, instId, options, opCount, kBaseOpCapacity),
_annotation(annotation) {
setType(NodeType::kJump);
}
//! \}
//! \name Accessors
//! \{
//! Tests whether this JumpNode has associated a \ref JumpAnnotation.
inline bool hasAnnotation() const noexcept { return _annotation != nullptr; }
//! Returns the \ref JumpAnnotation associated with this jump, or `nullptr`.
inline JumpAnnotation* annotation() const noexcept { return _annotation; }
//! Sets the \ref JumpAnnotation associated with this jump to `annotation`.
inline void setAnnotation(JumpAnnotation* annotation) noexcept { _annotation = annotation; }
//! \}
};
//! Function node represents a function used by \ref BaseCompiler.
//!
//! A function is composed of the following:
//!
//! - Function entry, \ref FuncNode acts as a label, so the entry is implicit. To get the entry, simply use
//! \ref FuncNode::label(), which is the same as \ref LabelNode::label().
//!
//! - Function exit, which is represented by \ref FuncNode::exitNode(). A helper function
//! \ref FuncNode::exitLabel() exists and returns an exit label instead of node.
//!
//! - Function \ref FuncNode::endNode() sentinel. This node marks the end of a function - there should be no
//! code that belongs to the function after this node, but the Compiler doesn't enforce that at the moment.
//!
//! - Function detail, see \ref FuncNode::detail().
//!
//! - Function frame, see \ref FuncNode::frame().
//!
//! - Function arguments mapped to virtual registers, see \ref FuncNode::argPacks().
//!
//! In a node list, the function and its body looks like the following:
//!
//! \code{.unparsed}
//! [...] - Anything before the function.
//!
//! [FuncNode] - Entry point of the function, acts as a label as well.
//! <Prolog> - Prolog inserted by the register allocator.
//! {...} - Function body - user code basically.
//! [ExitLabel] - Exit label
//! <Epilog> - Epilog inserted by the register allocator.
//! <Return> - Return inserted by the register allocator.
//! {...} - Can contain data or user code (error handling, special cases, ...).
//! [FuncEnd] - End sentinel
//!
//! [...] - Anything after the function.
//! \endcode
//!
//! When a function is added to the instruction stream by \ref BaseCompiler::addFunc() it actually inserts 3 nodes
//! (FuncNode, ExitLabel, and FuncEnd) and sets the current cursor to be FuncNode. When \ref BaseCompiler::endFunc()
//! is called the cursor is set to FuncEnd. This guarantees that user can use ExitLabel as a marker after additional
//! code or data can be placed, which is a common practice.
class FuncNode : public LabelNode {
public:
ASMJIT_NONCOPYABLE(FuncNode)
//! Arguments pack.
struct ArgPack {
RegOnly _data[Globals::kMaxValuePack];
inline void reset() noexcept {
for (size_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++)
_data[valueIndex].reset();
}
inline RegOnly& operator[](size_t valueIndex) noexcept { return _data[valueIndex]; }
inline const RegOnly& operator[](size_t valueIndex) const noexcept { return _data[valueIndex]; }
};
//! \name Members
//! \{
//! Function detail.
FuncDetail _funcDetail;
//! Function frame.
FuncFrame _frame;
//! Function exit label.
LabelNode* _exitNode;
//! Function end (sentinel).
SentinelNode* _end;
//! Argument packs.
ArgPack* _args;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `FuncNode` instance.
//!
//! Always use `BaseCompiler::addFunc()` to create a new `FuncNode`.
inline FuncNode(BaseBuilder* ASMJIT_NONNULL(cb)) noexcept
: LabelNode(cb),
_funcDetail(),
_frame(),
_exitNode(nullptr),
_end(nullptr),
_args(nullptr) {
setType(NodeType::kFunc);
}
//! \}
//! \{
//! \name Accessors
//! Returns function exit `LabelNode`.
inline LabelNode* exitNode() const noexcept { return _exitNode; }
//! Returns function exit label.
inline Label exitLabel() const noexcept { return _exitNode->label(); }
//! Returns "End of Func" sentinel node.
inline SentinelNode* endNode() const noexcept { return _end; }
//! Returns function detail.
inline FuncDetail& detail() noexcept { return _funcDetail; }
//! Returns function detail.
inline const FuncDetail& detail() const noexcept { return _funcDetail; }
//! Returns function frame.
inline FuncFrame& frame() noexcept { return _frame; }
//! Returns function frame.
inline const FuncFrame& frame() const noexcept { return _frame; }
//! Returns function attributes.
inline FuncAttributes attributes() const noexcept { return _frame.attributes(); }
//! Adds `attrs` to the function attributes.
inline void addAttributes(FuncAttributes attrs) noexcept { _frame.addAttributes(attrs); }
//! Returns arguments count.
inline uint32_t argCount() const noexcept { return _funcDetail.argCount(); }
//! Returns argument packs.
inline ArgPack* argPacks() const noexcept { return _args; }
//! Tests whether the function has a return value.
inline bool hasRet() const noexcept { return _funcDetail.hasRet(); }
//! Returns argument pack at `argIndex`.
inline ArgPack& argPack(size_t argIndex) const noexcept {
ASMJIT_ASSERT(argIndex < argCount());
return _args[argIndex];
}
//! Sets argument at `argIndex`.
inline void setArg(size_t argIndex, const BaseReg& vReg) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
_args[argIndex][0].init(vReg);
}
//! \overload
inline void setArg(size_t argIndex, const RegOnly& vReg) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
_args[argIndex][0].init(vReg);
}
//! Sets argument at `argIndex` and `valueIndex`.
inline void setArg(size_t argIndex, size_t valueIndex, const BaseReg& vReg) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
_args[argIndex][valueIndex].init(vReg);
}
//! \overload
inline void setArg(size_t argIndex, size_t valueIndex, const RegOnly& vReg) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
_args[argIndex][valueIndex].init(vReg);
}
//! Resets argument pack at `argIndex`.
inline void resetArg(size_t argIndex) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
_args[argIndex].reset();
}
//! Resets argument pack at `argIndex`.
inline void resetArg(size_t argIndex, size_t valueIndex) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
_args[argIndex][valueIndex].reset();
}
//! \}
};
//! Function return, used by \ref BaseCompiler.
class FuncRetNode : public InstNode {
public:
ASMJIT_NONCOPYABLE(FuncRetNode)
//! \name Construction & Destruction
//! \{
//! Creates a new `FuncRetNode` instance.
inline FuncRetNode(BaseBuilder* ASMJIT_NONNULL(cb)) noexcept : InstNode(cb, BaseInst::kIdAbstract, InstOptions::kNone, 0) {
_any._nodeType = NodeType::kFuncRet;
}
//! \}
};
//! Function invocation, used by \ref BaseCompiler.
class InvokeNode : public InstNode {
public:
ASMJIT_NONCOPYABLE(InvokeNode)
//! Operand pack provides multiple operands that can be associated with a single return value of function
//! argument. Sometims this is necessary to express an argument or return value that requires multiple
//! registers, for example 64-bit value in 32-bit mode or passing / returning homogeneous data structures.
struct OperandPack {
//! Operands.
Operand_ _data[Globals::kMaxValuePack];
//! Reset the pack by resetting all operands in the pack.
inline void reset() noexcept {
for (size_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++)
_data[valueIndex].reset();
}
//! Returns an operand at the given `valueIndex`.
inline Operand& operator[](size_t valueIndex) noexcept {
ASMJIT_ASSERT(valueIndex < Globals::kMaxValuePack);
return _data[valueIndex].as<Operand>();
}
//! Returns an operand at the given `valueIndex` (const).
const inline Operand& operator[](size_t valueIndex) const noexcept {
ASMJIT_ASSERT(valueIndex < Globals::kMaxValuePack);
return _data[valueIndex].as<Operand>();
}
};
//! \name Members
//! \{
//! Function detail.
FuncDetail _funcDetail;
//! Function return value(s).
OperandPack _rets;
//! Function arguments.
OperandPack* _args;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `InvokeNode` instance.
inline InvokeNode(BaseBuilder* ASMJIT_NONNULL(cb), InstId instId, InstOptions options) noexcept
: InstNode(cb, instId, options, kBaseOpCapacity),
_funcDetail(),
_args(nullptr) {
setType(NodeType::kInvoke);
_resetOps();
_rets.reset();
addFlags(NodeFlags::kIsRemovable);
}
//! \}
//! \name Accessors
//! \{
//! Sets the function signature.
inline Error init(const FuncSignature& signature, const Environment& environment) noexcept {
return _funcDetail.init(signature, environment);
}
//! Returns the function detail.
inline FuncDetail& detail() noexcept { return _funcDetail; }
//! Returns the function detail.
inline const FuncDetail& detail() const noexcept { return _funcDetail; }
//! Returns the target operand.
inline Operand& target() noexcept { return _opArray[0].as<Operand>(); }
//! \overload
inline const Operand& target() const noexcept { return _opArray[0].as<Operand>(); }
//! Returns the number of function return values.
inline bool hasRet() const noexcept { return _funcDetail.hasRet(); }
//! Returns the number of function arguments.
inline uint32_t argCount() const noexcept { return _funcDetail.argCount(); }
//! Returns operand pack representing function return value(s).
inline OperandPack& retPack() noexcept { return _rets; }
//! Returns operand pack representing function return value(s).
inline const OperandPack& retPack() const noexcept { return _rets; }
//! Returns the return value at the given `valueIndex`.
inline Operand& ret(size_t valueIndex = 0) noexcept { return _rets[valueIndex]; }
//! \overload
inline const Operand& ret(size_t valueIndex = 0) const noexcept { return _rets[valueIndex]; }
//! Returns operand pack representing function return value(s).
inline OperandPack& argPack(size_t argIndex) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
return _args[argIndex];
}
//! \overload
inline const OperandPack& argPack(size_t argIndex) const noexcept {
ASMJIT_ASSERT(argIndex < argCount());
return _args[argIndex];
}
//! Returns a function argument at the given `argIndex`.
inline Operand& arg(size_t argIndex, size_t valueIndex) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
return _args[argIndex][valueIndex];
}
//! \overload
inline const Operand& arg(size_t argIndex, size_t valueIndex) const noexcept {
ASMJIT_ASSERT(argIndex < argCount());
return _args[argIndex][valueIndex];
}
//! Sets the function return value at `i` to `op`.
inline void _setRet(size_t valueIndex, const Operand_& op) noexcept { _rets[valueIndex] = op; }
//! Sets the function argument at `i` to `op`.
inline void _setArg(size_t argIndex, size_t valueIndex, const Operand_& op) noexcept {
ASMJIT_ASSERT(argIndex < argCount());
_args[argIndex][valueIndex] = op;
}
//! Sets the function return value at `valueIndex` to `reg`.
inline void setRet(size_t valueIndex, const BaseReg& reg) noexcept { _setRet(valueIndex, reg); }
//! Sets the first function argument in a value-pack at `argIndex` to `reg`.
inline void setArg(size_t argIndex, const BaseReg& reg) noexcept { _setArg(argIndex, 0, reg); }
//! Sets the first function argument in a value-pack at `argIndex` to `imm`.
inline void setArg(size_t argIndex, const Imm& imm) noexcept { _setArg(argIndex, 0, imm); }
//! Sets the function argument at `argIndex` and `valueIndex` to `reg`.
inline void setArg(size_t argIndex, size_t valueIndex, const BaseReg& reg) noexcept { _setArg(argIndex, valueIndex, reg); }
//! Sets the function argument at `argIndex` and `valueIndex` to `imm`.
inline void setArg(size_t argIndex, size_t valueIndex, const Imm& imm) noexcept { _setArg(argIndex, valueIndex, imm); }
//! \}
};
//! Function pass extends \ref Pass with \ref FuncPass::runOnFunction().
class ASMJIT_VIRTAPI FuncPass : public Pass {
public:
ASMJIT_NONCOPYABLE(FuncPass)
typedef Pass Base;
//! \name Construction & Destruction
//! \{
ASMJIT_API FuncPass(const char* name) noexcept;
//! \}
//! \name Accessors
//! \{
//! Returns the associated `BaseCompiler`.
inline BaseCompiler* cc() const noexcept { return static_cast<BaseCompiler*>(_cb); }
//! \}
//! \name Pass Interface
//! \{
//! Calls `runOnFunction()` on each `FuncNode` node found.
ASMJIT_API Error run(Zone* zone, Logger* logger) override;
//! Called once per `FuncNode`.
virtual Error runOnFunction(Zone* zone, Logger* logger, FuncNode* func) = 0;
//! \}
};
#if !defined(ASMJIT_NO_DEPRECATED)
inline Error BaseCompiler::_setArg(size_t argIndex, size_t valueIndex, const BaseReg& reg) {
FuncNode* func = _func;
if (ASMJIT_UNLIKELY(!func))
return reportError(DebugUtils::errored(kErrorInvalidState));
func->setArg(argIndex, valueIndex, reg);
return kErrorOk;
}
#endif
//! \}
ASMJIT_END_NAMESPACE
#endif // !ASMJIT_NO_COMPILER
#endif // ASMJIT_CORE_COMPILER_H_INCLUDED