Defcon/hook_lib/asmjit/x86/x86instapi.cpp
MatrixMMOfficial 9631e4ca40 Initial commit
2023-11-26 08:54:06 -05:00

1748 lines
67 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
// ----------------------------------------------------------------------------
// IMPORTANT: AsmJit now uses an external instruction database to populate
// static tables within this file. Perform the following steps to regenerate
// all tables enclosed by ${...}:
//
// 1. Install node.js environment <https://nodejs.org>
// 2. Go to asmjit/tools directory
// 3. Get the latest asmdb from <https://github.com/asmjit/asmdb> and
// copy/link the `asmdb` directory to `asmjit/tools/asmdb`.
// 4. Execute `node tablegen-x86.js`
//
// Instruction encoding and opcodes were added to the `x86inst.cpp` database
// manually in the past and they are not updated by the script as it became
// tricky. However, everything else is updated including instruction operands
// and tables required to validate them, instruction read/write information
// (including registers and flags), and all indexes to all tables.
// ----------------------------------------------------------------------------
#include "../core/api-build_p.h"
#if !defined(ASMJIT_NO_X86)
#include "../core/cpuinfo.h"
#include "../core/misc_p.h"
#include "../core/support_p.h"
#include "../x86/x86instapi_p.h"
#include "../x86/x86instdb_p.h"
#include "../x86/x86opcode_p.h"
#include "../x86/x86operand.h"
ASMJIT_BEGIN_SUB_NAMESPACE(x86)
// x86::InstInternal - Text
// ========================
#ifndef ASMJIT_NO_TEXT
Error InstInternal::instIdToString(Arch arch, InstId instId, String& output) noexcept {
DebugUtils::unused(arch);
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
char nameData[32];
size_t nameSize = Support::decodeInstName(nameData, InstDB::_instNameIndexTable[instId], InstDB::_instNameStringTable);
return output.append(nameData, nameSize);
}
InstId InstInternal::stringToInstId(Arch arch, const char* s, size_t len) noexcept {
DebugUtils::unused(arch);
if (ASMJIT_UNLIKELY(!s))
return Inst::kIdNone;
if (len == SIZE_MAX)
len = strlen(s);
if (ASMJIT_UNLIKELY(len == 0 || len > InstDB::kMaxNameSize))
return Inst::kIdNone;
uint32_t prefix = uint32_t(s[0]) - 'a';
if (ASMJIT_UNLIKELY(prefix > 'z' - 'a'))
return Inst::kIdNone;
size_t base = InstDB::instNameIndex[prefix].start;
size_t end = InstDB::instNameIndex[prefix].end;
if (ASMJIT_UNLIKELY(!base))
return Inst::kIdNone;
char nameData[32];
for (size_t lim = end - base; lim != 0; lim >>= 1) {
size_t instId = base + (lim >> 1);
size_t nameSize = Support::decodeInstName(nameData, InstDB::_instNameIndexTable[instId], InstDB::_instNameStringTable);
int result = Support::compareStringViews(s, len, nameData, nameSize);
if (result < 0)
continue;
if (result > 0) {
base = instId + 1;
lim--;
continue;
}
return InstId(instId);
}
return Inst::kIdNone;
}
#endif // !ASMJIT_NO_TEXT
// x86::InstInternal - Validate
// ============================
#ifndef ASMJIT_NO_VALIDATION
struct X86ValidationData {
//! Allowed registers by \ref RegType.
RegMask allowedRegMask[uint32_t(RegType::kMaxValue) + 1];
uint32_t allowedMemBaseRegs;
uint32_t allowedMemIndexRegs;
};
#define VALUE(x) \
(x == uint32_t(RegType::kX86_GpbLo)) ? InstDB::OpFlags::kRegGpbLo : \
(x == uint32_t(RegType::kX86_GpbHi)) ? InstDB::OpFlags::kRegGpbHi : \
(x == uint32_t(RegType::kX86_Gpw )) ? InstDB::OpFlags::kRegGpw : \
(x == uint32_t(RegType::kX86_Gpd )) ? InstDB::OpFlags::kRegGpd : \
(x == uint32_t(RegType::kX86_Gpq )) ? InstDB::OpFlags::kRegGpq : \
(x == uint32_t(RegType::kX86_Xmm )) ? InstDB::OpFlags::kRegXmm : \
(x == uint32_t(RegType::kX86_Ymm )) ? InstDB::OpFlags::kRegYmm : \
(x == uint32_t(RegType::kX86_Zmm )) ? InstDB::OpFlags::kRegZmm : \
(x == uint32_t(RegType::kX86_Mm )) ? InstDB::OpFlags::kRegMm : \
(x == uint32_t(RegType::kX86_KReg )) ? InstDB::OpFlags::kRegKReg : \
(x == uint32_t(RegType::kX86_SReg )) ? InstDB::OpFlags::kRegSReg : \
(x == uint32_t(RegType::kX86_CReg )) ? InstDB::OpFlags::kRegCReg : \
(x == uint32_t(RegType::kX86_DReg )) ? InstDB::OpFlags::kRegDReg : \
(x == uint32_t(RegType::kX86_St )) ? InstDB::OpFlags::kRegSt : \
(x == uint32_t(RegType::kX86_Bnd )) ? InstDB::OpFlags::kRegBnd : \
(x == uint32_t(RegType::kX86_Tmm )) ? InstDB::OpFlags::kRegTmm : \
(x == uint32_t(RegType::kX86_Rip )) ? InstDB::OpFlags::kNone : InstDB::OpFlags::kNone
static const InstDB::OpFlags _x86OpFlagFromRegType[uint32_t(RegType::kMaxValue) + 1] = { ASMJIT_LOOKUP_TABLE_32(VALUE, 0) };
#undef VALUE
#define REG_MASK_FROM_REG_TYPE_X86(x) \
(x == uint32_t(RegType::kX86_GpbLo)) ? 0x0000000Fu : \
(x == uint32_t(RegType::kX86_GpbHi)) ? 0x0000000Fu : \
(x == uint32_t(RegType::kX86_Gpw )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Gpd )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Gpq )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Xmm )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Ymm )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Zmm )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Mm )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_KReg )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_SReg )) ? 0x0000007Eu : \
(x == uint32_t(RegType::kX86_CReg )) ? 0x0000FFFFu : \
(x == uint32_t(RegType::kX86_DReg )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_St )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Bnd )) ? 0x0000000Fu : \
(x == uint32_t(RegType::kX86_Tmm )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Rip )) ? 0x00000001u : 0u
#define REG_MASK_FROM_REG_TYPE_X64(x) \
(x == uint32_t(RegType::kX86_GpbLo)) ? 0x0000FFFFu : \
(x == uint32_t(RegType::kX86_GpbHi)) ? 0x0000000Fu : \
(x == uint32_t(RegType::kX86_Gpw )) ? 0x0000FFFFu : \
(x == uint32_t(RegType::kX86_Gpd )) ? 0x0000FFFFu : \
(x == uint32_t(RegType::kX86_Gpq )) ? 0x0000FFFFu : \
(x == uint32_t(RegType::kX86_Xmm )) ? 0xFFFFFFFFu : \
(x == uint32_t(RegType::kX86_Ymm )) ? 0xFFFFFFFFu : \
(x == uint32_t(RegType::kX86_Zmm )) ? 0xFFFFFFFFu : \
(x == uint32_t(RegType::kX86_Mm )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_KReg )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_SReg )) ? 0x0000007Eu : \
(x == uint32_t(RegType::kX86_CReg )) ? 0x0000FFFFu : \
(x == uint32_t(RegType::kX86_DReg )) ? 0x0000FFFFu : \
(x == uint32_t(RegType::kX86_St )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Bnd )) ? 0x0000000Fu : \
(x == uint32_t(RegType::kX86_Tmm )) ? 0x000000FFu : \
(x == uint32_t(RegType::kX86_Rip )) ? 0x00000001u : 0u
#define B(RegType) (uint32_t(1) << uint32_t(RegType))
static const X86ValidationData _x86ValidationData = {
{ ASMJIT_LOOKUP_TABLE_32(REG_MASK_FROM_REG_TYPE_X86, 0) },
B(RegType::kX86_Gpw) | B(RegType::kX86_Gpd) | B(RegType::kX86_Rip) | B(RegType::kLabelTag),
B(RegType::kX86_Gpw) | B(RegType::kX86_Gpd) | B(RegType::kX86_Xmm) | B(RegType::kX86_Ymm) | B(RegType::kX86_Zmm)
};
static const X86ValidationData _x64ValidationData = {
{ ASMJIT_LOOKUP_TABLE_32(REG_MASK_FROM_REG_TYPE_X64, 0) },
B(RegType::kX86_Gpd) | B(RegType::kX86_Gpq) | B(RegType::kX86_Rip) | B(RegType::kLabelTag),
B(RegType::kX86_Gpd) | B(RegType::kX86_Gpq) | B(RegType::kX86_Xmm) | B(RegType::kX86_Ymm) | B(RegType::kX86_Zmm)
};
#undef B
#undef REG_MASK_FROM_REG_TYPE_X64
#undef REG_MASK_FROM_REG_TYPE_X86
static ASMJIT_FORCE_INLINE bool x86IsZmmOrM512(const Operand_& op) noexcept {
return Reg::isZmm(op) || (op.isMem() && op.size() == 64);
}
static ASMJIT_FORCE_INLINE bool x86CheckOSig(const InstDB::OpSignature& op, const InstDB::OpSignature& ref, bool& immOutOfRange) noexcept {
// Fail if operand types are incompatible.
InstDB::OpFlags commonFlags = op.flags() & ref.flags();
if (!Support::test(commonFlags, InstDB::OpFlags::kOpMask)) {
// Mark temporarily `immOutOfRange` so we can return a more descriptive error later.
if (op.hasImm() && ref.hasImm()) {
immOutOfRange = true;
return true;
}
return false;
}
// Fail if some memory specific flags do not match.
if (Support::test(commonFlags, InstDB::OpFlags::kMemMask)) {
if (ref.hasFlag(InstDB::OpFlags::kFlagMemBase) && !op.hasFlag(InstDB::OpFlags::kFlagMemBase))
return false;
}
// Fail if register indexes do not match.
if (Support::test(commonFlags, InstDB::OpFlags::kRegMask)) {
if (ref.regMask() && !Support::test(op.regMask(), ref.regMask()))
return false;
}
return true;
}
ASMJIT_FAVOR_SIZE Error InstInternal::validate(Arch arch, const BaseInst& inst, const Operand_* operands, size_t opCount, ValidationFlags validationFlags) noexcept {
// Only called when `arch` matches X86 family.
ASMJIT_ASSERT(Environment::isFamilyX86(arch));
const X86ValidationData* vd;
if (arch == Arch::kX86)
vd = &_x86ValidationData;
else
vd = &_x64ValidationData;
uint32_t i;
InstDB::Mode mode = InstDB::modeFromArch(arch);
// Get the instruction data.
InstId instId = inst.id();
InstOptions options = inst.options();
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
const InstDB::InstInfo& instInfo = InstDB::infoById(instId);
const InstDB::CommonInfo& commonInfo = instInfo.commonInfo();
InstDB::InstFlags iFlags = instInfo.flags();
constexpr InstOptions kRepAny = InstOptions::kX86_Rep | InstOptions::kX86_Repne;
constexpr InstOptions kXAcqXRel = InstOptions::kX86_XAcquire | InstOptions::kX86_XRelease;
constexpr InstOptions kAvx512Options = InstOptions::kX86_ZMask | InstOptions::kX86_ER | InstOptions::kX86_SAE;
// Validate LOCK|XACQUIRE|XRELEASE Prefixes
// ----------------------------------------
if (Support::test(options, InstOptions::kX86_Lock | kXAcqXRel)) {
if (Support::test(options, InstOptions::kX86_Lock)) {
if (ASMJIT_UNLIKELY(!Support::test(iFlags, InstDB::InstFlags::kLock) && !Support::test(options, kXAcqXRel)))
return DebugUtils::errored(kErrorInvalidLockPrefix);
if (ASMJIT_UNLIKELY(opCount < 1 || !operands[0].isMem()))
return DebugUtils::errored(kErrorInvalidLockPrefix);
}
if (Support::test(options, kXAcqXRel)) {
if (ASMJIT_UNLIKELY(!Support::test(options, InstOptions::kX86_Lock) || (options & kXAcqXRel) == kXAcqXRel))
return DebugUtils::errored(kErrorInvalidPrefixCombination);
if (ASMJIT_UNLIKELY(Support::test(options, InstOptions::kX86_XAcquire) && !Support::test(iFlags, InstDB::InstFlags::kXAcquire)))
return DebugUtils::errored(kErrorInvalidXAcquirePrefix);
if (ASMJIT_UNLIKELY(Support::test(options, InstOptions::kX86_XRelease) && !Support::test(iFlags, InstDB::InstFlags::kXRelease)))
return DebugUtils::errored(kErrorInvalidXReleasePrefix);
}
}
// Validate REP and REPNE Prefixes
// -------------------------------
if (Support::test(options, kRepAny)) {
if (ASMJIT_UNLIKELY((options & kRepAny) == kRepAny))
return DebugUtils::errored(kErrorInvalidPrefixCombination);
if (ASMJIT_UNLIKELY(!Support::test(iFlags, InstDB::InstFlags::kRep)))
return DebugUtils::errored(kErrorInvalidRepPrefix);
}
// Translate Each Operand to the Corresponding OpSignature
// -------------------------------------------------------
InstDB::OpSignature oSigTranslated[Globals::kMaxOpCount];
InstDB::OpFlags combinedOpFlags = InstDB::OpFlags::kNone;
uint32_t combinedRegMask = 0;
const Mem* memOp = nullptr;
for (i = 0; i < opCount; i++) {
const Operand_& op = operands[i];
if (op.opType() == OperandType::kNone)
break;
InstDB::OpFlags opFlags = InstDB::OpFlags::kNone;
RegMask regMask = 0;
switch (op.opType()) {
case OperandType::kReg: {
RegType regType = op.as<BaseReg>().type();
opFlags = _x86OpFlagFromRegType[size_t(regType)];
if (ASMJIT_UNLIKELY(opFlags == InstDB::OpFlags::kNone))
return DebugUtils::errored(kErrorInvalidRegType);
// If `regId` is equal or greater than Operand::kVirtIdMin it means that the register is virtual and its
// index will be assigned later by the register allocator. We must pass unless asked to disallow virtual
// registers.
uint32_t regId = op.id();
if (regId < Operand::kVirtIdMin) {
if (ASMJIT_UNLIKELY(regId >= 32))
return DebugUtils::errored(kErrorInvalidPhysId);
if (ASMJIT_UNLIKELY(Support::bitTest(vd->allowedRegMask[size_t(regType)], regId) == 0))
return DebugUtils::errored(kErrorInvalidPhysId);
regMask = Support::bitMask(regId);
combinedRegMask |= regMask;
}
else {
if (uint32_t(validationFlags & ValidationFlags::kEnableVirtRegs) == 0)
return DebugUtils::errored(kErrorIllegalVirtReg);
regMask = 0xFFFFFFFFu;
}
break;
}
// TODO: Validate base and index and combine these with `combinedRegMask`.
case OperandType::kMem: {
const Mem& m = op.as<Mem>();
memOp = &m;
uint32_t memSize = m.size();
RegType baseType = m.baseType();
RegType indexType = m.indexType();
if (m.segmentId() > 6)
return DebugUtils::errored(kErrorInvalidSegment);
// Validate AVX-512 broadcast {1tox}.
if (m.hasBroadcast()) {
if (memSize != 0) {
// If the size is specified it has to match the broadcast size.
if (ASMJIT_UNLIKELY(commonInfo.hasAvx512B32() && memSize != 4))
return DebugUtils::errored(kErrorInvalidBroadcast);
if (ASMJIT_UNLIKELY(commonInfo.hasAvx512B64() && memSize != 8))
return DebugUtils::errored(kErrorInvalidBroadcast);
}
else {
// If there is no size we implicitly calculate it so we can validate N in {1toN} properly.
memSize = commonInfo.hasAvx512B64() ? 8 :
commonInfo.hasAvx512B32() ? 4 : 2;
}
memSize <<= uint32_t(m.getBroadcast());
}
if (baseType != RegType::kNone && baseType > RegType::kLabelTag) {
uint32_t baseId = m.baseId();
if (m.isRegHome()) {
// Home address of a virtual register. In such case we don't want to validate the type of the
// base register as it will always be patched to ESP|RSP.
}
else {
if (ASMJIT_UNLIKELY(!Support::bitTest(vd->allowedMemBaseRegs, baseType)))
return DebugUtils::errored(kErrorInvalidAddress);
}
// Create information that will be validated only if this is an implicit memory operand. Basically
// only usable for string instructions and other instructions where memory operand is implicit and
// has 'seg:[reg]' form.
if (baseId < Operand::kVirtIdMin) {
if (ASMJIT_UNLIKELY(baseId >= 32))
return DebugUtils::errored(kErrorInvalidPhysId);
// Physical base id.
regMask = Support::bitMask(baseId);
combinedRegMask |= regMask;
}
else {
// Virtual base id - fill the whole mask for implicit mem validation. The register is not assigned
// yet, so we cannot predict the phys id.
if (uint32_t(validationFlags & ValidationFlags::kEnableVirtRegs) == 0)
return DebugUtils::errored(kErrorIllegalVirtReg);
regMask = 0xFFFFFFFFu;
}
if (indexType == RegType::kNone && !m.offsetLo32())
opFlags |= InstDB::OpFlags::kFlagMemBase;
}
else if (baseType == RegType::kLabelTag) {
// [Label] - there is no need to validate the base as it's label.
}
else {
// Base is a 64-bit address.
int64_t offset = m.offset();
if (!Support::isInt32(offset)) {
if (mode == InstDB::Mode::kX86) {
// 32-bit mode: Make sure that the address is either `int32_t` or `uint32_t`.
if (!Support::isUInt32(offset))
return DebugUtils::errored(kErrorInvalidAddress64Bit);
}
else {
// 64-bit mode: Zero extension is allowed if the address has 32-bit index register or the address
// has no index register (it's still encodable).
if (indexType != RegType::kNone) {
if (!Support::isUInt32(offset))
return DebugUtils::errored(kErrorInvalidAddress64Bit);
if (indexType != RegType::kX86_Gpd)
return DebugUtils::errored(kErrorInvalidAddress64BitZeroExtension);
}
else {
// We don't validate absolute 64-bit addresses without an index register as this also depends
// on the target's base address. We don't have the information to do it at this moment.
}
}
}
}
if (indexType != RegType::kNone) {
if (ASMJIT_UNLIKELY(!Support::bitTest(vd->allowedMemIndexRegs, indexType)))
return DebugUtils::errored(kErrorInvalidAddress);
if (indexType == RegType::kX86_Xmm) {
opFlags |= InstDB::OpFlags::kVm32x | InstDB::OpFlags::kVm64x;
}
else if (indexType == RegType::kX86_Ymm) {
opFlags |= InstDB::OpFlags::kVm32y | InstDB::OpFlags::kVm64y;
}
else if (indexType == RegType::kX86_Zmm) {
opFlags |= InstDB::OpFlags::kVm32z | InstDB::OpFlags::kVm64z;
}
else {
if (baseType != RegType::kNone)
opFlags |= InstDB::OpFlags::kFlagMib;
}
// [RIP + {XMM|YMM|ZMM}] is not allowed.
if (baseType == RegType::kX86_Rip && Support::test(opFlags, InstDB::OpFlags::kVmMask))
return DebugUtils::errored(kErrorInvalidAddress);
uint32_t indexId = m.indexId();
if (indexId < Operand::kVirtIdMin) {
if (ASMJIT_UNLIKELY(indexId >= 32))
return DebugUtils::errored(kErrorInvalidPhysId);
combinedRegMask |= Support::bitMask(indexId);
}
else {
if (uint32_t(validationFlags & ValidationFlags::kEnableVirtRegs) == 0)
return DebugUtils::errored(kErrorIllegalVirtReg);
}
// Only used for implicit memory operands having 'seg:[reg]' form, so clear it.
regMask = 0;
}
switch (memSize) {
case 0: opFlags |= InstDB::OpFlags::kMemUnspecified; break;
case 1: opFlags |= InstDB::OpFlags::kMem8; break;
case 2: opFlags |= InstDB::OpFlags::kMem16; break;
case 4: opFlags |= InstDB::OpFlags::kMem32; break;
case 6: opFlags |= InstDB::OpFlags::kMem48; break;
case 8: opFlags |= InstDB::OpFlags::kMem64; break;
case 10: opFlags |= InstDB::OpFlags::kMem80; break;
case 16: opFlags |= InstDB::OpFlags::kMem128; break;
case 32: opFlags |= InstDB::OpFlags::kMem256; break;
case 64: opFlags |= InstDB::OpFlags::kMem512; break;
default:
return DebugUtils::errored(kErrorInvalidOperandSize);
}
break;
}
case OperandType::kImm: {
uint64_t immValue = op.as<Imm>().valueAs<uint64_t>();
if (int64_t(immValue) >= 0) {
if (immValue <= 0x7u)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmU32 |
InstDB::OpFlags::kImmI16 | InstDB::OpFlags::kImmU16 | InstDB::OpFlags::kImmI8 | InstDB::OpFlags::kImmU8 |
InstDB::OpFlags::kImmI4 | InstDB::OpFlags::kImmU4 ;
else if (immValue <= 0xFu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmU32 |
InstDB::OpFlags::kImmI16 | InstDB::OpFlags::kImmU16 | InstDB::OpFlags::kImmI8 | InstDB::OpFlags::kImmU8 |
InstDB::OpFlags::kImmU4 ;
else if (immValue <= 0x7Fu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmU32 |
InstDB::OpFlags::kImmI16 | InstDB::OpFlags::kImmU16 | InstDB::OpFlags::kImmI8 | InstDB::OpFlags::kImmU8 ;
else if (immValue <= 0xFFu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmU32 |
InstDB::OpFlags::kImmI16 | InstDB::OpFlags::kImmU16 | InstDB::OpFlags::kImmU8 ;
else if (immValue <= 0x7FFFu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmU32 |
InstDB::OpFlags::kImmI16 | InstDB::OpFlags::kImmU16 ;
else if (immValue <= 0xFFFFu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmU32 |
InstDB::OpFlags::kImmU16 ;
else if (immValue <= 0x7FFFFFFFu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmU32;
else if (immValue <= 0xFFFFFFFFu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64 | InstDB::OpFlags::kImmU32;
else if (immValue <= 0x7FFFFFFFFFFFFFFFu)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmU64;
else
opFlags = InstDB::OpFlags::kImmU64;
}
else {
immValue = Support::neg(immValue);
if (immValue <= 0x8u)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmI16 | InstDB::OpFlags::kImmI8 | InstDB::OpFlags::kImmI4;
else if (immValue <= 0x80u)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmI16 | InstDB::OpFlags::kImmI8;
else if (immValue <= 0x8000u)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmI32 | InstDB::OpFlags::kImmI16;
else if (immValue <= 0x80000000u)
opFlags = InstDB::OpFlags::kImmI64 | InstDB::OpFlags::kImmI32;
else
opFlags = InstDB::OpFlags::kImmI64;
}
break;
}
case OperandType::kLabel: {
opFlags |= InstDB::OpFlags::kRel8 | InstDB::OpFlags::kRel32;
break;
}
default:
return DebugUtils::errored(kErrorInvalidState);
}
InstDB::OpSignature& oSigDst = oSigTranslated[i];
oSigDst._flags = uint64_t(opFlags) & 0x00FFFFFFFFFFFFFFu;
oSigDst._regMask = uint8_t(regMask & 0xFFu);
combinedOpFlags |= opFlags;
}
// Decrease the number of operands of those that are none. This is important as Assembler and Compiler may just pass
// more operands padded with none (which means that no operand is given at that index). However, validate that there
// are no gaps (like [reg, none, reg] or [none, reg]).
if (i < opCount) {
while (--opCount > i)
if (ASMJIT_UNLIKELY(!operands[opCount].isNone()))
return DebugUtils::errored(kErrorInvalidInstruction);
}
// Validate X86 and X64 specific cases.
if (mode == InstDB::Mode::kX86) {
// Illegal use of 64-bit register in 32-bit mode.
if (ASMJIT_UNLIKELY(Support::test(combinedOpFlags, InstDB::OpFlags::kRegGpq)))
return DebugUtils::errored(kErrorInvalidUseOfGpq);
}
else {
// Illegal use of a high 8-bit register with REX prefix.
bool hasREX = inst.hasOption(InstOptions::kX86_Rex) || (combinedRegMask & 0xFFFFFF00u) != 0;
if (ASMJIT_UNLIKELY(hasREX && Support::test(combinedOpFlags, InstDB::OpFlags::kRegGpbHi)))
return DebugUtils::errored(kErrorInvalidUseOfGpbHi);
}
// Validate Instruction Signature by Comparing Against All `iSig` Rows
// -------------------------------------------------------------------
const InstDB::InstSignature* iSig = InstDB::_instSignatureTable + commonInfo._iSignatureIndex;
const InstDB::InstSignature* iEnd = iSig + commonInfo._iSignatureCount;
if (iSig != iEnd) {
const InstDB::OpSignature* opSignatureTable = InstDB::_opSignatureTable;
// If set it means that we matched a signature where only immediate value
// was out of bounds. We can return a more descriptive error if we know this.
bool globalImmOutOfRange = false;
do {
// Check if the architecture is compatible.
if (!iSig->supportsMode(mode))
continue;
// Compare the operands table with reference operands.
uint32_t j = 0;
uint32_t iSigCount = iSig->opCount();
bool localImmOutOfRange = false;
if (iSigCount == opCount) {
for (j = 0; j < opCount; j++)
if (!x86CheckOSig(oSigTranslated[j], iSig->opSignature(j), localImmOutOfRange))
break;
}
else if (iSigCount - iSig->implicitOpCount() == opCount) {
uint32_t r = 0;
for (j = 0; j < opCount && r < iSigCount; j++, r++) {
const InstDB::OpSignature* oChk = oSigTranslated + j;
const InstDB::OpSignature* oRef;
Next:
oRef = opSignatureTable + iSig->opSignatureIndex(r);
// Skip implicit operands.
if (oRef->isImplicit()) {
if (++r >= iSigCount)
break;
else
goto Next;
}
if (!x86CheckOSig(*oChk, *oRef, localImmOutOfRange))
break;
}
}
if (j == opCount) {
if (!localImmOutOfRange) {
// Match, must clear possible `globalImmOutOfRange`.
globalImmOutOfRange = false;
break;
}
globalImmOutOfRange = localImmOutOfRange;
}
} while (++iSig != iEnd);
if (iSig == iEnd) {
if (globalImmOutOfRange)
return DebugUtils::errored(kErrorInvalidImmediate);
else
return DebugUtils::errored(kErrorInvalidInstruction);
}
}
// Validate AVX512 Options
// -----------------------
const RegOnly& extraReg = inst.extraReg();
if (Support::test(options, kAvx512Options)) {
if (commonInfo.hasFlag(InstDB::InstFlags::kEvex)) {
// Validate AVX-512 {z}.
if (Support::test(options, InstOptions::kX86_ZMask)) {
if (ASMJIT_UNLIKELY(Support::test(options, InstOptions::kX86_ZMask) && !commonInfo.hasAvx512Z()))
return DebugUtils::errored(kErrorInvalidKZeroUse);
}
// Validate AVX-512 {sae} and {er}.
if (Support::test(options, InstOptions::kX86_SAE | InstOptions::kX86_ER)) {
// Rounding control is impossible if the instruction is not reg-to-reg.
if (ASMJIT_UNLIKELY(memOp))
return DebugUtils::errored(kErrorInvalidEROrSAE);
// Check if {sae} or {er} is supported by the instruction.
if (Support::test(options, InstOptions::kX86_ER)) {
// NOTE: if both {sae} and {er} are set, we don't care, as {sae} is implied.
if (ASMJIT_UNLIKELY(!commonInfo.hasAvx512ER()))
return DebugUtils::errored(kErrorInvalidEROrSAE);
}
else {
if (ASMJIT_UNLIKELY(!commonInfo.hasAvx512SAE()))
return DebugUtils::errored(kErrorInvalidEROrSAE);
}
// {sae} and {er} are defined for either scalar ops or vector ops that require LL to be 10 (512-bit vector
// operations). We don't need any more bits in the instruction database to be able to validate this, as
// each AVX512 instruction that has broadcast is vector instruction (in this case we require zmm registers),
// otherwise it's a scalar instruction, which is valid.
if (commonInfo.hasAvx512B()) {
// Supports broadcast, thus we require LL to be '10', which means there have to be ZMM registers used. We
// don't calculate LL here, but we know that it would be '10' if there is at least one ZMM register used.
// There is no {er}/{sae}-enabled instruction with less than two operands.
ASMJIT_ASSERT(opCount >= 2);
if (ASMJIT_UNLIKELY(!x86IsZmmOrM512(operands[0]) && !x86IsZmmOrM512(operands[1])))
return DebugUtils::errored(kErrorInvalidEROrSAE);
}
}
}
else {
// Not an AVX512 instruction - maybe OpExtra is xCX register used by REP/REPNE prefix.
if (Support::test(options, kAvx512Options) || !Support::test(options, kRepAny))
return DebugUtils::errored(kErrorInvalidInstruction);
}
}
// Validate {Extra} Register
// -------------------------
if (extraReg.isReg()) {
if (Support::test(options, kRepAny)) {
// Validate REP|REPNE {cx|ecx|rcx}.
if (ASMJIT_UNLIKELY(Support::test(iFlags, InstDB::InstFlags::kRepIgnored)))
return DebugUtils::errored(kErrorInvalidExtraReg);
if (extraReg.isPhysReg()) {
if (ASMJIT_UNLIKELY(extraReg.id() != Gp::kIdCx))
return DebugUtils::errored(kErrorInvalidExtraReg);
}
// The type of the {...} register must match the type of the base register
// of memory operand. So if the memory operand uses 32-bit register the
// count register must also be 32-bit, etc...
if (ASMJIT_UNLIKELY(!memOp || extraReg.type() != memOp->baseType()))
return DebugUtils::errored(kErrorInvalidExtraReg);
}
else if (commonInfo.hasFlag(InstDB::InstFlags::kEvex)) {
// Validate AVX-512 {k}.
if (ASMJIT_UNLIKELY(extraReg.type() != RegType::kX86_KReg))
return DebugUtils::errored(kErrorInvalidExtraReg);
if (ASMJIT_UNLIKELY(extraReg.id() == 0 || !commonInfo.hasAvx512K()))
return DebugUtils::errored(kErrorInvalidKMaskUse);
}
else {
return DebugUtils::errored(kErrorInvalidExtraReg);
}
}
return kErrorOk;
}
#endif // !ASMJIT_NO_VALIDATION
// x86::InstInternal - QueryRWInfo
// ===============================
#ifndef ASMJIT_NO_INTROSPECTION
static const Support::Array<uint64_t, uint32_t(RegGroup::kMaxValue) + 1> rwRegGroupByteMask = {{
0x00000000000000FFu, // GP.
0xFFFFFFFFFFFFFFFFu, // XMM|YMM|ZMM.
0x00000000000000FFu, // MM.
0x00000000000000FFu, // KReg.
0x0000000000000003u, // SReg.
0x00000000000000FFu, // CReg.
0x00000000000000FFu, // DReg.
0x00000000000003FFu, // St().
0x000000000000FFFFu, // BND.
0x00000000000000FFu // RIP.
}};
static ASMJIT_FORCE_INLINE void rwZeroExtendGp(OpRWInfo& opRwInfo, const Gp& reg, uint32_t nativeGpSize) noexcept {
ASMJIT_ASSERT(BaseReg::isGp(reg.as<Operand>()));
if (reg.size() + 4 == nativeGpSize) {
opRwInfo.addOpFlags(OpRWFlags::kZExt);
opRwInfo.setExtendByteMask(~opRwInfo.writeByteMask() & 0xFFu);
}
}
static ASMJIT_FORCE_INLINE void rwZeroExtendAvxVec(OpRWInfo& opRwInfo, const Vec& reg) noexcept {
DebugUtils::unused(reg);
uint64_t msk = ~Support::fillTrailingBits(opRwInfo.writeByteMask());
if (msk) {
opRwInfo.addOpFlags(OpRWFlags::kZExt);
opRwInfo.setExtendByteMask(msk);
}
}
static ASMJIT_FORCE_INLINE void rwZeroExtendNonVec(OpRWInfo& opRwInfo, const Reg& reg) noexcept {
uint64_t msk = ~Support::fillTrailingBits(opRwInfo.writeByteMask()) & rwRegGroupByteMask[reg.group()];
if (msk) {
opRwInfo.addOpFlags(OpRWFlags::kZExt);
opRwInfo.setExtendByteMask(msk);
}
}
static ASMJIT_FORCE_INLINE Error rwHandleAVX512(const BaseInst& inst, const InstDB::CommonInfo& commonInfo, InstRWInfo* out) noexcept {
if (inst.hasExtraReg() && inst.extraReg().type() == RegType::kX86_KReg && out->opCount() > 0) {
// AVX-512 instruction that uses a destination with {k} register (zeroing vs masking).
out->_extraReg.addOpFlags(OpRWFlags::kRead);
out->_extraReg.setReadByteMask(0xFF);
if (!inst.hasOption(InstOptions::kX86_ZMask) && !commonInfo.hasAvx512Flag(InstDB::Avx512Flags::kImplicitZ)) {
out->_operands[0].addOpFlags(OpRWFlags::kRead);
out->_operands[0]._readByteMask |= out->_operands[0]._writeByteMask;
}
}
return kErrorOk;
}
static ASMJIT_FORCE_INLINE bool hasSameRegType(const BaseReg* regs, size_t opCount) noexcept {
ASMJIT_ASSERT(opCount > 0);
RegType regType = regs[0].type();
for (size_t i = 1; i < opCount; i++)
if (regs[i].type() != regType)
return false;
return true;
}
Error InstInternal::queryRWInfo(Arch arch, const BaseInst& inst, const Operand_* operands, size_t opCount, InstRWInfo* out) noexcept {
// Only called when `arch` matches X86 family.
ASMJIT_ASSERT(Environment::isFamilyX86(arch));
// Get the instruction data.
InstId instId = inst.id();
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
// Read/Write flags.
const InstDB::InstInfo& instInfo = InstDB::_instInfoTable[instId];
const InstDB::CommonInfo& commonInfo = InstDB::_commonInfoTable[instInfo._commonInfoIndex];
const InstDB::AdditionalInfo& additionalInfo = InstDB::_additionalInfoTable[instInfo._additionalInfoIndex];
const InstDB::RWFlagsInfoTable& rwFlags = InstDB::_rwFlagsInfoTable[additionalInfo._rwFlagsIndex];
// There are two data tables, one for `opCount == 2` and the second for
// `opCount != 2`. There are two reasons for that:
// - There are instructions that share the same name that have both 2 or 3 operands, which have different
// RW information / semantics.
// - There must be 2 tables otherwise the lookup index won't fit into 8 bits (there is more than 256 records
// of combined rwInfo A and B).
const InstDB::RWInfo& instRwInfo = opCount == 2 ? InstDB::rwInfoA[InstDB::rwInfoIndexA[instId]]
: InstDB::rwInfoB[InstDB::rwInfoIndexB[instId]];
const InstDB::RWInfoRm& instRmInfo = InstDB::rwInfoRm[instRwInfo.rmInfo];
out->_instFlags = InstDB::_instFlagsTable[additionalInfo._instFlagsIndex];
out->_opCount = uint8_t(opCount);
out->_rmFeature = instRmInfo.rmFeature;
out->_extraReg.reset();
out->_readFlags = CpuRWFlags(rwFlags.readFlags);
out->_writeFlags = CpuRWFlags(rwFlags.writeFlags);
uint32_t opTypeMask = 0u;
uint32_t nativeGpSize = Environment::registerSizeFromArch(arch);
constexpr OpRWFlags R = OpRWFlags::kRead;
constexpr OpRWFlags W = OpRWFlags::kWrite;
constexpr OpRWFlags X = OpRWFlags::kRW;
constexpr OpRWFlags RegM = OpRWFlags::kRegMem;
constexpr OpRWFlags RegPhys = OpRWFlags::kRegPhysId;
constexpr OpRWFlags MibRead = OpRWFlags::kMemBaseRead | OpRWFlags::kMemIndexRead;
if (instRwInfo.category == InstDB::RWInfo::kCategoryGeneric) {
uint32_t i;
uint32_t rmOpsMask = 0;
uint32_t rmMaxSize = 0;
for (i = 0; i < opCount; i++) {
OpRWInfo& op = out->_operands[i];
const Operand_& srcOp = operands[i];
const InstDB::RWInfoOp& rwOpData = InstDB::rwInfoOp[instRwInfo.opInfoIndex[i]];
opTypeMask |= Support::bitMask(srcOp.opType());
if (!srcOp.isRegOrMem()) {
op.reset();
continue;
}
op._opFlags = rwOpData.flags & ~OpRWFlags::kZExt;
op._physId = rwOpData.physId;
op._rmSize = 0;
op._resetReserved();
uint64_t rByteMask = rwOpData.rByteMask;
uint64_t wByteMask = rwOpData.wByteMask;
if (op.isRead() && !rByteMask) rByteMask = Support::lsbMask<uint64_t>(srcOp.size());
if (op.isWrite() && !wByteMask) wByteMask = Support::lsbMask<uint64_t>(srcOp.size());
op._readByteMask = rByteMask;
op._writeByteMask = wByteMask;
op._extendByteMask = 0;
op._consecutiveLeadCount = rwOpData.consecutiveLeadCount;
if (srcOp.isReg()) {
// Zero extension.
if (op.isWrite()) {
if (srcOp.as<Reg>().isGp()) {
// GP registers on X64 are special:
// - 8-bit and 16-bit writes aren't zero extended.
// - 32-bit writes ARE zero extended.
rwZeroExtendGp(op, srcOp.as<Gp>(), nativeGpSize);
}
else if (Support::test(rwOpData.flags, OpRWFlags::kZExt)) {
// Otherwise follow ZExt.
rwZeroExtendNonVec(op, srcOp.as<Gp>());
}
}
// Aggregate values required to calculate valid Reg/M info.
rmMaxSize = Support::max(rmMaxSize, srcOp.size());
rmOpsMask |= Support::bitMask<uint32_t>(i);
}
else {
const x86::Mem& memOp = srcOp.as<x86::Mem>();
// The RW flags of BASE+INDEX are either provided by the data, which means
// that the instruction is border-case, or they are deduced from the operand.
if (memOp.hasBaseReg() && !op.hasOpFlag(OpRWFlags::kMemBaseRW))
op.addOpFlags(OpRWFlags::kMemBaseRead);
if (memOp.hasIndexReg() && !op.hasOpFlag(OpRWFlags::kMemIndexRW))
op.addOpFlags(OpRWFlags::kMemIndexRead);
}
}
// Only keep kMovOp if the instruction is actually register to register move of the same kind.
if (out->hasInstFlag(InstRWFlags::kMovOp)) {
if (!(opCount >= 2 && opTypeMask == Support::bitMask(OperandType::kReg) && hasSameRegType(reinterpret_cast<const BaseReg*>(operands), opCount)))
out->_instFlags &= ~InstRWFlags::kMovOp;
}
// Special cases require more logic.
if (instRmInfo.flags & (InstDB::RWInfoRm::kFlagMovssMovsd | InstDB::RWInfoRm::kFlagPextrw | InstDB::RWInfoRm::kFlagFeatureIfRMI)) {
if (instRmInfo.flags & InstDB::RWInfoRm::kFlagMovssMovsd) {
if (opCount == 2) {
if (operands[0].isReg() && operands[1].isReg()) {
// Doesn't zero extend the destination.
out->_operands[0]._extendByteMask = 0;
}
}
}
else if (instRmInfo.flags & InstDB::RWInfoRm::kFlagPextrw) {
if (opCount == 3 && Reg::isMm(operands[1])) {
out->_rmFeature = 0;
rmOpsMask = 0;
}
}
else if (instRmInfo.flags & InstDB::RWInfoRm::kFlagFeatureIfRMI) {
if (opCount != 3 || !operands[2].isImm()) {
out->_rmFeature = 0;
}
}
}
rmOpsMask &= instRmInfo.rmOpsMask;
if (rmOpsMask) {
Support::BitWordIterator<uint32_t> it(rmOpsMask);
do {
i = it.next();
OpRWInfo& op = out->_operands[i];
op.addOpFlags(RegM);
switch (instRmInfo.category) {
case InstDB::RWInfoRm::kCategoryFixed:
op.setRmSize(instRmInfo.fixedSize);
break;
case InstDB::RWInfoRm::kCategoryConsistent:
op.setRmSize(operands[i].size());
break;
case InstDB::RWInfoRm::kCategoryHalf:
op.setRmSize(rmMaxSize / 2u);
break;
case InstDB::RWInfoRm::kCategoryQuarter:
op.setRmSize(rmMaxSize / 4u);
break;
case InstDB::RWInfoRm::kCategoryEighth:
op.setRmSize(rmMaxSize / 8u);
break;
}
} while (it.hasNext());
}
return rwHandleAVX512(inst, commonInfo, out);
}
switch (instRwInfo.category) {
case InstDB::RWInfo::kCategoryMov: {
// Special case for 'mov' instruction. Here there are some variants that we have to handle as 'mov' can be
// used to move between GP, segment, control and debug registers. Moving between GP registers also allow to
// use memory operand.
// We will again set the flag if it's actually a move from GP to GP register, otherwise this flag cannot be set.
out->_instFlags &= ~InstRWFlags::kMovOp;
if (opCount == 2) {
if (operands[0].isReg() && operands[1].isReg()) {
const Reg& o0 = operands[0].as<Reg>();
const Reg& o1 = operands[1].as<Reg>();
if (o0.isGp() && o1.isGp()) {
out->_operands[0].reset(W | RegM, operands[0].size());
out->_operands[1].reset(R | RegM, operands[1].size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
out->_instFlags |= InstRWFlags::kMovOp;
return kErrorOk;
}
if (o0.isGp() && o1.isSReg()) {
out->_operands[0].reset(W | RegM, nativeGpSize);
out->_operands[0].setRmSize(2);
out->_operands[1].reset(R, 2);
return kErrorOk;
}
if (o0.isSReg() && o1.isGp()) {
out->_operands[0].reset(W, 2);
out->_operands[1].reset(R | RegM, 2);
out->_operands[1].setRmSize(2);
return kErrorOk;
}
if (o0.isGp() && (o1.isCReg() || o1.isDReg())) {
out->_operands[0].reset(W, nativeGpSize);
out->_operands[1].reset(R, nativeGpSize);
out->_writeFlags = CpuRWFlags::kX86_OF |
CpuRWFlags::kX86_SF |
CpuRWFlags::kX86_ZF |
CpuRWFlags::kX86_AF |
CpuRWFlags::kX86_PF |
CpuRWFlags::kX86_CF;
return kErrorOk;
}
if ((o0.isCReg() || o0.isDReg()) && o1.isGp()) {
out->_operands[0].reset(W, nativeGpSize);
out->_operands[1].reset(R, nativeGpSize);
out->_writeFlags = CpuRWFlags::kX86_OF |
CpuRWFlags::kX86_SF |
CpuRWFlags::kX86_ZF |
CpuRWFlags::kX86_AF |
CpuRWFlags::kX86_PF |
CpuRWFlags::kX86_CF;
return kErrorOk;
}
}
if (operands[0].isReg() && operands[1].isMem()) {
const Reg& o0 = operands[0].as<Reg>();
const Mem& o1 = operands[1].as<Mem>();
if (o0.isGp()) {
if (!o1.isOffset64Bit())
out->_operands[0].reset(W, o0.size());
else
out->_operands[0].reset(W | RegPhys, o0.size(), Gp::kIdAx);
out->_operands[1].reset(R | MibRead, o0.size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (o0.isSReg()) {
out->_operands[0].reset(W, 2);
out->_operands[1].reset(R, 2);
return kErrorOk;
}
}
if (operands[0].isMem() && operands[1].isReg()) {
const Mem& o0 = operands[0].as<Mem>();
const Reg& o1 = operands[1].as<Reg>();
if (o1.isGp()) {
out->_operands[0].reset(W | MibRead, o1.size());
if (!o0.isOffset64Bit())
out->_operands[1].reset(R, o1.size());
else
out->_operands[1].reset(R | RegPhys, o1.size(), Gp::kIdAx);
return kErrorOk;
}
if (o1.isSReg()) {
out->_operands[0].reset(W | MibRead, 2);
out->_operands[1].reset(R, 2);
return kErrorOk;
}
}
if (Reg::isGp(operands[0]) && operands[1].isImm()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W | RegM, o0.size());
out->_operands[1].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (operands[0].isMem() && operands[1].isImm()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W | MibRead, o0.size());
out->_operands[1].reset();
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryMovabs: {
if (opCount == 2) {
if (Reg::isGp(operands[0]) && operands[1].isMem()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W | RegPhys, o0.size(), Gp::kIdAx);
out->_operands[1].reset(R | MibRead, o0.size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (operands[0].isMem() && Reg::isGp(operands[1])) {
const Reg& o1 = operands[1].as<Reg>();
out->_operands[0].reset(W | MibRead, o1.size());
out->_operands[1].reset(R | RegPhys, o1.size(), Gp::kIdAx);
return kErrorOk;
}
if (Reg::isGp(operands[0]) && operands[1].isImm()) {
const Reg& o0 = operands[0].as<Reg>();
out->_operands[0].reset(W, o0.size());
out->_operands[1].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryImul: {
// Special case for 'imul' instruction.
//
// There are 3 variants in general:
//
// 1. Standard multiplication: 'A = A * B'.
// 2. Multiplication with imm: 'A = B * C'.
// 3. Extended multiplication: 'A:B = B * C'.
if (opCount == 2) {
if (operands[0].isReg() && operands[1].isImm()) {
out->_operands[0].reset(X, operands[0].size());
out->_operands[1].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
return kErrorOk;
}
if (Reg::isGpw(operands[0]) && operands[1].size() == 1) {
// imul ax, r8/m8 <- AX = AL * r8/m8
out->_operands[0].reset(X | RegPhys, 2, Gp::kIdAx);
out->_operands[0].setReadByteMask(Support::lsbMask<uint64_t>(1));
out->_operands[1].reset(R | RegM, 1);
}
else {
// imul r?, r?/m?
out->_operands[0].reset(X, operands[0].size());
out->_operands[1].reset(R | RegM, operands[0].size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
}
if (operands[1].isMem())
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
if (opCount == 3) {
if (operands[2].isImm()) {
out->_operands[0].reset(W, operands[0].size());
out->_operands[1].reset(R | RegM, operands[1].size());
out->_operands[2].reset();
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
if (operands[1].isMem())
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
else {
out->_operands[0].reset(W | RegPhys, operands[0].size(), Gp::kIdDx);
out->_operands[1].reset(X | RegPhys, operands[1].size(), Gp::kIdAx);
out->_operands[2].reset(R | RegM, operands[2].size());
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
rwZeroExtendGp(out->_operands[1], operands[1].as<Gp>(), nativeGpSize);
if (operands[2].isMem())
out->_operands[2].addOpFlags(MibRead);
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryMovh64: {
// Special case for 'movhpd|movhps' instructions. Note that this is only required for legacy (non-AVX)
// variants as AVX instructions use either 2 or 3 operands that are in `kCategoryGeneric` category.
if (opCount == 2) {
if (BaseReg::isVec(operands[0]) && operands[1].isMem()) {
out->_operands[0].reset(W, 8);
out->_operands[0].setWriteByteMask(Support::lsbMask<uint64_t>(8) << 8);
out->_operands[1].reset(R | MibRead, 8);
return kErrorOk;
}
if (operands[0].isMem() && BaseReg::isVec(operands[1])) {
out->_operands[0].reset(W | MibRead, 8);
out->_operands[1].reset(R, 8);
out->_operands[1].setReadByteMask(Support::lsbMask<uint64_t>(8) << 8);
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryPunpcklxx: {
// Special case for 'punpcklbw|punpckldq|punpcklwd' instructions.
if (opCount == 2) {
if (Reg::isXmm(operands[0])) {
out->_operands[0].reset(X, 16);
out->_operands[0].setReadByteMask(0x0F0Fu);
out->_operands[0].setWriteByteMask(0xFFFFu);
out->_operands[1].reset(R, 16);
out->_operands[1].setWriteByteMask(0x0F0Fu);
if (Reg::isXmm(operands[1])) {
return kErrorOk;
}
if (operands[1].isMem()) {
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
}
if (Reg::isMm(operands[0])) {
out->_operands[0].reset(X, 8);
out->_operands[0].setReadByteMask(0x0Fu);
out->_operands[0].setWriteByteMask(0xFFu);
out->_operands[1].reset(R, 4);
out->_operands[1].setReadByteMask(0x0Fu);
if (Reg::isMm(operands[1])) {
return kErrorOk;
}
if (operands[1].isMem()) {
out->_operands[1].addOpFlags(MibRead);
return kErrorOk;
}
}
}
break;
}
case InstDB::RWInfo::kCategoryVmaskmov: {
// Special case for 'vmaskmovpd|vmaskmovps|vpmaskmovd|vpmaskmovq' instructions.
if (opCount == 3) {
if (BaseReg::isVec(operands[0]) && BaseReg::isVec(operands[1]) && operands[2].isMem()) {
out->_operands[0].reset(W, operands[0].size());
out->_operands[1].reset(R, operands[1].size());
out->_operands[2].reset(R | MibRead, operands[1].size());
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return kErrorOk;
}
if (operands[0].isMem() && BaseReg::isVec(operands[1]) && BaseReg::isVec(operands[2])) {
out->_operands[0].reset(X | MibRead, operands[1].size());
out->_operands[1].reset(R, operands[1].size());
out->_operands[2].reset(R, operands[2].size());
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryVmovddup: {
// Special case for 'vmovddup' instruction. This instruction has an interesting semantic as 128-bit XMM
// version only uses 64-bit memory operand (m64), however, 256/512-bit versions use 256/512-bit memory
// operand, respectively.
if (opCount == 2) {
if (BaseReg::isVec(operands[0]) && BaseReg::isVec(operands[1])) {
uint32_t o0Size = operands[0].size();
uint32_t o1Size = o0Size == 16 ? 8 : o0Size;
out->_operands[0].reset(W, o0Size);
out->_operands[1].reset(R | RegM, o1Size);
out->_operands[1]._readByteMask &= 0x00FF00FF00FF00FFu;
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return rwHandleAVX512(inst, commonInfo, out);
}
if (BaseReg::isVec(operands[0]) && operands[1].isMem()) {
uint32_t o0Size = operands[0].size();
uint32_t o1Size = o0Size == 16 ? 8 : o0Size;
out->_operands[0].reset(W, o0Size);
out->_operands[1].reset(R | MibRead, o1Size);
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return rwHandleAVX512(inst, commonInfo, out);
}
}
break;
}
case InstDB::RWInfo::kCategoryVmovmskpd:
case InstDB::RWInfo::kCategoryVmovmskps: {
// Special case for 'vmovmskpd|vmovmskps' instructions.
if (opCount == 2) {
if (BaseReg::isGp(operands[0]) && BaseReg::isVec(operands[1])) {
out->_operands[0].reset(W, 1);
out->_operands[0].setExtendByteMask(Support::lsbMask<uint32_t>(nativeGpSize - 1) << 1);
out->_operands[1].reset(R, operands[1].size());
return kErrorOk;
}
}
break;
}
case InstDB::RWInfo::kCategoryVmov1_2:
case InstDB::RWInfo::kCategoryVmov1_4:
case InstDB::RWInfo::kCategoryVmov1_8: {
// Special case for instructions where the destination is 1:N (narrowing).
//
// Vmov1_2:
// vcvtpd2dq|vcvttpd2dq
// vcvtpd2udq|vcvttpd2udq
// vcvtpd2ps|vcvtps2ph
// vcvtqq2ps|vcvtuqq2ps
// vpmovwb|vpmovswb|vpmovuswb
// vpmovdw|vpmovsdw|vpmovusdw
// vpmovqd|vpmovsqd|vpmovusqd
//
// Vmov1_4:
// vpmovdb|vpmovsdb|vpmovusdb
// vpmovqw|vpmovsqw|vpmovusqw
//
// Vmov1_8:
// pmovmskb|vpmovmskb
// vpmovqb|vpmovsqb|vpmovusqb
uint32_t shift = instRwInfo.category - InstDB::RWInfo::kCategoryVmov1_2 + 1;
if (opCount >= 2) {
if (opCount >= 3) {
if (opCount > 3)
return DebugUtils::errored(kErrorInvalidInstruction);
out->_operands[2].reset();
}
if (operands[0].isReg() && operands[1].isReg()) {
uint32_t size1 = operands[1].size();
uint32_t size0 = size1 >> shift;
out->_operands[0].reset(W, size0);
out->_operands[1].reset(R, size1);
if (instRmInfo.rmOpsMask & 0x1) {
out->_operands[0].addOpFlags(RegM);
out->_operands[0].setRmSize(size0);
}
if (instRmInfo.rmOpsMask & 0x2) {
out->_operands[1].addOpFlags(RegM);
out->_operands[1].setRmSize(size1);
}
// Handle 'pmovmskb|vpmovmskb'.
if (BaseReg::isGp(operands[0]))
rwZeroExtendGp(out->_operands[0], operands[0].as<Gp>(), nativeGpSize);
if (BaseReg::isVec(operands[0]))
rwZeroExtendAvxVec(out->_operands[0], operands[0].as<Vec>());
return rwHandleAVX512(inst, commonInfo, out);
}
if (operands[0].isReg() && operands[1].isMem()) {
uint32_t size1 = operands[1].size() ? operands[1].size() : uint32_t(16);
uint32_t size0 = size1 >> shift;
out->_operands[0].reset(W, size0);
out->_operands[1].reset(R | MibRead, size1);
return kErrorOk;
}
if (operands[0].isMem() && operands[1].isReg()) {
uint32_t size1 = operands[1].size();
uint32_t size0 = size1 >> shift;
out->_operands[0].reset(W | MibRead, size0);
out->_operands[1].reset(R, size1);
return rwHandleAVX512(inst, commonInfo, out);
}
}
break;
}
case InstDB::RWInfo::kCategoryVmov2_1:
case InstDB::RWInfo::kCategoryVmov4_1:
case InstDB::RWInfo::kCategoryVmov8_1: {
// Special case for instructions where the destination is N:1 (widening).
//
// Vmov2_1:
// vcvtdq2pd|vcvtudq2pd
// vcvtps2pd|vcvtph2ps
// vcvtps2qq|vcvtps2uqq
// vcvttps2qq|vcvttps2uqq
// vpmovsxbw|vpmovzxbw
// vpmovsxwd|vpmovzxwd
// vpmovsxdq|vpmovzxdq
//
// Vmov4_1:
// vpmovsxbd|vpmovzxbd
// vpmovsxwq|vpmovzxwq
//
// Vmov8_1:
// vpmovsxbq|vpmovzxbq
uint32_t shift = instRwInfo.category - InstDB::RWInfo::kCategoryVmov2_1 + 1;
if (opCount >= 2) {
if (opCount >= 3) {
if (opCount > 3)
return DebugUtils::errored(kErrorInvalidInstruction);
out->_operands[2].reset();
}
uint32_t size0 = operands[0].size();
uint32_t size1 = size0 >> shift;
out->_operands[0].reset(W, size0);
out->_operands[1].reset(R, size1);
if (operands[0].isReg() && operands[1].isReg()) {
if (instRmInfo.rmOpsMask & 0x1) {
out->_operands[0].addOpFlags(RegM);
out->_operands[0].setRmSize(size0);
}
if (instRmInfo.rmOpsMask & 0x2) {
out->_operands[1].addOpFlags(RegM);
out->_operands[1].setRmSize(size1);
}
return rwHandleAVX512(inst, commonInfo, out);
}
if (operands[0].isReg() && operands[1].isMem()) {
out->_operands[1].addOpFlags(MibRead);
return rwHandleAVX512(inst, commonInfo, out);
}
}
break;
}
}
return DebugUtils::errored(kErrorInvalidInstruction);
}
#endif // !ASMJIT_NO_INTROSPECTION
// x86::InstInternal - QueryFeatures
// =================================
#ifndef ASMJIT_NO_INTROSPECTION
struct RegAnalysis {
uint32_t regTypeMask;
uint32_t highVecUsed;
inline bool hasRegType(RegType regType) const noexcept {
return Support::bitTest(regTypeMask, regType);
}
};
static RegAnalysis InstInternal_regAnalysis(const Operand_* operands, size_t opCount) noexcept {
uint32_t mask = 0;
uint32_t highVecUsed = 0;
for (uint32_t i = 0; i < opCount; i++) {
const Operand_& op = operands[i];
if (op.isReg()) {
const BaseReg& reg = op.as<BaseReg>();
mask |= Support::bitMask(reg.type());
if (reg.isVec())
highVecUsed |= uint32_t(reg.id() >= 16 && reg.id() < 32);
}
else if (op.isMem()) {
const BaseMem& mem = op.as<BaseMem>();
if (mem.hasBaseReg()) mask |= Support::bitMask(mem.baseType());
if (mem.hasIndexReg()) {
mask |= Support::bitMask(mem.indexType());
highVecUsed |= uint32_t(mem.indexId() >= 16 && mem.indexId() < 32);
}
}
}
return RegAnalysis { mask, highVecUsed };
}
static inline uint32_t InstInternal_usesAvx512(InstOptions instOptions, const RegOnly& extraReg, const RegAnalysis& regAnalysis) noexcept {
uint32_t hasEvex = uint32_t(instOptions & (InstOptions::kX86_Evex | InstOptions::kX86_AVX512Mask));
uint32_t hasKMask = extraReg.type() == RegType::kX86_KReg;
uint32_t hasKOrZmm = regAnalysis.regTypeMask & Support::bitMask(RegType::kX86_Zmm, RegType::kX86_KReg);
return hasEvex | hasKMask | hasKOrZmm;
}
Error InstInternal::queryFeatures(Arch arch, const BaseInst& inst, const Operand_* operands, size_t opCount, CpuFeatures* out) noexcept {
// Only called when `arch` matches X86 family.
DebugUtils::unused(arch);
ASMJIT_ASSERT(Environment::isFamilyX86(arch));
// Get the instruction data.
InstId instId = inst.id();
InstOptions options = inst.options();
if (ASMJIT_UNLIKELY(!Inst::isDefinedId(instId)))
return DebugUtils::errored(kErrorInvalidInstruction);
const InstDB::InstInfo& instInfo = InstDB::infoById(instId);
const InstDB::AdditionalInfo& additionalInfo = InstDB::_additionalInfoTable[instInfo._additionalInfoIndex];
const uint8_t* fData = additionalInfo.featuresBegin();
const uint8_t* fEnd = additionalInfo.featuresEnd();
// Copy all features to `out`.
out->reset();
do {
uint32_t feature = fData[0];
if (!feature)
break;
out->add(feature);
} while (++fData != fEnd);
// Since AsmJit aggregates instructions that share the same name we have to
// deal with some special cases and also with MMX/SSE and AVX/AVX2 overlaps.
if (fData != additionalInfo.featuresBegin()) {
RegAnalysis regAnalysis = InstInternal_regAnalysis(operands, opCount);
// Handle MMX vs SSE overlap.
if (out->has(CpuFeatures::X86::kMMX) || out->has(CpuFeatures::X86::kMMX2)) {
// Only instructions defined by SSE and SSE2 overlap. Instructions introduced by newer instruction sets like
// SSE3+ don't state MMX as they require SSE3+.
if (out->has(CpuFeatures::X86::kSSE) || out->has(CpuFeatures::X86::kSSE2)) {
if (!regAnalysis.hasRegType(RegType::kX86_Xmm)) {
// The instruction doesn't use XMM register(s), thus it's MMX/MMX2 only.
out->remove(CpuFeatures::X86::kSSE);
out->remove(CpuFeatures::X86::kSSE2);
out->remove(CpuFeatures::X86::kSSE4_1);
}
else {
out->remove(CpuFeatures::X86::kMMX);
out->remove(CpuFeatures::X86::kMMX2);
}
// Special case: PEXTRW instruction is MMX/SSE2 instruction. However, MMX/SSE version cannot access memory
// (only register to register extract) so when SSE4.1 introduced the whole family of PEXTR/PINSR instructions
// they also introduced PEXTRW with a new opcode 0x15 that can extract directly to memory. This instruction
// is, of course, not compatible with MMX/SSE2 and would #UD if SSE4.1 is not supported.
if (instId == Inst::kIdPextrw) {
if (opCount >= 1 && operands[0].isMem())
out->remove(CpuFeatures::X86::kSSE2);
else
out->remove(CpuFeatures::X86::kSSE4_1);
}
}
}
// Handle PCLMULQDQ vs VPCLMULQDQ.
if (out->has(CpuFeatures::X86::kVPCLMULQDQ)) {
if (regAnalysis.hasRegType(RegType::kX86_Zmm) || Support::test(options, InstOptions::kX86_Evex)) {
// AVX512_F & VPCLMULQDQ.
out->remove(CpuFeatures::X86::kAVX, CpuFeatures::X86::kPCLMULQDQ);
}
else if (regAnalysis.hasRegType(RegType::kX86_Ymm)) {
out->remove(CpuFeatures::X86::kAVX512_F, CpuFeatures::X86::kAVX512_VL);
}
else {
// AVX & PCLMULQDQ.
out->remove(CpuFeatures::X86::kAVX512_F, CpuFeatures::X86::kAVX512_VL, CpuFeatures::X86::kVPCLMULQDQ);
}
}
// Handle AVX vs AVX2 overlap.
if (out->has(CpuFeatures::X86::kAVX) && out->has(CpuFeatures::X86::kAVX2)) {
bool isAVX2 = true;
// Special case: VBROADCASTSS and VBROADCASTSD were introduced in AVX, but only version that uses memory as a
// source operand. AVX2 then added support for register source operand.
if (instId == Inst::kIdVbroadcastss || instId == Inst::kIdVbroadcastsd) {
if (opCount > 1 && operands[1].isMem())
isAVX2 = false;
}
else {
// AVX instruction set doesn't support integer operations on YMM registers as these were later introcuced by
// AVX2. In our case we have to check if YMM register(s) are in use and if that is the case this is an AVX2
// instruction.
if (!(regAnalysis.regTypeMask & Support::bitMask(RegType::kX86_Ymm, RegType::kX86_Zmm)))
isAVX2 = false;
}
if (isAVX2)
out->remove(CpuFeatures::X86::kAVX);
else
out->remove(CpuFeatures::X86::kAVX2);
}
// Handle AVX|AVX2|FMA|F16C vs AVX512 overlap.
if (out->has(CpuFeatures::X86::kAVX) || out->has(CpuFeatures::X86::kAVX2) || out->has(CpuFeatures::X86::kFMA) || out->has(CpuFeatures::X86::kF16C)) {
// Only AVX512-F|BW|DQ allow to encode AVX/AVX2/FMA/F16C instructions
if (out->has(CpuFeatures::X86::kAVX512_F) || out->has(CpuFeatures::X86::kAVX512_BW) || out->has(CpuFeatures::X86::kAVX512_DQ)) {
uint32_t usesAvx512 = InstInternal_usesAvx512(options, inst.extraReg(), regAnalysis);
uint32_t mustUseEvex = 0;
switch (instId) {
// Special case: VPBROADCAST[B|D|Q|W] only supports r32/r64 with EVEX prefix.
case Inst::kIdVpbroadcastb:
case Inst::kIdVpbroadcastd:
case Inst::kIdVpbroadcastq:
case Inst::kIdVpbroadcastw:
mustUseEvex = opCount >= 2 && x86::Reg::isGp(operands[1]);
break;
case Inst::kIdVcvtpd2dq:
case Inst::kIdVcvtpd2ps:
case Inst::kIdVcvttpd2dq:
mustUseEvex = opCount >= 2 && Reg::isYmm(operands[0]);
break;
// Special case: These instructions only allow `reg, reg. imm` combination in AVX|AVX2 mode, then
// AVX-512 introduced `reg, reg/mem, imm` combination that uses EVEX prefix. This means that if
// the second operand is memory then this is AVX-512_BW instruction and not AVX/AVX2 instruction.
case Inst::kIdVpslldq:
case Inst::kIdVpslld:
case Inst::kIdVpsllq:
case Inst::kIdVpsllw:
case Inst::kIdVpsrad:
case Inst::kIdVpsraq:
case Inst::kIdVpsraw:
case Inst::kIdVpsrld:
case Inst::kIdVpsrldq:
case Inst::kIdVpsrlq:
case Inst::kIdVpsrlw:
mustUseEvex = opCount >= 2 && operands[1].isMem();
break;
// Special case: VPERMPD - AVX2 vs AVX512-F case.
case Inst::kIdVpermpd:
mustUseEvex = opCount >= 3 && !operands[2].isImm();
break;
// Special case: VPERMQ - AVX2 vs AVX512-F case.
case Inst::kIdVpermq:
mustUseEvex = opCount >= 3 && (operands[1].isMem() || !operands[2].isImm());
break;
}
if (!(usesAvx512 | mustUseEvex | regAnalysis.highVecUsed))
out->remove(CpuFeatures::X86::kAVX512_F, CpuFeatures::X86::kAVX512_BW, CpuFeatures::X86::kAVX512_DQ, CpuFeatures::X86::kAVX512_VL);
else
out->remove(CpuFeatures::X86::kAVX, CpuFeatures::X86::kAVX2, CpuFeatures::X86::kFMA, CpuFeatures::X86::kF16C);
}
}
// Handle AVX_VNNI vs AVX512_VNNI overlap.
if (out->has(CpuFeatures::X86::kAVX512_VNNI)) {
// By default the AVX512_VNNI instruction should be used, because it was introduced first. However, VEX|VEX3
// prefix can be used to force AVX_VNNI instead.
uint32_t usesAvx512 = InstInternal_usesAvx512(options, inst.extraReg(), regAnalysis);
if (!usesAvx512 && Support::test(options, InstOptions::kX86_Vex | InstOptions::kX86_Vex3))
out->remove(CpuFeatures::X86::kAVX512_VNNI, CpuFeatures::X86::kAVX512_VL);
else
out->remove(CpuFeatures::X86::kAVX_VNNI);
}
// Clear AVX512_VL if ZMM register is used.
if (regAnalysis.hasRegType(RegType::kX86_Zmm))
out->remove(CpuFeatures::X86::kAVX512_VL);
}
return kErrorOk;
}
#endif // !ASMJIT_NO_INTROSPECTION
// x86::InstInternal - Tests
// =========================
#if defined(ASMJIT_TEST)
UNIT(x86_inst_api_text) {
// All known instructions should be matched.
INFO("Matching all X86 instructions");
for (uint32_t a = 1; a < Inst::_kIdCount; a++) {
StringTmp<128> aName;
EXPECT(InstInternal::instIdToString(Arch::kX86, a, aName) == kErrorOk,
"Failed to get the name of instruction #%u", a);
uint32_t b = InstInternal::stringToInstId(Arch::kX86, aName.data(), aName.size());
StringTmp<128> bName;
InstInternal::instIdToString(Arch::kX86, b, bName);
EXPECT(a == b,
"Instructions do not match \"%s\" (#%u) != \"%s\" (#%u)", aName.data(), a, bName.data(), b);
}
}
template<typename... Args>
static Error queryRWInfoSimple(InstRWInfo* out, Arch arch, InstId instId, InstOptions options, Args&&... args) {
BaseInst inst(instId);
inst.addOptions(options);
Operand_ opArray[] = { std::forward<Args>(args)... };
return InstInternal::queryRWInfo(arch, inst, opArray, sizeof...(args), out);
}
UNIT(x86_inst_api_rm_feature) {
INFO("Verifying whether RM/feature is reported correctly for PEXTRW instruction");
{
InstRWInfo rwi;
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdPextrw, InstOptions::kNone, eax, mm1, imm(1));
EXPECT(rwi.rmFeature() == 0);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdPextrw, InstOptions::kNone, eax, xmm1, imm(1));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kSSE4_1);
}
INFO("Verifying whether RM/feature is reported correctly for AVX512 shift instructions");
{
InstRWInfo rwi;
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpslld, InstOptions::kNone, xmm1, xmm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_F);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsllq, InstOptions::kNone, ymm1, ymm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_F);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsrad, InstOptions::kNone, xmm1, xmm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_F);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsrld, InstOptions::kNone, ymm1, ymm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_F);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsrlq, InstOptions::kNone, xmm1, xmm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_F);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpslldq, InstOptions::kNone, xmm1, xmm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_BW);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsllw, InstOptions::kNone, ymm1, ymm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_BW);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsraw, InstOptions::kNone, xmm1, xmm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_BW);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsrldq, InstOptions::kNone, ymm1, ymm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_BW);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsrlw, InstOptions::kNone, xmm1, xmm2, imm(8));
EXPECT(rwi.rmFeature() == CpuFeatures::X86::kAVX512_BW);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpslld, InstOptions::kNone, xmm1, xmm2, xmm3);
EXPECT(rwi.rmFeature() == 0);
queryRWInfoSimple(&rwi, Arch::kX64, Inst::kIdVpsllw, InstOptions::kNone, xmm1, xmm2, xmm3);
EXPECT(rwi.rmFeature() == 0);
}
}
#endif
ASMJIT_END_SUB_NAMESPACE
#endif // !ASMJIT_NO_X86