Defcon/hook_lib/asmjit/core/environment.h
MatrixMMOfficial 9631e4ca40 Initial commit
2023-11-26 08:54:06 -05:00

509 lines
16 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#ifndef ASMJIT_CORE_ENVIRONMENT_H_INCLUDED
#define ASMJIT_CORE_ENVIRONMENT_H_INCLUDED
#include "../core/archtraits.h"
#if defined(__APPLE__)
#include <TargetConditionals.h>
#endif
ASMJIT_BEGIN_NAMESPACE
//! \addtogroup asmjit_core
//! \{
//! Vendor.
//!
//! \note AsmJit doesn't use vendor information at the moment. It's provided for future use, if required.
enum class Vendor : uint8_t {
//! Unknown or uninitialized platform vendor.
kUnknown = 0,
//! Maximum value of `PlatformVendor`.
kMaxValue = kUnknown,
//! Platform vendor detected at compile-time.
kHost =
#if defined(_DOXYGEN)
DETECTED_AT_COMPILE_TIME
#else
kUnknown
#endif
};
//! Platform - runtime environment or operating system.
enum class Platform : uint8_t {
//! Unknown or uninitialized platform.
kUnknown = 0,
//! Windows OS.
kWindows,
//! Other platform that is not Windows, most likely POSIX based.
kOther,
//! Linux OS.
kLinux,
//! GNU/Hurd OS.
kHurd,
//! FreeBSD OS.
kFreeBSD,
//! OpenBSD OS.
kOpenBSD,
//! NetBSD OS.
kNetBSD,
//! DragonFly BSD OS.
kDragonFlyBSD,
//! Haiku OS.
kHaiku,
//! Apple OSX.
kOSX,
//! Apple iOS.
kIOS,
//! Apple TVOS.
kTVOS,
//! Apple WatchOS.
kWatchOS,
//! Emscripten platform.
kEmscripten,
//! Maximum value of `Platform`.
kMaxValue = kEmscripten,
//! Platform detected at compile-time (platform of the host).
kHost =
#if defined(_DOXYGEN)
DETECTED_AT_COMPILE_TIME
#elif defined(__EMSCRIPTEN__)
kEmscripten
#elif defined(_WIN32)
kWindows
#elif defined(__linux__)
kLinux
#elif defined(__gnu_hurd__)
kHurd
#elif defined(__FreeBSD__)
kFreeBSD
#elif defined(__OpenBSD__)
kOpenBSD
#elif defined(__NetBSD__)
kNetBSD
#elif defined(__DragonFly__)
kDragonFlyBSD
#elif defined(__HAIKU__)
kHaiku
#elif defined(__APPLE__) && TARGET_OS_OSX
kOSX
#elif defined(__APPLE__) && TARGET_OS_TV
kTVOS
#elif defined(__APPLE__) && TARGET_OS_WATCH
kWatchOS
#elif defined(__APPLE__) && TARGET_OS_IPHONE
kIOS
#else
kOther
#endif
};
//! Platform ABI (application binary interface).
enum class PlatformABI : uint8_t {
//! Unknown or uninitialied environment.
kUnknown = 0,
//! Microsoft ABI.
kMSVC,
//! GNU ABI.
kGNU,
//! Android Environment / ABI.
kAndroid,
//! Cygwin ABI.
kCygwin,
//! Maximum value of `PlatformABI`.
kMaxValue,
//! Host ABI detected at compile-time.
kHost =
#if defined(_DOXYGEN)
DETECTED_AT_COMPILE_TIME
#elif defined(_MSC_VER)
kMSVC
#elif defined(__CYGWIN__)
kCygwin
#elif defined(__MINGW32__) || defined(__GLIBC__)
kGNU
#elif defined(__ANDROID__)
kAndroid
#else
kUnknown
#endif
};
//! Object format.
//!
//! \note AsmJit doesn't really use anything except \ref ObjectFormat::kUnknown and \ref ObjectFormat::kJIT at
//! the moment. Object file formats are provided for future extensibility and a possibility to generate object
//! files at some point.
enum class ObjectFormat : uint8_t {
//! Unknown or uninitialized object format.
kUnknown = 0,
//! JIT code generation object, most likely \ref JitRuntime or a custom
//! \ref Target implementation.
kJIT,
//! Executable and linkable format (ELF).
kELF,
//! Common object file format.
kCOFF,
//! Extended COFF object format.
kXCOFF,
//! Mach object file format.
kMachO,
//! Maximum value of `ObjectFormat`.
kMaxValue
};
//! Represents an environment, which is usually related to a \ref Target.
//!
//! Environment has usually an 'arch-subarch-vendor-os-abi' format, which is sometimes called "Triple" (historically
//! it used to be 3 only parts) or "Tuple", which is a convention used by Debian Linux.
//!
//! AsmJit doesn't support all possible combinations or architectures and ABIs, however, it models the environment
//! similarly to other compilers for future extensibility.
class Environment {
public:
//! \name Members
//! \{
//! Architecture.
Arch _arch;
//! Sub-architecture type.
SubArch _subArch;
//! Vendor type.
Vendor _vendor;
//! Platform.
Platform _platform;
//! Platform ABI.
PlatformABI _platformABI;
//! Object format.
ObjectFormat _objectFormat;
//! Reserved for future use, must be zero.
uint8_t _reserved[2];
//! \}
//! \name Construction & Destruction
//! \{
inline Environment() noexcept :
_arch(Arch::kUnknown),
_subArch(SubArch::kUnknown),
_vendor(Vendor::kUnknown),
_platform(Platform::kUnknown),
_platformABI(PlatformABI::kUnknown),
_objectFormat(ObjectFormat::kUnknown),
_reserved { 0, 0 } {}
inline explicit Environment(
Arch arch,
SubArch subArch = SubArch::kUnknown,
Vendor vendor = Vendor::kUnknown,
Platform platform = Platform::kUnknown,
PlatformABI abi = PlatformABI::kUnknown,
ObjectFormat objectFormat = ObjectFormat::kUnknown) noexcept {
init(arch, subArch, vendor, platform, abi, objectFormat);
}
inline Environment(const Environment& other) noexcept = default;
//! Returns the host environment constructed from preprocessor macros defined by the compiler.
//!
//! The returned environment should precisely match the target host architecture, sub-architecture, platform,
//! and ABI.
static inline Environment host() noexcept {
return Environment(Arch::kHost, SubArch::kHost, Vendor::kHost, Platform::kHost, PlatformABI::kHost, ObjectFormat::kUnknown);
}
//! \}
//! \name Overloaded Operators
//! \{
inline Environment& operator=(const Environment& other) noexcept = default;
inline bool operator==(const Environment& other) const noexcept { return equals(other); }
inline bool operator!=(const Environment& other) const noexcept { return !equals(other); }
//! \}
//! \name Accessors
//! \{
//! Tests whether the environment is not set up.
//!
//! Returns true if all members are zero, and thus unknown.
inline bool empty() const noexcept {
// Unfortunately compilers won't optimize fields are checked one by one...
return _packed() == 0;
}
//! Tests whether the environment is initialized, which means it must have
//! a valid architecture.
inline bool isInitialized() const noexcept {
return _arch != Arch::kUnknown;
}
inline uint64_t _packed() const noexcept {
uint64_t x;
memcpy(&x, this, 8);
return x;
}
//! Resets all members of the environment to zero / unknown.
inline void reset() noexcept {
_arch = Arch::kUnknown;
_subArch = SubArch::kUnknown;
_vendor = Vendor::kUnknown;
_platform = Platform::kUnknown;
_platformABI = PlatformABI::kUnknown;
_objectFormat = ObjectFormat::kUnknown;
_reserved[0] = 0;
_reserved[1] = 0;
}
inline bool equals(const Environment& other) const noexcept {
return _packed() == other._packed();
}
//! Returns the architecture.
inline Arch arch() const noexcept { return _arch; }
//! Returns the sub-architecture.
inline SubArch subArch() const noexcept { return _subArch; }
//! Returns vendor.
inline Vendor vendor() const noexcept { return _vendor; }
//! Returns target's platform or operating system.
inline Platform platform() const noexcept { return _platform; }
//! Returns target's ABI.
inline PlatformABI platformABI() const noexcept { return _platformABI; }
//! Returns target's object format.
inline ObjectFormat objectFormat() const noexcept { return _objectFormat; }
inline void init(
Arch arch,
SubArch subArch = SubArch::kUnknown,
Vendor vendor = Vendor::kUnknown,
Platform platform = Platform::kUnknown,
PlatformABI platformABI = PlatformABI::kUnknown,
ObjectFormat objectFormat = ObjectFormat::kUnknown) noexcept {
_arch = arch;
_subArch = subArch;
_vendor = vendor;
_platform = platform;
_platformABI = platformABI;
_objectFormat = objectFormat;
_reserved[0] = 0;
_reserved[1] = 0;
}
inline bool isArchX86() const noexcept { return _arch == Arch::kX86; }
inline bool isArchX64() const noexcept { return _arch == Arch::kX64; }
inline bool isArchARM() const noexcept { return isArchARM(_arch); }
inline bool isArchThumb() const noexcept { return isArchThumb(_arch); }
inline bool isArchAArch64() const noexcept { return isArchAArch64(_arch); }
inline bool isArchMIPS32() const noexcept { return isArchMIPS32(_arch); }
inline bool isArchMIPS64() const noexcept { return isArchMIPS64(_arch); }
inline bool isArchRISCV32() const noexcept { return _arch == Arch::kRISCV32; }
inline bool isArchRISCV64() const noexcept { return _arch == Arch::kRISCV64; }
//! Tests whether the architecture is 32-bit.
inline bool is32Bit() const noexcept { return is32Bit(_arch); }
//! Tests whether the architecture is 64-bit.
inline bool is64Bit() const noexcept { return is64Bit(_arch); }
//! Tests whether the architecture is little endian.
inline bool isLittleEndian() const noexcept { return isLittleEndian(_arch); }
//! Tests whether the architecture is big endian.
inline bool isBigEndian() const noexcept { return isBigEndian(_arch); }
//! Tests whether this architecture is of X86 family.
inline bool isFamilyX86() const noexcept { return isFamilyX86(_arch); }
//! Tests whether this architecture family is ARM, THUMB, or AArch64.
inline bool isFamilyARM() const noexcept { return isFamilyARM(_arch); }
//! Tests whether this architecture family is AArch32 (ARM or THUMB).
inline bool isFamilyAArch32() const noexcept { return isFamilyAArch32(_arch); }
//! Tests whether this architecture family is AArch64.
inline bool isFamilyAArch64() const noexcept { return isFamilyAArch64(_arch); }
//! Tests whether this architecture family is MISP or MIPS64.
inline bool isFamilyMIPS() const noexcept { return isFamilyMIPS(_arch); }
//! Tests whether this architecture family is RISC-V (both 32-bit and 64-bit).
inline bool isFamilyRISCV() const noexcept { return isFamilyRISCV(_arch); }
//! Tests whether the environment platform is Windows.
inline bool isPlatformWindows() const noexcept { return _platform == Platform::kWindows; }
//! Tests whether the environment platform is Linux.
inline bool isPlatformLinux() const noexcept { return _platform == Platform::kLinux; }
//! Tests whether the environment platform is Hurd.
inline bool isPlatformHurd() const noexcept { return _platform == Platform::kHurd; }
//! Tests whether the environment platform is Haiku.
inline bool isPlatformHaiku() const noexcept { return _platform == Platform::kHaiku; }
//! Tests whether the environment platform is any BSD.
inline bool isPlatformBSD() const noexcept {
return _platform == Platform::kFreeBSD ||
_platform == Platform::kOpenBSD ||
_platform == Platform::kNetBSD ||
_platform == Platform::kDragonFlyBSD;
}
//! Tests whether the environment platform is any Apple platform (OSX, iOS, TVOS, WatchOS).
inline bool isPlatformApple() const noexcept {
return _platform == Platform::kOSX ||
_platform == Platform::kIOS ||
_platform == Platform::kTVOS ||
_platform == Platform::kWatchOS;
}
//! Tests whether the ABI is MSVC.
inline bool isMSVC() const noexcept { return _platformABI == PlatformABI::kMSVC; }
//! Tests whether the ABI is GNU.
inline bool isGNU() const noexcept { return _platformABI == PlatformABI::kGNU; }
//! Returns a calculated stack alignment for this environment.
ASMJIT_API uint32_t stackAlignment() const noexcept;
//! Returns a native register size of this architecture.
uint32_t registerSize() const noexcept { return registerSizeFromArch(_arch); }
//! Sets the architecture to `arch`.
inline void setArch(Arch arch) noexcept { _arch = arch; }
//! Sets the sub-architecture to `subArch`.
inline void setSubArch(SubArch subArch) noexcept { _subArch = subArch; }
//! Sets the vendor to `vendor`.
inline void setVendor(Vendor vendor) noexcept { _vendor = vendor; }
//! Sets the platform to `platform`.
inline void setPlatform(Platform platform) noexcept { _platform = platform; }
//! Sets the ABI to `platformABI`.
inline void setPlatformABI(PlatformABI platformABI) noexcept { _platformABI = platformABI; }
//! Sets the object format to `objectFormat`.
inline void setObjectFormat(ObjectFormat objectFormat) noexcept { _objectFormat = objectFormat; }
//! \}
//! \name Static Utilities
//! \{
static inline bool isDefinedArch(Arch arch) noexcept {
return uint32_t(arch) <= uint32_t(Arch::kMaxValue);
}
static inline bool isValidArch(Arch arch) noexcept {
return arch != Arch::kUnknown && uint32_t(arch) <= uint32_t(Arch::kMaxValue);
}
//! Tests whether the given architecture `arch` is 32-bit.
static inline bool is32Bit(Arch arch) noexcept {
return (uint32_t(arch) & uint32_t(Arch::k32BitMask)) == uint32_t(Arch::k32BitMask);
}
//! Tests whether the given architecture `arch` is 64-bit.
static inline bool is64Bit(Arch arch) noexcept {
return (uint32_t(arch) & uint32_t(Arch::k32BitMask)) == 0;
}
//! Tests whether the given architecture `arch` is little endian.
static inline bool isLittleEndian(Arch arch) noexcept {
return uint32_t(arch) < uint32_t(Arch::kBigEndian);
}
//! Tests whether the given architecture `arch` is big endian.
static inline bool isBigEndian(Arch arch) noexcept {
return uint32_t(arch) >= uint32_t(Arch::kBigEndian);
}
//! Tests whether the given architecture is Thumb or Thumb_BE.
static inline bool isArchThumb(Arch arch) noexcept {
return arch == Arch::kThumb || arch == Arch::kThumb_BE;
}
//! Tests whether the given architecture is ARM or ARM_BE.
static inline bool isArchARM(Arch arch) noexcept {
return arch == Arch::kARM || arch == Arch::kARM_BE;
}
//! Tests whether the given architecture is AArch64 or AArch64_BE.
static inline bool isArchAArch64(Arch arch) noexcept {
return arch == Arch::kAArch64 || arch == Arch::kAArch64_BE;
}
//! Tests whether the given architecture is MIPS32_LE or MIPS32_BE.
static inline bool isArchMIPS32(Arch arch) noexcept {
return arch == Arch::kMIPS32_LE || arch == Arch::kMIPS32_BE;
}
//! Tests whether the given architecture is MIPS64_LE or MIPS64_BE.
static inline bool isArchMIPS64(Arch arch) noexcept {
return arch == Arch::kMIPS64_LE || arch == Arch::kMIPS64_BE;
}
//! Tests whether the given architecture family is X86 or X64.
static inline bool isFamilyX86(Arch arch) noexcept {
return arch == Arch::kX86 || arch == Arch::kX64;
}
//! Tests whether the given architecture family is ARM, THUMB, or AArch64.
static inline bool isFamilyARM(Arch arch) noexcept {
return isArchARM(arch) || isArchAArch64(arch) || isArchThumb(arch);
}
//! Tests whether the given architecture family is AArch32 (ARM or THUMB).
static inline bool isFamilyAArch32(Arch arch) noexcept {
return isArchARM(arch) || isArchThumb(arch);
}
//! Tests whether the given architecture family is AArch64.
static inline bool isFamilyAArch64(Arch arch) noexcept {
return isArchAArch64(arch);
}
//! Tests whether the given architecture family is MISP or MIPS64.
static inline bool isFamilyMIPS(Arch arch) noexcept {
return isArchMIPS32(arch) || isArchMIPS64(arch);
}
//! Tests whether the given architecture family is RISC-V (both 32-bit and 64-bit).
static inline bool isFamilyRISCV(Arch arch) noexcept {
return arch == Arch::kRISCV32 || arch == Arch::kRISCV64;
}
//! Returns a native general purpose register size from the given architecture.
static inline uint32_t registerSizeFromArch(Arch arch) noexcept {
return is32Bit(arch) ? 4u : 8u;
}
//! \}
};
static_assert(sizeof(Environment) == 8,
"Environment must occupy exactly 8 bytes.");
//! \}
ASMJIT_END_NAMESPACE
#endif // ASMJIT_CORE_ENVIRONMENT_H_INCLUDED