Defcon/hook_lib/asmjit/core/codeholder.h
MatrixMMOfficial 9631e4ca40 Initial commit
2023-11-26 08:54:06 -05:00

1043 lines
39 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#ifndef ASMJIT_CORE_CODEHOLDER_H_INCLUDED
#define ASMJIT_CORE_CODEHOLDER_H_INCLUDED
#include "../core/archtraits.h"
#include "../core/codebuffer.h"
#include "../core/errorhandler.h"
#include "../core/operand.h"
#include "../core/string.h"
#include "../core/support.h"
#include "../core/target.h"
#include "../core/zone.h"
#include "../core/zonehash.h"
#include "../core/zonestring.h"
#include "../core/zonetree.h"
#include "../core/zonevector.h"
ASMJIT_BEGIN_NAMESPACE
//! \addtogroup asmjit_core
//! \{
class BaseEmitter;
class CodeHolder;
class LabelEntry;
class Logger;
//! Operator type that can be used within an \ref Expression.
enum class ExpressionOpType : uint8_t {
//! Addition.
kAdd = 0,
//! Subtraction.
kSub = 1,
//! Multiplication
kMul = 2,
//! Logical left shift.
kSll = 3,
//! Logical right shift.
kSrl = 4,
//! Arithmetic right shift.
kSra = 5
};
//! Value tyoe that can be used within an \ref Expression.
enum class ExpressionValueType : uint8_t {
//! No value or invalid.
kNone = 0,
//! Value is 64-bit unsigned integer (constant).
kConstant = 1,
//! Value is \ref LabelEntry, which references a \ref Label.
kLabel = 2,
//! Value is \ref Expression
kExpression = 3
};
//! Expression node that can reference constants, labels, and another expressions.
struct Expression {
//! Expression value.
union Value {
//! Constant.
uint64_t constant;
//! Pointer to another expression.
Expression* expression;
//! Pointer to \ref LabelEntry.
LabelEntry* label;
};
//! \name Members
//! \{
//! Operation type.
ExpressionOpType opType;
//! Value types of \ref value.
ExpressionValueType valueType[2];
//! Reserved for future use, should be initialized to zero.
uint8_t reserved[5];
//! Expression left and right values.
Value value[2];
//! \}
//! \name Accessors
//! \{
//! Resets the whole expression.
//!
//! Changes both values to \ref ExpressionValueType::kNone.
inline void reset() noexcept { memset(this, 0, sizeof(*this)); }
//! Sets the value type at `index` to \ref ExpressionValueType::kConstant and its content to `constant`.
inline void setValueAsConstant(size_t index, uint64_t constant) noexcept {
valueType[index] = ExpressionValueType::kConstant;
value[index].constant = constant;
}
//! Sets the value type at `index` to \ref ExpressionValueType::kLabel and its content to `labelEntry`.
inline void setValueAsLabel(size_t index, LabelEntry* labelEntry) noexcept {
valueType[index] = ExpressionValueType::kLabel;
value[index].label = labelEntry;
}
//! Sets the value type at `index` to \ref ExpressionValueType::kExpression and its content to `expression`.
inline void setValueAsExpression(size_t index, Expression* expression) noexcept {
valueType[index] = ExpressionValueType::kExpression;
value[index].expression = expression;
}
//! \}
};
//! Section flags, used by \ref Section.
enum class SectionFlags : uint32_t {
//! No flags.
kNone = 0,
//! Executable (.text sections).
kExecutable = 0x00000001u,
//! Read-only (.text and .data sections).
kReadOnly = 0x00000002u,
//! Zero initialized by the loader (BSS).
kZeroInitialized = 0x00000004u,
//! Info / comment flag.
kComment = 0x00000008u,
//! Section created implicitly, can be deleted by \ref Target.
kImplicit = 0x80000000u
};
ASMJIT_DEFINE_ENUM_FLAGS(SectionFlags)
//! Flags that can be used with \ref CodeHolder::copySectionData() and \ref CodeHolder::copyFlattenedData().
enum class CopySectionFlags : uint32_t {
//! No flags.
kNone = 0,
//! If virtual size of a section is greater than the size of its \ref CodeBuffer then all bytes between the buffer
//! size and virtual size will be zeroed. If this option is not set then those bytes would be left as is, which
//! means that if the user didn't initialize them they would have a previous content, which may be unwanted.
kPadSectionBuffer = 0x00000001u,
//! Clears the target buffer if the flattened data is less than the destination size. This option works
//! only with \ref CodeHolder::copyFlattenedData() as it processes multiple sections. It is ignored by
//! \ref CodeHolder::copySectionData().
kPadTargetBuffer = 0x00000002u
};
ASMJIT_DEFINE_ENUM_FLAGS(CopySectionFlags)
//! Section entry.
class Section {
public:
//! \name Members
//! \{
//! Section id.
uint32_t _id;
//! Section flags.
SectionFlags _flags;
//! Section alignment requirements (0 if no requirements).
uint32_t _alignment;
//! Order (lower value means higher priority).
int32_t _order;
//! Offset of this section from base-address.
uint64_t _offset;
//! Virtual size of the section (zero initialized sections).
uint64_t _virtualSize;
//! Section name (max 35 characters, PE allows max 8).
FixedString<Globals::kMaxSectionNameSize + 1> _name;
//! Code or data buffer.
CodeBuffer _buffer;
//! \}
//! \name Accessors
//! \{
//! Returns the section id.
inline uint32_t id() const noexcept { return _id; }
//! Returns the section name, as a null terminated string.
inline const char* name() const noexcept { return _name.str; }
//! Returns the section data.
inline uint8_t* data() noexcept { return _buffer.data(); }
//! \overload
inline const uint8_t* data() const noexcept { return _buffer.data(); }
//! Returns the section flags.
inline SectionFlags flags() const noexcept { return _flags; }
//! Tests whether the section has the given `flag`.
inline bool hasFlag(SectionFlags flag) const noexcept { return Support::test(_flags, flag); }
//! Adds `flags` to the section flags.
inline void addFlags(SectionFlags flags) noexcept { _flags |= flags; }
//! Removes `flags` from the section flags.
inline void clearFlags(SectionFlags flags) noexcept { _flags &= ~flags; }
//! Returns the minimum section alignment
inline uint32_t alignment() const noexcept { return _alignment; }
//! Sets the minimum section alignment
inline void setAlignment(uint32_t alignment) noexcept { _alignment = alignment; }
//! Returns the section order, which has a higher priority than section id.
inline int32_t order() const noexcept { return _order; }
//! Returns the section offset, relative to base.
inline uint64_t offset() const noexcept { return _offset; }
//! Set the section offset.
inline void setOffset(uint64_t offset) noexcept { _offset = offset; }
//! Returns the virtual size of the section.
//!
//! Virtual size is initially zero and is never changed by AsmJit. It's normal if virtual size is smaller than
//! size returned by `bufferSize()` as the buffer stores real data emitted by assemblers or appended by users.
//!
//! Use `realSize()` to get the real and final size of this section.
inline uint64_t virtualSize() const noexcept { return _virtualSize; }
//! Sets the virtual size of the section.
inline void setVirtualSize(uint64_t virtualSize) noexcept { _virtualSize = virtualSize; }
//! Returns the buffer size of the section.
inline size_t bufferSize() const noexcept { return _buffer.size(); }
//! Returns the real size of the section calculated from virtual and buffer sizes.
inline uint64_t realSize() const noexcept { return Support::max<uint64_t>(virtualSize(), bufferSize()); }
//! Returns the `CodeBuffer` used by this section.
inline CodeBuffer& buffer() noexcept { return _buffer; }
//! Returns the `CodeBuffer` used by this section (const).
inline const CodeBuffer& buffer() const noexcept { return _buffer; }
//! \}
};
//! Entry in an address table.
class AddressTableEntry : public ZoneTreeNodeT<AddressTableEntry> {
public:
ASMJIT_NONCOPYABLE(AddressTableEntry)
//! \name Members
//! \{
//! Address.
uint64_t _address;
//! Slot.
uint32_t _slot;
//! \}
//! \name Construction & Destruction
//! \{
inline explicit AddressTableEntry(uint64_t address) noexcept
: _address(address),
_slot(0xFFFFFFFFu) {}
//! \}
//! \name Accessors
//! \{
inline uint64_t address() const noexcept { return _address; }
inline uint32_t slot() const noexcept { return _slot; }
inline bool hasAssignedSlot() const noexcept { return _slot != 0xFFFFFFFFu; }
inline bool operator<(const AddressTableEntry& other) const noexcept { return _address < other._address; }
inline bool operator>(const AddressTableEntry& other) const noexcept { return _address > other._address; }
inline bool operator<(uint64_t queryAddress) const noexcept { return _address < queryAddress; }
inline bool operator>(uint64_t queryAddress) const noexcept { return _address > queryAddress; }
//! \}
};
//! Offset format type, used by \ref OffsetFormat.
enum class OffsetType : uint8_t {
//! A value having `_immBitCount` bits and shifted by `_immBitShift`.
//!
//! This offset type is sufficient for many targets that store offset as a continuous set bits within an
//! instruction word / sequence of bytes.
kSignedOffset,
//! An unsigned value having `_immBitCount` bits and shifted by `_immBitShift`.
kUnsignedOffset,
// AArch64 Specific Offset Formats
// -------------------------------
//! AARCH64 ADR format of `[.|immlo:2|.....|immhi:19|.....]`.
kAArch64_ADR,
//! AARCH64 ADRP format of `[.|immlo:2|.....|immhi:19|.....]` (4kB pages).
kAArch64_ADRP,
//! Maximum value of `OffsetFormatType`.
kMaxValue = kAArch64_ADRP
};
//! Provides information about formatting offsets, absolute addresses, or their parts. Offset format is used by both
//! \ref RelocEntry and \ref LabelLink. The illustration below describes the relation of region size and offset size.
//! Region size is the size of the whole unit whereas offset size is the size of the unit that will be patched.
//!
//! ```
//! +-> Code buffer | The subject of the relocation (region) |
//! | | (Word-Offset) (Word-Size) |
//! |xxxxxxxxxxxxxxx|................|*PATCHED*|................|xxxxxxxxxxxx->
//! | |
//! [Word Offset points here]----+ +--- [WordOffset + WordSize]
//! ```
//!
//! Once the offset word has been located it can be patched like this:
//!
//! ```
//! |ImmDiscardLSB (discard LSB bits).
//! |..
//! [0000000000000iiiiiiiiiiiiiiiiiDD] - Offset value (32-bit)
//! [000000000000000iiiiiiiiiiiiiiiii] - Offset value after discard LSB.
//! [00000000000iiiiiiiiiiiiiiiii0000] - Offset value shifted by ImmBitShift.
//! [xxxxxxxxxxxiiiiiiiiiiiiiiiiixxxx] - Patched word (32-bit)
//! |...............|
//! (ImmBitCount) +- ImmBitShift
//! ```
struct OffsetFormat {
//! \name Members
//! \{
//! Type of the offset.
OffsetType _type;
//! Encoding flags.
uint8_t _flags;
//! Size of the region (in bytes) containing the offset value, if the offset value is part of an instruction,
//! otherwise it would be the same as `_valueSize`.
uint8_t _regionSize;
//! Size of the offset value, in bytes (1, 2, 4, or 8).
uint8_t _valueSize;
//! Offset of the offset value, in bytes, relative to the start of the region or data. Value offset would be
//! zero if both region size and value size are equal.
uint8_t _valueOffset;
//! Size of the offset immediate value in bits.
uint8_t _immBitCount;
//! Shift of the offset immediate value in bits in the target word.
uint8_t _immBitShift;
//! Number of least significant bits to discard before writing the immediate to the destination. All discarded
//! bits must be zero otherwise the value is invalid.
uint8_t _immDiscardLsb;
//! \}
//! \name Accessors
//! \{
//! Returns the type of the offset.
inline OffsetType type() const noexcept { return _type; }
//! Returns flags.
inline uint32_t flags() const noexcept { return _flags; }
//! Returns the size of the region/instruction where the offset is encoded.
inline uint32_t regionSize() const noexcept { return _regionSize; }
//! Returns the offset of the word relative to the start of the region where the offset is.
inline uint32_t valueOffset() const noexcept { return _valueOffset; }
//! Returns the size of the data-type (word) that contains the offset, in bytes.
inline uint32_t valueSize() const noexcept { return _valueSize; }
//! Returns the count of bits of the offset value in the data it's stored in.
inline uint32_t immBitCount() const noexcept { return _immBitCount; }
//! Returns the bit-shift of the offset value in the data it's stored in.
inline uint32_t immBitShift() const noexcept { return _immBitShift; }
//! Returns the number of least significant bits of the offset value, that must be zero and that are not part of
//! the encoded data.
inline uint32_t immDiscardLsb() const noexcept { return _immDiscardLsb; }
//! Resets this offset format to a simple data value of `dataSize` bytes.
//!
//! The region will be the same size as data and immediate bits would correspond to `dataSize * 8`. There will be
//! no immediate bit shift or discarded bits.
inline void resetToSimpleValue(OffsetType type, size_t valueSize) noexcept {
ASMJIT_ASSERT(valueSize <= 8u);
_type = type;
_flags = uint8_t(0);
_regionSize = uint8_t(valueSize);
_valueSize = uint8_t(valueSize);
_valueOffset = uint8_t(0);
_immBitCount = uint8_t(valueSize * 8u);
_immBitShift = uint8_t(0);
_immDiscardLsb = uint8_t(0);
}
inline void resetToImmValue(OffsetType type, size_t valueSize, uint32_t immBitShift, uint32_t immBitCount, uint32_t immDiscardLsb) noexcept {
ASMJIT_ASSERT(valueSize <= 8u);
ASMJIT_ASSERT(immBitShift < valueSize * 8u);
ASMJIT_ASSERT(immBitCount <= 64u);
ASMJIT_ASSERT(immDiscardLsb <= 64u);
_type = type;
_flags = uint8_t(0);
_regionSize = uint8_t(valueSize);
_valueSize = uint8_t(valueSize);
_valueOffset = uint8_t(0);
_immBitCount = uint8_t(immBitCount);
_immBitShift = uint8_t(immBitShift);
_immDiscardLsb = uint8_t(immDiscardLsb);
}
inline void setRegion(size_t regionSize, size_t valueOffset) noexcept {
_regionSize = uint8_t(regionSize);
_valueOffset = uint8_t(valueOffset);
}
inline void setLeadingAndTrailingSize(size_t leadingSize, size_t trailingSize) noexcept {
_regionSize = uint8_t(leadingSize + trailingSize + _valueSize);
_valueOffset = uint8_t(leadingSize);
}
//! \}
};
//! Relocation type.
enum class RelocType : uint32_t {
//! None/deleted (no relocation).
kNone = 0,
//! Expression evaluation, `_payload` is pointer to `Expression`.
kExpression = 1,
//! Relocate absolute to absolute.
kAbsToAbs = 2,
//! Relocate relative to absolute.
kRelToAbs = 3,
//! Relocate absolute to relative.
kAbsToRel = 4,
//! Relocate absolute to relative or use trampoline.
kX64AddressEntry = 5
};
//! Relocation entry.
struct RelocEntry {
//! \name Members
//! \{
//! Relocation id.
uint32_t _id;
//! Type of the relocation.
RelocType _relocType;
//! Format of the relocated value.
OffsetFormat _format;
//! Source section id.
uint32_t _sourceSectionId;
//! Target section id.
uint32_t _targetSectionId;
//! Source offset (relative to start of the section).
uint64_t _sourceOffset;
//! Payload (target offset, target address, expression, etc).
uint64_t _payload;
//! \}
//! \name Accessors
//! \{
inline uint32_t id() const noexcept { return _id; }
inline RelocType relocType() const noexcept { return _relocType; }
inline const OffsetFormat& format() const noexcept { return _format; }
inline uint32_t sourceSectionId() const noexcept { return _sourceSectionId; }
inline uint32_t targetSectionId() const noexcept { return _targetSectionId; }
inline uint64_t sourceOffset() const noexcept { return _sourceOffset; }
inline uint64_t payload() const noexcept { return _payload; }
Expression* payloadAsExpression() const noexcept {
return reinterpret_cast<Expression*>(uintptr_t(_payload));
}
//! \}
};
//! Type of the \ref Label.
enum class LabelType : uint8_t {
//! Anonymous label that can optionally have a name, which is only used for debugging purposes.
kAnonymous = 0,
//! Local label (always has parentId).
kLocal = 1,
//! Global label (never has parentId).
kGlobal = 2,
//! External label (references an external symbol).
kExternal = 3,
//! Maximum value of `LabelType`.
kMaxValue = kExternal
};
//! Data structure used to link either unbound labels or cross-section links.
struct LabelLink {
//! Next link (single-linked list).
LabelLink* next;
//! Section id where the label is bound.
uint32_t sectionId;
//! Relocation id or Globals::kInvalidId.
uint32_t relocId;
//! Label offset relative to the start of the section.
size_t offset;
//! Inlined rel8/rel32.
intptr_t rel;
//! Offset format information.
OffsetFormat format;
};
//! Label entry.
//!
//! Contains the following properties:
//! - Label id - This is the only thing that is set to the `Label` operand.
//! - Label name - Optional, used mostly to create executables and libraries.
//! - Label type - Type of the label, default `LabelType::kAnonymous`.
//! - Label parent id - Derived from many assemblers that allow to define a local label that falls under a global
//! label. This allows to define many labels of the same name that have different parent (global) label.
//! - Offset - offset of the label bound by `Assembler`.
//! - Links - single-linked list that contains locations of code that has to be patched when the label gets bound.
//! Every use of unbound label adds one link to `_links` list.
//! - HVal - Hash value of label's name and optionally parentId.
//! - HashNext - Hash-table implementation detail.
class LabelEntry : public ZoneHashNode {
public:
//! \name Constants
//! \{
enum : uint32_t {
//! SSO size of \ref _name.
//!
//! \cond INTERNAL
//! Let's round the size of `LabelEntry` to 64 bytes (as `ZoneAllocator` has granularity of 32 bytes anyway). This
//! gives `_name` the remaining space, which is should be 16 bytes on 64-bit and 28 bytes on 32-bit architectures.
//! \endcond
kStaticNameSize = 64 - (sizeof(ZoneHashNode) + 8 + sizeof(Section*) + sizeof(size_t) + sizeof(LabelLink*))
};
//! \}
//! \name Members
//! \{
//! Type of the label.
LabelType _type;
//! Must be zero.
uint8_t _reserved[3];
//! Label parent id or zero.
uint32_t _parentId;
//! Label offset relative to the start of the `_section`.
uint64_t _offset;
//! Section where the label was bound.
Section* _section;
//! Label links.
LabelLink* _links;
//! Label name.
ZoneString<kStaticNameSize> _name;
//! \}
//! \name Accessors
//! \{
// NOTE: Label id is stored in `_customData`, which is provided by ZoneHashNode to fill a padding that a C++
// compiler targeting 64-bit CPU will add to align the structure to 64-bits.
//! Returns label id.
inline uint32_t id() const noexcept { return _customData; }
//! Sets label id (internal, used only by `CodeHolder`).
inline void _setId(uint32_t id) noexcept { _customData = id; }
//! Returns label type.
inline LabelType type() const noexcept { return _type; }
//! Tests whether the label has a parent label.
inline bool hasParent() const noexcept { return _parentId != Globals::kInvalidId; }
//! Returns label's parent id.
inline uint32_t parentId() const noexcept { return _parentId; }
//! Returns the section where the label was bound.
//!
//! If the label was not yet bound the return value is `nullptr`.
inline Section* section() const noexcept { return _section; }
//! Tests whether the label has name.
inline bool hasName() const noexcept { return !_name.empty(); }
//! Returns the label's name.
//!
//! \note Local labels will return their local name without their parent part, for example ".L1".
inline const char* name() const noexcept { return _name.data(); }
//! Returns size of label's name.
//!
//! \note Label name is always null terminated, so you can use `strlen()` to get it, however, it's also cached in
//! `LabelEntry` itself, so if you want to know the size the fastest way is to call `LabelEntry::nameSize()`.
inline uint32_t nameSize() const noexcept { return _name.size(); }
//! Returns links associated with this label.
inline LabelLink* links() const noexcept { return _links; }
//! Tests whether the label is bound.
inline bool isBound() const noexcept { return _section != nullptr; }
//! Tests whether the label is bound to a the given `sectionId`.
inline bool isBoundTo(Section* section) const noexcept { return _section == section; }
//! Returns the label offset (only useful if the label is bound).
inline uint64_t offset() const noexcept { return _offset; }
//! Returns the hash-value of label's name and its parent label (if any).
//!
//! Label hash is calculated as `HASH(Name) ^ ParentId`. The hash function is implemented in `Support::hashString()`
//! and `Support::hashRound()`.
inline uint32_t hashCode() const noexcept { return _hashCode; }
//! \}
};
//! Holds assembled code and data (including sections, labels, and relocation information).
//!
//! CodeHolder connects emitters with their targets. It provides them interface that can be used to query information
//! about the target environment (architecture, etc...) and API to create labels, sections, relocations, and to write
//! data to a \ref CodeBuffer, which is always part of \ref Section. More than one emitter can be attached to a single
//! CodeHolder instance at a time, which is used in practice
//!
//! CodeHolder provides interface for all emitter types. Assemblers use CodeHolder to write into \ref CodeBuffer, and
//! higher level emitters like Builder and Compiler use CodeHolder to manage labels and sections so higher level code
//! can be serialized to Assembler by \ref BaseEmitter::finalize() and \ref BaseBuilder::serializeTo().
//!
//! In order to use CodeHolder, it must be first initialized by \ref init(). After the CodeHolder has been successfully
//! initialized it can be used to hold assembled code, sections, labels, relocations, and to attach / detach code
//! emitters. After the end of code generation it can be used to query physical locations of labels and to relocate
//! the assembled code into the right address.
//!
//! \note \ref CodeHolder has an ability to attach an \ref ErrorHandler, however, the error handler is not triggered
//! by \ref CodeHolder itself, it's instead propagated to all emitters that attach to it.
class CodeHolder {
public:
ASMJIT_NONCOPYABLE(CodeHolder)
//! \name Members
//! \{
//! Environment information.
Environment _environment;
//! CPU features of the target architecture.
CpuFeatures _cpuFeatures;
//! Base address or \ref Globals::kNoBaseAddress.
uint64_t _baseAddress;
//! Attached `Logger`, used by all consumers.
Logger* _logger;
//! Attached `ErrorHandler`.
ErrorHandler* _errorHandler;
//! Code zone (used to allocate core structures).
Zone _zone;
//! Zone allocator, used to manage internal containers.
ZoneAllocator _allocator;
//! Attached emitters.
ZoneVector<BaseEmitter*> _emitters;
//! Section entries.
ZoneVector<Section*> _sections;
//! Section entries sorted by section order and then section id.
ZoneVector<Section*> _sectionsByOrder;
//! Label entries.
ZoneVector<LabelEntry*> _labelEntries;
//! Relocation entries.
ZoneVector<RelocEntry*> _relocations;
//! Label name -> LabelEntry (only named labels).
ZoneHash<LabelEntry> _namedLabels;
//! Count of label links, which are not resolved.
size_t _unresolvedLinkCount;
//! Pointer to an address table section (or null if this section doesn't exist).
Section* _addressTableSection;
//! Address table entries.
ZoneTree<AddressTableEntry> _addressTableEntries;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates an uninitialized CodeHolder (you must init() it before it can be used).
//!
//! An optional `temporary` argument can be used to initialize the first block of \ref Zone that the CodeHolder
//! uses into a temporary memory provided by the user.
ASMJIT_API explicit CodeHolder(const Support::Temporary* temporary = nullptr) noexcept;
//! \overload
inline explicit CodeHolder(const Support::Temporary& temporary) noexcept
: CodeHolder(&temporary) {}
//! Destroys the CodeHolder and frees all resources it has allocated.
ASMJIT_API ~CodeHolder() noexcept;
//! Tests whether the `CodeHolder` has been initialized.
//!
//! Emitters can be only attached to initialized `CodeHolder` instances.
inline bool isInitialized() const noexcept { return _environment.isInitialized(); }
//! Initializes CodeHolder to hold code described by the given `environment` and `baseAddress`.
ASMJIT_API Error init(const Environment& environment, uint64_t baseAddress = Globals::kNoBaseAddress) noexcept;
//! Initializes CodeHolder to hold code described by the given `environment`, `cpuFeatures`, and `baseAddress`.
ASMJIT_API Error init(const Environment& environment, const CpuFeatures& cpuFeatures, uint64_t baseAddress = Globals::kNoBaseAddress) noexcept;
//! Detaches all code-generators attached and resets the `CodeHolder`.
ASMJIT_API void reset(ResetPolicy resetPolicy = ResetPolicy::kSoft) noexcept;
//! \}
//! \name Attach & Detach
//! \{
//! Attaches an emitter to this `CodeHolder`.
ASMJIT_API Error attach(BaseEmitter* emitter) noexcept;
//! Detaches an emitter from this `CodeHolder`.
ASMJIT_API Error detach(BaseEmitter* emitter) noexcept;
//! \}
//! \name Allocators
//! \{
//! Returns the allocator that the `CodeHolder` uses.
//!
//! \note This should be only used for AsmJit's purposes. Code holder uses arena allocator to allocate everything,
//! so anything allocated through this allocator will be invalidated by \ref CodeHolder::reset() or by CodeHolder's
//! destructor.
inline ZoneAllocator* allocator() const noexcept { return const_cast<ZoneAllocator*>(&_allocator); }
//! \}
//! \name Code & Architecture
//! \{
//! Returns the target environment information.
inline const Environment& environment() const noexcept { return _environment; }
//! Returns the target architecture.
inline Arch arch() const noexcept { return environment().arch(); }
//! Returns the target sub-architecture.
inline SubArch subArch() const noexcept { return environment().subArch(); }
//! Returns the minimum CPU features of the target architecture.
inline const CpuFeatures& cpuFeatures() const noexcept { return _cpuFeatures; }
//! Tests whether a static base-address is set.
inline bool hasBaseAddress() const noexcept { return _baseAddress != Globals::kNoBaseAddress; }
//! Returns a static base-address or \ref Globals::kNoBaseAddress, if not set.
inline uint64_t baseAddress() const noexcept { return _baseAddress; }
//! \}
//! \name Emitters
//! \{
//! Returns a vector of attached emitters.
inline const ZoneVector<BaseEmitter*>& emitters() const noexcept { return _emitters; }
//! \}
//! \name Logging
//! \{
//! Returns the attached logger.
inline Logger* logger() const noexcept { return _logger; }
//! Attaches a `logger` to CodeHolder and propagates it to all attached emitters.
ASMJIT_API void setLogger(Logger* logger) noexcept;
//! Resets the logger to none.
inline void resetLogger() noexcept { setLogger(nullptr); }
//! \name Error Handling
//! \{
//! Tests whether the CodeHolder has an attached error handler, see \ref ErrorHandler.
inline bool hasErrorHandler() const noexcept { return _errorHandler != nullptr; }
//! Returns the attached error handler.
inline ErrorHandler* errorHandler() const noexcept { return _errorHandler; }
//! Attach an error handler to this `CodeHolder`.
ASMJIT_API void setErrorHandler(ErrorHandler* errorHandler) noexcept;
//! Resets the error handler to none.
inline void resetErrorHandler() noexcept { setErrorHandler(nullptr); }
//! \}
//! \name Code Buffer
//! \{
//! Makes sure that at least `n` bytes can be added to CodeHolder's buffer `cb`.
//!
//! \note The buffer `cb` must be managed by `CodeHolder` - otherwise the behavior of the function is undefined.
ASMJIT_API Error growBuffer(CodeBuffer* cb, size_t n) noexcept;
//! Reserves the size of `cb` to at least `n` bytes.
//!
//! \note The buffer `cb` must be managed by `CodeHolder` - otherwise the behavior of the function is undefined.
ASMJIT_API Error reserveBuffer(CodeBuffer* cb, size_t n) noexcept;
//! \}
//! \name Sections
//! \{
//! Returns an array of `Section*` records.
inline const ZoneVector<Section*>& sections() const noexcept { return _sections; }
//! Returns an array of `Section*` records sorted according to section order first, then section id.
inline const ZoneVector<Section*>& sectionsByOrder() const noexcept { return _sectionsByOrder; }
//! Returns the number of sections.
inline uint32_t sectionCount() const noexcept { return _sections.size(); }
//! Tests whether the given `sectionId` is valid.
inline bool isSectionValid(uint32_t sectionId) const noexcept { return sectionId < _sections.size(); }
//! Creates a new section and return its pointer in `sectionOut`.
//!
//! Returns `Error`, does not report a possible error to `ErrorHandler`.
ASMJIT_API Error newSection(Section** sectionOut, const char* name, size_t nameSize = SIZE_MAX, SectionFlags flags = SectionFlags::kNone, uint32_t alignment = 1, int32_t order = 0) noexcept;
//! Returns a section entry of the given index.
inline Section* sectionById(uint32_t sectionId) const noexcept { return _sections[sectionId]; }
//! Returns section-id that matches the given `name`.
//!
//! If there is no such section `Section::kInvalidId` is returned.
ASMJIT_API Section* sectionByName(const char* name, size_t nameSize = SIZE_MAX) const noexcept;
//! Returns '.text' section (section that commonly represents code).
//!
//! \note Text section is always the first section in \ref CodeHolder::sections() array.
inline Section* textSection() const noexcept { return _sections[0]; }
//! Tests whether '.addrtab' section exists.
inline bool hasAddressTable() const noexcept { return _addressTableSection != nullptr; }
//! Returns '.addrtab' section.
//!
//! This section is used exclusively by AsmJit to store absolute 64-bit
//! addresses that cannot be encoded in instructions like 'jmp' or 'call'.
//!
//! \note This section is created on demand, the returned pointer can be null.
inline Section* addressTableSection() const noexcept { return _addressTableSection; }
//! Ensures that '.addrtab' section exists (creates it if it doesn't) and
//! returns it. Can return `nullptr` on out of memory condition.
ASMJIT_API Section* ensureAddressTableSection() noexcept;
//! Used to add an address to an address table.
//!
//! This implicitly calls `ensureAddressTableSection()` and then creates `AddressTableEntry` that is inserted
//! to `_addressTableEntries`. If the address already exists this operation does nothing as the same addresses
//! use the same slot.
//!
//! This function should be considered internal as it's used by assemblers to insert an absolute address into the
//! address table. Inserting address into address table without creating a particula relocation entry makes no sense.
ASMJIT_API Error addAddressToAddressTable(uint64_t address) noexcept;
//! \}
//! \name Labels & Symbols
//! \{
//! Returns array of `LabelEntry*` records.
inline const ZoneVector<LabelEntry*>& labelEntries() const noexcept { return _labelEntries; }
//! Returns number of labels created.
inline uint32_t labelCount() const noexcept { return _labelEntries.size(); }
//! Tests whether the label having `id` is valid (i.e. created by `newLabelEntry()`).
inline bool isLabelValid(uint32_t labelId) const noexcept {
return labelId < _labelEntries.size();
}
//! Tests whether the `label` is valid (i.e. created by `newLabelEntry()`).
inline bool isLabelValid(const Label& label) const noexcept {
return label.id() < _labelEntries.size();
}
//! \overload
inline bool isLabelBound(uint32_t labelId) const noexcept {
return isLabelValid(labelId) && _labelEntries[labelId]->isBound();
}
//! Tests whether the `label` is already bound.
//!
//! Returns `false` if the `label` is not valid.
inline bool isLabelBound(const Label& label) const noexcept {
return isLabelBound(label.id());
}
//! Returns LabelEntry of the given label `id`.
inline LabelEntry* labelEntry(uint32_t labelId) const noexcept {
return isLabelValid(labelId) ? _labelEntries[labelId] : static_cast<LabelEntry*>(nullptr);
}
//! Returns LabelEntry of the given `label`.
inline LabelEntry* labelEntry(const Label& label) const noexcept {
return labelEntry(label.id());
}
//! Returns offset of a `Label` by its `labelId`.
//!
//! The offset returned is relative to the start of the section. Zero offset is returned for unbound labels,
//! which is their initial offset value.
inline uint64_t labelOffset(uint32_t labelId) const noexcept {
ASMJIT_ASSERT(isLabelValid(labelId));
return _labelEntries[labelId]->offset();
}
//! \overload
inline uint64_t labelOffset(const Label& label) const noexcept {
return labelOffset(label.id());
}
//! Returns offset of a label by it's `labelId` relative to the base offset.
//!
//! \remarks The offset of the section where the label is bound must be valid in order to use this function,
//! otherwise the value returned will not be reliable.
inline uint64_t labelOffsetFromBase(uint32_t labelId) const noexcept {
ASMJIT_ASSERT(isLabelValid(labelId));
const LabelEntry* le = _labelEntries[labelId];
return (le->isBound() ? le->section()->offset() : uint64_t(0)) + le->offset();
}
//! \overload
inline uint64_t labelOffsetFromBase(const Label& label) const noexcept {
return labelOffsetFromBase(label.id());
}
//! Creates a new anonymous label and return its id in `idOut`.
//!
//! Returns `Error`, does not report error to `ErrorHandler`.
ASMJIT_API Error newLabelEntry(LabelEntry** entryOut) noexcept;
//! Creates a new named \ref LabelEntry of the given label `type`.
//!
//! \param entryOut Where to store the created \ref LabelEntry.
//! \param name The name of the label.
//! \param nameSize The length of `name` argument, or `SIZE_MAX` if `name` is a null terminated string, which
//! means that the `CodeHolder` will use `strlen()` to determine the length.
//! \param type The type of the label to create, see \ref LabelType.
//! \param parentId Parent id of a local label, otherwise it must be \ref Globals::kInvalidId.
//! \retval Always returns \ref Error, does not report a possible error to the attached \ref ErrorHandler.
//!
//! AsmJit has a support for local labels (\ref LabelType::kLocal) which require a parent label id (parentId).
//! The names of local labels can conflict with names of other local labels that have a different parent. In
//! addition, AsmJit supports named anonymous labels, which are useful only for debugging purposes as the
//! anonymous name will have a name, which will be formatted, but the label itself cannot be queried by such
//! name.
ASMJIT_API Error newNamedLabelEntry(LabelEntry** entryOut, const char* name, size_t nameSize, LabelType type, uint32_t parentId = Globals::kInvalidId) noexcept;
//! Returns a label by name.
//!
//! If the named label doesn't a default constructed \ref Label is returned,
//! which has its id set to \ref Globals::kInvalidId.
inline Label labelByName(const char* name, size_t nameSize = SIZE_MAX, uint32_t parentId = Globals::kInvalidId) noexcept {
return Label(labelIdByName(name, nameSize, parentId));
}
//! Returns a label id by name.
//!
//! If the named label doesn't exist \ref Globals::kInvalidId is returned.
ASMJIT_API uint32_t labelIdByName(const char* name, size_t nameSize = SIZE_MAX, uint32_t parentId = Globals::kInvalidId) noexcept;
//! Tests whether there are any unresolved label links.
inline bool hasUnresolvedLinks() const noexcept { return _unresolvedLinkCount != 0; }
//! Returns the number of label links, which are unresolved.
inline size_t unresolvedLinkCount() const noexcept { return _unresolvedLinkCount; }
//! Creates a new label-link used to store information about yet unbound labels.
//!
//! Returns `null` if the allocation failed.
ASMJIT_API LabelLink* newLabelLink(LabelEntry* le, uint32_t sectionId, size_t offset, intptr_t rel, const OffsetFormat& format) noexcept;
//! Resolves cross-section links (`LabelLink`) associated with each label that was used as a destination in code
//! of a different section. It's only useful to people that use multiple sections as it will do nothing if the code
//! only contains a single section in which cross-section links are not possible.
ASMJIT_API Error resolveUnresolvedLinks() noexcept;
//! Binds a label to a given `sectionId` and `offset` (relative to start of the section).
//!
//! This function is generally used by `BaseAssembler::bind()` to do the heavy lifting.
ASMJIT_API Error bindLabel(const Label& label, uint32_t sectionId, uint64_t offset) noexcept;
//! \}
//! \name Relocations
//! \{
//! Tests whether the code contains relocation entries.
inline bool hasRelocEntries() const noexcept { return !_relocations.empty(); }
//! Returns array of `RelocEntry*` records.
inline const ZoneVector<RelocEntry*>& relocEntries() const noexcept { return _relocations; }
//! Returns a RelocEntry of the given `id`.
inline RelocEntry* relocEntry(uint32_t id) const noexcept { return _relocations[id]; }
//! Creates a new relocation entry of type `relocType`.
//!
//! Additional fields can be set after the relocation entry was created.
ASMJIT_API Error newRelocEntry(RelocEntry** dst, RelocType relocType) noexcept;
//! \}
//! \name Utilities
//! \{
//! Flattens all sections by recalculating their offsets, starting at 0.
//!
//! \note This should never be called more than once.
ASMJIT_API Error flatten() noexcept;
//! Returns computed the size of code & data of all sections.
//!
//! \note All sections will be iterated over and the code size returned would represent the minimum code size of
//! all combined sections after applying minimum alignment. Code size may decrease after calling `flatten()` and
//! `relocateToBase()`.
ASMJIT_API size_t codeSize() const noexcept;
//! Relocates the code to the given `baseAddress`.
//!
//! \param baseAddress Absolute base address where the code will be relocated to. Please note that nothing is
//! copied to such base address, it's just an absolute value used by the relocator to resolve all stored relocations.
//!
//! \note This should never be called more than once.
ASMJIT_API Error relocateToBase(uint64_t baseAddress) noexcept;
//! Copies a single section into `dst`.
ASMJIT_API Error copySectionData(void* dst, size_t dstSize, uint32_t sectionId, CopySectionFlags copyFlags = CopySectionFlags::kNone) noexcept;
//! Copies all sections into `dst`.
//!
//! This should only be used if the data was flattened and there are no gaps between the sections. The `dstSize`
//! is always checked and the copy will never write anything outside the provided buffer.
ASMJIT_API Error copyFlattenedData(void* dst, size_t dstSize, CopySectionFlags copyFlags = CopySectionFlags::kNone) noexcept;
//! \}
};
//! \}
ASMJIT_END_NAMESPACE
#endif // ASMJIT_CORE_CODEHOLDER_H_INCLUDED