Defcon/hook_lib/asmjit/core/builder.h
MatrixMMOfficial 9631e4ca40 Initial commit
2023-11-26 08:54:06 -05:00

1392 lines
44 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#ifndef ASMJIT_CORE_BUILDER_H_INCLUDED
#define ASMJIT_CORE_BUILDER_H_INCLUDED
#include "../core/api-config.h"
#ifndef ASMJIT_NO_BUILDER
#include "../core/assembler.h"
#include "../core/codeholder.h"
#include "../core/constpool.h"
#include "../core/formatter.h"
#include "../core/inst.h"
#include "../core/operand.h"
#include "../core/string.h"
#include "../core/support.h"
#include "../core/type.h"
#include "../core/zone.h"
#include "../core/zonevector.h"
ASMJIT_BEGIN_NAMESPACE
//! \addtogroup asmjit_builder
//! \{
class BaseBuilder;
class Pass;
class BaseNode;
class InstNode;
class SectionNode;
class LabelNode;
class AlignNode;
class EmbedDataNode;
class EmbedLabelNode;
class ConstPoolNode;
class CommentNode;
class SentinelNode;
class LabelDeltaNode;
//! Type of node used by \ref BaseBuilder and \ref BaseCompiler.
enum class NodeType : uint8_t {
//! Invalid node (internal, don't use).
kNone = 0,
// [BaseBuilder]
//! Node is \ref InstNode or \ref InstExNode.
kInst = 1,
//! Node is \ref SectionNode.
kSection = 2,
//! Node is \ref LabelNode.
kLabel = 3,
//! Node is \ref AlignNode.
kAlign = 4,
//! Node is \ref EmbedDataNode.
kEmbedData = 5,
//! Node is \ref EmbedLabelNode.
kEmbedLabel = 6,
//! Node is \ref EmbedLabelDeltaNode.
kEmbedLabelDelta = 7,
//! Node is \ref ConstPoolNode.
kConstPool = 8,
//! Node is \ref CommentNode.
kComment = 9,
//! Node is \ref SentinelNode.
kSentinel = 10,
// [BaseCompiler]
//! Node is \ref JumpNode (acts as InstNode).
kJump = 15,
//! Node is \ref FuncNode (acts as LabelNode).
kFunc = 16,
//! Node is \ref FuncRetNode (acts as InstNode).
kFuncRet = 17,
//! Node is \ref InvokeNode (acts as InstNode).
kInvoke = 18,
// [UserDefined]
//! First id of a user-defined node.
kUser = 32
};
//! Node flags, specify what the node is and/or does.
enum class NodeFlags : uint8_t {
//! No flags.
kNone = 0,
//! Node is code that can be executed (instruction, label, align, etc...).
kIsCode = 0x01u,
//! Node is data that cannot be executed (data, const-pool, etc...).
kIsData = 0x02u,
//! Node is informative, can be removed and ignored.
kIsInformative = 0x04u,
//! Node can be safely removed if unreachable.
kIsRemovable = 0x08u,
//! Node does nothing when executed (label, align, explicit nop).
kHasNoEffect = 0x10u,
//! Node is an instruction or acts as it.
kActsAsInst = 0x20u,
//! Node is a label or acts as it.
kActsAsLabel = 0x40u,
//! Node is active (part of the code).
kIsActive = 0x80u
};
ASMJIT_DEFINE_ENUM_FLAGS(NodeFlags)
//! Type of the sentinel (purery informative purpose).
enum class SentinelType : uint8_t {
//! Type of the sentinel is not known.
kUnknown = 0u,
//! This is a sentinel used at the end of \ref FuncNode.
kFuncEnd = 1u
};
//! Builder interface.
//!
//! `BaseBuilder` interface was designed to be used as a \ref BaseAssembler replacement in case pre-processing or
//! post-processing of the generated code is required. The code can be modified during or after code generation.
//! Pre processing or post processing can be done manually or through a \ref Pass object. \ref BaseBuilder stores
//! the emitted code as a double-linked list of nodes, which allows O(1) insertion and removal during processing.
//!
//! Check out architecture specific builders for more details and examples:
//!
//! - \ref x86::Builder - X86/X64 builder implementation.
class ASMJIT_VIRTAPI BaseBuilder : public BaseEmitter {
public:
ASMJIT_NONCOPYABLE(BaseBuilder)
typedef BaseEmitter Base;
//! \name Members
//! \{
//! Base zone used to allocate nodes and passes.
Zone _codeZone;
//! Data zone used to allocate data and names.
Zone _dataZone;
//! Pass zone, passed to `Pass::run()`.
Zone _passZone;
//! Allocator that uses `_codeZone`.
ZoneAllocator _allocator;
//! Array of `Pass` objects.
ZoneVector<Pass*> _passes {};
//! Maps section indexes to `LabelNode` nodes.
ZoneVector<SectionNode*> _sectionNodes {};
//! Maps label indexes to `LabelNode` nodes.
ZoneVector<LabelNode*> _labelNodes {};
//! Current node (cursor).
BaseNode* _cursor = nullptr;
//! First node of the current section.
BaseNode* _firstNode = nullptr;
//! Last node of the current section.
BaseNode* _lastNode = nullptr;
//! Flags assigned to each new node.
NodeFlags _nodeFlags = NodeFlags::kNone;
//! The sections links are dirty (used internally).
bool _dirtySectionLinks = false;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `BaseBuilder` instance.
ASMJIT_API BaseBuilder() noexcept;
//! Destroys the `BaseBuilder` instance.
ASMJIT_API virtual ~BaseBuilder() noexcept;
//! \}
//! \name Node Management
//! \{
//! Returns the first node.
inline BaseNode* firstNode() const noexcept { return _firstNode; }
//! Returns the last node.
inline BaseNode* lastNode() const noexcept { return _lastNode; }
//! Allocates and instantiates a new node of type `T` and returns its instance. If the allocation fails `nullptr`
//! is returned.
//!
//! The template argument `T` must be a type that is extends \ref BaseNode.
//!
//! \remarks The pointer returned (if non-null) is owned by the Builder or Compiler. When the Builder/Compiler
//! is destroyed it destroys all nodes it created so no manual memory management is required.
template<typename T, typename... Args>
inline Error _newNodeT(T** ASMJIT_NONNULL(out), Args&&... args) {
*out = _allocator.newT<T>(this, std::forward<Args>(args)...);
if (ASMJIT_UNLIKELY(!*out))
return reportError(DebugUtils::errored(kErrorOutOfMemory));
return kErrorOk;
}
//! Creates a new \ref InstNode.
ASMJIT_API Error newInstNode(InstNode** ASMJIT_NONNULL(out), InstId instId, InstOptions instOptions, uint32_t opCount);
//! Creates a new \ref LabelNode.
ASMJIT_API Error newLabelNode(LabelNode** ASMJIT_NONNULL(out));
//! Creates a new \ref AlignNode.
ASMJIT_API Error newAlignNode(AlignNode** ASMJIT_NONNULL(out), AlignMode alignMode, uint32_t alignment);
//! Creates a new \ref EmbedDataNode.
ASMJIT_API Error newEmbedDataNode(EmbedDataNode** ASMJIT_NONNULL(out), TypeId typeId, const void* data, size_t itemCount, size_t repeatCount = 1);
//! Creates a new \ref ConstPoolNode.
ASMJIT_API Error newConstPoolNode(ConstPoolNode** ASMJIT_NONNULL(out));
//! Creates a new \ref CommentNode.
ASMJIT_API Error newCommentNode(CommentNode** ASMJIT_NONNULL(out), const char* data, size_t size);
//! Adds `node` after the current and sets the current node to the given `node`.
ASMJIT_API BaseNode* addNode(BaseNode* ASMJIT_NONNULL(node)) noexcept;
//! Inserts the given `node` after `ref`.
ASMJIT_API BaseNode* addAfter(BaseNode* ASMJIT_NONNULL(node), BaseNode* ASMJIT_NONNULL(ref)) noexcept;
//! Inserts the given `node` before `ref`.
ASMJIT_API BaseNode* addBefore(BaseNode* ASMJIT_NONNULL(node), BaseNode* ASMJIT_NONNULL(ref)) noexcept;
//! Removes the given `node`.
ASMJIT_API BaseNode* removeNode(BaseNode* ASMJIT_NONNULL(node)) noexcept;
//! Removes multiple nodes.
ASMJIT_API void removeNodes(BaseNode* first, BaseNode* last) noexcept;
//! Returns the cursor.
//!
//! When the Builder/Compiler is created it automatically creates a '.text' \ref SectionNode, which will be the
//! initial one. When instructions are added they are always added after the cursor and the cursor is changed
//! to be that newly added node. Use `setCursor()` to change where new nodes are inserted.
inline BaseNode* cursor() const noexcept { return _cursor; }
//! Sets the current node to `node` and return the previous one.
ASMJIT_API BaseNode* setCursor(BaseNode* node) noexcept;
//! Sets the current node without returning the previous node.
//!
//! Only use this function if you are concerned about performance and want this inlined (for example if you set
//! the cursor in a loop, etc...).
inline void _setCursor(BaseNode* node) noexcept { _cursor = node; }
//! \}
//! \name Section Management
//! \{
//! Returns a vector of SectionNode objects.
//!
//! \note If a section of some id is not associated with the Builder/Compiler it would be null, so always check
//! for nulls if you iterate over the vector.
inline const ZoneVector<SectionNode*>& sectionNodes() const noexcept {
return _sectionNodes;
}
//! Tests whether the `SectionNode` of the given `sectionId` was registered.
inline bool hasRegisteredSectionNode(uint32_t sectionId) const noexcept {
return sectionId < _sectionNodes.size() && _sectionNodes[sectionId] != nullptr;
}
//! Returns or creates a `SectionNode` that matches the given `sectionId`.
//!
//! \remarks This function will either get the existing `SectionNode` or create it in case it wasn't created before.
//! You can check whether a section has a registered `SectionNode` by using `BaseBuilder::hasRegisteredSectionNode()`.
ASMJIT_API Error sectionNodeOf(SectionNode** ASMJIT_NONNULL(out), uint32_t sectionId);
ASMJIT_API Error section(Section* ASMJIT_NONNULL(section)) override;
//! Returns whether the section links of active section nodes are dirty. You can update these links by calling
//! `updateSectionLinks()` in such case.
inline bool hasDirtySectionLinks() const noexcept { return _dirtySectionLinks; }
//! Updates links of all active section nodes.
ASMJIT_API void updateSectionLinks() noexcept;
//! \}
//! \name Label Management
//! \{
//! Returns a vector of \ref LabelNode nodes.
//!
//! \note If a label of some id is not associated with the Builder/Compiler it would be null, so always check for
//! nulls if you iterate over the vector.
inline const ZoneVector<LabelNode*>& labelNodes() const noexcept { return _labelNodes; }
//! Tests whether the `LabelNode` of the given `labelId` was registered.
inline bool hasRegisteredLabelNode(uint32_t labelId) const noexcept {
return labelId < _labelNodes.size() && _labelNodes[labelId] != nullptr;
}
//! \overload
inline bool hasRegisteredLabelNode(const Label& label) const noexcept {
return hasRegisteredLabelNode(label.id());
}
//! Gets or creates a \ref LabelNode that matches the given `labelId`.
//!
//! \remarks This function will either get the existing `LabelNode` or create it in case it wasn't created before.
//! You can check whether a label has a registered `LabelNode` by calling \ref BaseBuilder::hasRegisteredLabelNode().
ASMJIT_API Error labelNodeOf(LabelNode** ASMJIT_NONNULL(out), uint32_t labelId);
//! \overload
inline Error labelNodeOf(LabelNode** ASMJIT_NONNULL(out), const Label& label) {
return labelNodeOf(out, label.id());
}
//! Registers this \ref LabelNode (internal).
//!
//! This function is used internally to register a newly created `LabelNode` with this instance of Builder/Compiler.
//! Use \ref labelNodeOf() functions to get back \ref LabelNode from a label or its identifier.
ASMJIT_API Error registerLabelNode(LabelNode* ASMJIT_NONNULL(node));
ASMJIT_API Label newLabel() override;
ASMJIT_API Label newNamedLabel(const char* name, size_t nameSize = SIZE_MAX, LabelType type = LabelType::kGlobal, uint32_t parentId = Globals::kInvalidId) override;
ASMJIT_API Error bind(const Label& label) override;
//! \}
//! \name Passes
//! \{
//! Returns a vector of `Pass` instances that will be executed by `runPasses()`.
inline const ZoneVector<Pass*>& passes() const noexcept { return _passes; }
//! Allocates and instantiates a new pass of type `T` and returns its instance. If the allocation fails `nullptr` is
//! returned.
//!
//! The template argument `T` must be a type that is extends \ref Pass.
//!
//! \remarks The pointer returned (if non-null) is owned by the Builder or Compiler. When the Builder/Compiler is
//! destroyed it destroys all passes it created so no manual memory management is required.
template<typename T>
inline T* newPassT() noexcept { return _codeZone.newT<T>(); }
//! \overload
template<typename T, typename... Args>
inline T* newPassT(Args&&... args) noexcept { return _codeZone.newT<T>(std::forward<Args>(args)...); }
template<typename T>
inline Error addPassT() { return addPass(newPassT<T>()); }
template<typename T, typename... Args>
inline Error addPassT(Args&&... args) { return addPass(newPassT<T, Args...>(std::forward<Args>(args)...)); }
//! Returns `Pass` by name.
//!
//! If the pass having the given `name` doesn't exist `nullptr` is returned.
ASMJIT_API Pass* passByName(const char* name) const noexcept;
//! Adds `pass` to the list of passes.
ASMJIT_API Error addPass(Pass* pass) noexcept;
//! Removes `pass` from the list of passes and delete it.
ASMJIT_API Error deletePass(Pass* pass) noexcept;
//! Runs all passes in order.
ASMJIT_API Error runPasses();
//! \}
//! \name Emit
//! \{
ASMJIT_API Error _emit(InstId instId, const Operand_& o0, const Operand_& o1, const Operand_& o2, const Operand_* opExt) override;
//! \}
//! \name Align
//! \{
ASMJIT_API Error align(AlignMode alignMode, uint32_t alignment) override;
//! \}
//! \name Embed
//! \{
ASMJIT_API Error embed(const void* data, size_t dataSize) override;
ASMJIT_API Error embedDataArray(TypeId typeId, const void* data, size_t count, size_t repeat = 1) override;
ASMJIT_API Error embedConstPool(const Label& label, const ConstPool& pool) override;
ASMJIT_API Error embedLabel(const Label& label, size_t dataSize = 0) override;
ASMJIT_API Error embedLabelDelta(const Label& label, const Label& base, size_t dataSize = 0) override;
//! \}
//! \name Comment
//! \{
ASMJIT_API Error comment(const char* data, size_t size = SIZE_MAX) override;
//! \}
//! \name Serialization
//! \{
//! Serializes everything the given emitter `dst`.
//!
//! Although not explicitly required the emitter will most probably be of Assembler type. The reason is that
//! there is no known use of serializing nodes held by Builder/Compiler into another Builder-like emitter.
ASMJIT_API Error serializeTo(BaseEmitter* dst);
//! \}
//! \name Events
//! \{
ASMJIT_API Error onAttach(CodeHolder* code) noexcept override;
ASMJIT_API Error onDetach(CodeHolder* code) noexcept override;
//! \}
};
//! Base node.
//!
//! Every node represents a building-block used by \ref BaseBuilder. It can be instruction, data, label, comment,
//! directive, or any other high-level representation that can be transformed to the building blocks mentioned.
//! Every class that inherits \ref BaseBuilder can define its own high-level nodes that can be later lowered to
//! basic nodes like instructions.
class BaseNode {
public:
ASMJIT_NONCOPYABLE(BaseNode)
//! \name Members
//! \{
union {
struct {
//! Previous node.
BaseNode* _prev;
//! Next node.
BaseNode* _next;
};
//! Links (an alternative view to previous and next nodes).
BaseNode* _links[2];
};
//! Data shared between all types of nodes.
struct AnyData {
//! Node type.
NodeType _nodeType;
//! Node flags.
NodeFlags _nodeFlags;
//! Not used by BaseNode.
uint8_t _reserved0;
//! Not used by BaseNode.
uint8_t _reserved1;
};
//! Data used by \ref AlignNode.
struct AlignData {
//! Node type.
NodeType _nodeType;
//! Node flags.
NodeFlags _nodeFlags;
//! Align mode.
AlignMode _alignMode;
//! Not used by AlignNode.
uint8_t _reserved;
};
//! Data used by \ref InstNode.
struct InstData {
//! Node type.
NodeType _nodeType;
//! Node flags.
NodeFlags _nodeFlags;
//! Instruction operands count (used).
uint8_t _opCount;
//! Instruction operands capacity (allocated).
uint8_t _opCapacity;
};
//! Data used by \ref EmbedDataNode.
struct EmbedData {
//! Node type.
NodeType _nodeType;
//! Node flags.
NodeFlags _nodeFlags;
//! Type id.
TypeId _typeId;
//! Size of `_typeId`.
uint8_t _typeSize;
};
//! Data used by \ref SentinelNode.
struct SentinelData {
//! Node type.
NodeType _nodeType;
//! Node flags.
NodeFlags _nodeFlags;
//! Sentinel type.
SentinelType _sentinelType;
//! Not used by BaseNode.
uint8_t _reserved1;
};
//! Data that can have different meaning dependning on \ref NodeType.
union {
//! Data useful by any node type.
AnyData _any;
//! Data specific to \ref AlignNode.
AlignData _alignData;
//! Data specific to \ref InstNode.
InstData _inst;
//! Data specific to \ref EmbedDataNode.
EmbedData _embed;
//! Data specific to \ref SentinelNode.
SentinelData _sentinel;
};
//! Node position in code (should be unique).
uint32_t _position;
//! Value reserved for AsmJit users never touched by AsmJit itself.
union {
//! User data as 64-bit integer.
uint64_t _userDataU64;
//! User data as pointer.
void* _userDataPtr;
};
//! Data used exclusively by the current `Pass`.
void* _passData;
//! Inline comment/annotation or nullptr if not used.
const char* _inlineComment;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `BaseNode` - always use `BaseBuilder` to allocate nodes.
inline BaseNode(BaseBuilder* cb, NodeType nodeType, NodeFlags nodeFlags = NodeFlags::kNone) noexcept {
_prev = nullptr;
_next = nullptr;
_any._nodeType = nodeType;
_any._nodeFlags = nodeFlags | cb->_nodeFlags;
_any._reserved0 = 0;
_any._reserved1 = 0;
_position = 0;
_userDataU64 = 0;
_passData = nullptr;
_inlineComment = nullptr;
}
//! \}
//! \name Accessors
//! \{
//! Casts this node to `T*`.
template<typename T>
inline T* as() noexcept { return static_cast<T*>(this); }
//! Casts this node to `const T*`.
template<typename T>
inline const T* as() const noexcept { return static_cast<const T*>(this); }
//! Returns previous node or `nullptr` if this node is either first or not
//! part of Builder/Compiler node-list.
inline BaseNode* prev() const noexcept { return _prev; }
//! Returns next node or `nullptr` if this node is either last or not part
//! of Builder/Compiler node-list.
inline BaseNode* next() const noexcept { return _next; }
//! Returns the type of the node, see `NodeType`.
inline NodeType type() const noexcept { return _any._nodeType; }
//! Sets the type of the node, see `NodeType` (internal).
//!
//! \remarks You should never set a type of a node to anything else than the initial value. This function is only
//! provided for users that use custom nodes and need to change the type either during construction or later.
inline void setType(NodeType type) noexcept { _any._nodeType = type; }
//! Tests whether this node is either `InstNode` or extends it.
inline bool isInst() const noexcept { return hasFlag(NodeFlags::kActsAsInst); }
//! Tests whether this node is `SectionNode`.
inline bool isSection() const noexcept { return type() == NodeType::kSection; }
//! Tests whether this node is either `LabelNode` or extends it.
inline bool isLabel() const noexcept { return hasFlag(NodeFlags::kActsAsLabel); }
//! Tests whether this node is `AlignNode`.
inline bool isAlign() const noexcept { return type() == NodeType::kAlign; }
//! Tests whether this node is `EmbedDataNode`.
inline bool isEmbedData() const noexcept { return type() == NodeType::kEmbedData; }
//! Tests whether this node is `EmbedLabelNode`.
inline bool isEmbedLabel() const noexcept { return type() == NodeType::kEmbedLabel; }
//! Tests whether this node is `EmbedLabelDeltaNode`.
inline bool isEmbedLabelDelta() const noexcept { return type() == NodeType::kEmbedLabelDelta; }
//! Tests whether this node is `ConstPoolNode`.
inline bool isConstPool() const noexcept { return type() == NodeType::kConstPool; }
//! Tests whether this node is `CommentNode`.
inline bool isComment() const noexcept { return type() == NodeType::kComment; }
//! Tests whether this node is `SentinelNode`.
inline bool isSentinel() const noexcept { return type() == NodeType::kSentinel; }
//! Tests whether this node is `FuncNode`.
inline bool isFunc() const noexcept { return type() == NodeType::kFunc; }
//! Tests whether this node is `FuncRetNode`.
inline bool isFuncRet() const noexcept { return type() == NodeType::kFuncRet; }
//! Tests whether this node is `InvokeNode`.
inline bool isInvoke() const noexcept { return type() == NodeType::kInvoke; }
//! Returns the node flags.
inline NodeFlags flags() const noexcept { return _any._nodeFlags; }
//! Tests whether the node has the given `flag` set.
inline bool hasFlag(NodeFlags flag) const noexcept { return Support::test(_any._nodeFlags, flag); }
//! Replaces node flags with `flags`.
inline void setFlags(NodeFlags flags) noexcept { _any._nodeFlags = flags; }
//! Adds the given `flags` to node flags.
inline void addFlags(NodeFlags flags) noexcept { _any._nodeFlags |= flags; }
//! Clears the given `flags` from node flags.
inline void clearFlags(NodeFlags flags) noexcept { _any._nodeFlags &= ~flags; }
//! Tests whether the node is code that can be executed.
inline bool isCode() const noexcept { return hasFlag(NodeFlags::kIsCode); }
//! Tests whether the node is data that cannot be executed.
inline bool isData() const noexcept { return hasFlag(NodeFlags::kIsData); }
//! Tests whether the node is informative only (is never encoded like comment, etc...).
inline bool isInformative() const noexcept { return hasFlag(NodeFlags::kIsInformative); }
//! Tests whether the node is removable if it's in an unreachable code block.
inline bool isRemovable() const noexcept { return hasFlag(NodeFlags::kIsRemovable); }
//! Tests whether the node has no effect when executed (label, .align, nop, ...).
inline bool hasNoEffect() const noexcept { return hasFlag(NodeFlags::kHasNoEffect); }
//! Tests whether the node is part of the code.
inline bool isActive() const noexcept { return hasFlag(NodeFlags::kIsActive); }
//! Tests whether the node has a position assigned.
//!
//! \remarks Returns `true` if node position is non-zero.
inline bool hasPosition() const noexcept { return _position != 0; }
//! Returns node position.
inline uint32_t position() const noexcept { return _position; }
//! Sets node position.
//!
//! Node position is a 32-bit unsigned integer that is used by Compiler to track where the node is relatively to
//! the start of the function. It doesn't describe a byte position in a binary, instead it's just a pseudo position
//! used by liveness analysis and other tools around Compiler.
//!
//! If you don't use Compiler then you may use `position()` and `setPosition()` freely for your own purposes if
//! the 32-bit value limit is okay for you.
inline void setPosition(uint32_t position) noexcept { _position = position; }
//! Returns user data casted to `T*`.
//!
//! User data is decicated to be used only by AsmJit users and not touched by the library. The data has a pointer
//! size so you can either store a pointer or `intptr_t` value through `setUserDataAsIntPtr()`.
template<typename T>
inline T* userDataAsPtr() const noexcept { return static_cast<T*>(_userDataPtr); }
//! Returns user data casted to `int64_t`.
inline int64_t userDataAsInt64() const noexcept { return int64_t(_userDataU64); }
//! Returns user data casted to `uint64_t`.
inline uint64_t userDataAsUInt64() const noexcept { return _userDataU64; }
//! Sets user data to `data`.
template<typename T>
inline void setUserDataAsPtr(T* data) noexcept { _userDataPtr = static_cast<void*>(data); }
//! Sets used data to the given 64-bit signed `value`.
inline void setUserDataAsInt64(int64_t value) noexcept { _userDataU64 = uint64_t(value); }
//! Sets used data to the given 64-bit unsigned `value`.
inline void setUserDataAsUInt64(uint64_t value) noexcept { _userDataU64 = value; }
//! Resets user data to zero / nullptr.
inline void resetUserData() noexcept { _userDataU64 = 0; }
//! Tests whether the node has an associated pass data.
inline bool hasPassData() const noexcept { return _passData != nullptr; }
//! Returns the node pass data - data used during processing & transformations.
template<typename T>
inline T* passData() const noexcept { return (T*)_passData; }
//! Sets the node pass data to `data`.
template<typename T>
inline void setPassData(T* data) noexcept { _passData = (void*)data; }
//! Resets the node pass data to nullptr.
inline void resetPassData() noexcept { _passData = nullptr; }
//! Tests whether the node has an inline comment/annotation.
inline bool hasInlineComment() const noexcept { return _inlineComment != nullptr; }
//! Returns an inline comment/annotation string.
inline const char* inlineComment() const noexcept { return _inlineComment; }
//! Sets an inline comment/annotation string to `s`.
inline void setInlineComment(const char* s) noexcept { _inlineComment = s; }
//! Resets an inline comment/annotation string to nullptr.
inline void resetInlineComment() noexcept { _inlineComment = nullptr; }
//! \}
};
//! Instruction node.
//!
//! Wraps an instruction with its options and operands.
class InstNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(InstNode)
//! \name Constants
//! \{
enum : uint32_t {
//! Count of embedded operands per `InstNode` that are always allocated as a part of the instruction. Minimum
//! embedded operands is 4, but in 32-bit more pointers are smaller and we can embed 5. The rest (up to 6 operands)
//! is always stored in `InstExNode`.
kBaseOpCapacity = uint32_t((128 - sizeof(BaseNode) - sizeof(BaseInst)) / sizeof(Operand_))
};
//! \}
//! \name Members
//! \{
//! Base instruction data.
BaseInst _baseInst;
//! First 4 or 5 operands (indexed from 0).
Operand_ _opArray[kBaseOpCapacity];
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `InstNode` instance.
inline InstNode(BaseBuilder* cb, InstId instId, InstOptions options, uint32_t opCount, uint32_t opCapacity = kBaseOpCapacity) noexcept
: BaseNode(cb, NodeType::kInst, NodeFlags::kIsCode | NodeFlags::kIsRemovable | NodeFlags::kActsAsInst),
_baseInst(instId, options) {
_inst._opCapacity = uint8_t(opCapacity);
_inst._opCount = uint8_t(opCount);
}
//! \cond INTERNAL
//! Reset all built-in operands, including `extraReg`.
inline void _resetOps() noexcept {
_baseInst.resetExtraReg();
resetOpRange(0, opCapacity());
}
//! \endcond
//! \}
//! \name Instruction Object
//! \{
inline BaseInst& baseInst() noexcept { return _baseInst; }
inline const BaseInst& baseInst() const noexcept { return _baseInst; }
//! \}
//! \name Instruction Id
//! \{
//! Returns the instruction id, see `BaseInst::Id`.
inline InstId id() const noexcept { return _baseInst.id(); }
//! Returns the instruction real id, see `BaseInst::Id`.
inline InstId realId() const noexcept { return _baseInst.realId(); }
//! Sets the instruction id to `id`, see `BaseInst::Id`.
inline void setId(InstId id) noexcept { _baseInst.setId(id); }
//! \}
//! \name Instruction Options
//! \{
inline InstOptions options() const noexcept { return _baseInst.options(); }
inline bool hasOption(InstOptions option) const noexcept { return _baseInst.hasOption(option); }
inline void setOptions(InstOptions options) noexcept { _baseInst.setOptions(options); }
inline void addOptions(InstOptions options) noexcept { _baseInst.addOptions(options); }
inline void clearOptions(InstOptions options) noexcept { _baseInst.clearOptions(options); }
inline void resetOptions() noexcept { _baseInst.resetOptions(); }
//! \}
//! \name Extra Register
//! \{
//! Tests whether the node has an extra register operand.
inline bool hasExtraReg() const noexcept { return _baseInst.hasExtraReg(); }
//! Returns extra register operand.
inline RegOnly& extraReg() noexcept { return _baseInst.extraReg(); }
//! \overload
inline const RegOnly& extraReg() const noexcept { return _baseInst.extraReg(); }
//! Sets extra register operand to `reg`.
inline void setExtraReg(const BaseReg& reg) noexcept { _baseInst.setExtraReg(reg); }
//! Sets extra register operand to `reg`.
inline void setExtraReg(const RegOnly& reg) noexcept { _baseInst.setExtraReg(reg); }
//! Resets extra register operand.
inline void resetExtraReg() noexcept { _baseInst.resetExtraReg(); }
//! \}
//! \name Instruction Operands
//! \{
//! Returns operand count.
inline uint32_t opCount() const noexcept { return _inst._opCount; }
//! Returns operand capacity.
inline uint32_t opCapacity() const noexcept { return _inst._opCapacity; }
//! Sets operand count.
inline void setOpCount(uint32_t opCount) noexcept { _inst._opCount = uint8_t(opCount); }
//! Returns operands array.
inline Operand* operands() noexcept { return (Operand*)_opArray; }
//! Returns operands array (const).
inline const Operand* operands() const noexcept { return (const Operand*)_opArray; }
//! Returns operand at the given `index`.
inline Operand& op(uint32_t index) noexcept {
ASMJIT_ASSERT(index < opCapacity());
return _opArray[index].as<Operand>();
}
//! Returns operand at the given `index` (const).
inline const Operand& op(uint32_t index) const noexcept {
ASMJIT_ASSERT(index < opCapacity());
return _opArray[index].as<Operand>();
}
//! Sets operand at the given `index` to `op`.
inline void setOp(uint32_t index, const Operand_& op) noexcept {
ASMJIT_ASSERT(index < opCapacity());
_opArray[index].copyFrom(op);
}
//! Resets operand at the given `index` to none.
inline void resetOp(uint32_t index) noexcept {
ASMJIT_ASSERT(index < opCapacity());
_opArray[index].reset();
}
//! Resets operands at `[start, end)` range.
inline void resetOpRange(uint32_t start, uint32_t end) noexcept {
for (uint32_t i = start; i < end; i++)
_opArray[i].reset();
}
//! \}
//! \name Utilities
//! \{
inline bool hasOpType(OperandType opType) const noexcept {
for (uint32_t i = 0, count = opCount(); i < count; i++)
if (_opArray[i].opType() == opType)
return true;
return false;
}
inline bool hasRegOp() const noexcept { return hasOpType(OperandType::kReg); }
inline bool hasMemOp() const noexcept { return hasOpType(OperandType::kMem); }
inline bool hasImmOp() const noexcept { return hasOpType(OperandType::kImm); }
inline bool hasLabelOp() const noexcept { return hasOpType(OperandType::kLabel); }
inline uint32_t indexOfOpType(OperandType opType) const noexcept {
uint32_t i = 0;
uint32_t count = opCount();
while (i < count) {
if (_opArray[i].opType() == opType)
break;
i++;
}
return i;
}
inline uint32_t indexOfMemOp() const noexcept { return indexOfOpType(OperandType::kMem); }
inline uint32_t indexOfImmOp() const noexcept { return indexOfOpType(OperandType::kImm); }
inline uint32_t indexOfLabelOp() const noexcept { return indexOfOpType(OperandType::kLabel); }
//! \}
//! \name Rewriting
//! \{
//! \cond INTERNAL
inline uint32_t* _getRewriteArray() noexcept { return &_baseInst._extraReg._id; }
inline const uint32_t* _getRewriteArray() const noexcept { return &_baseInst._extraReg._id; }
inline uint32_t getRewriteIndex(const uint32_t* id) const noexcept {
const uint32_t* array = _getRewriteArray();
ASMJIT_ASSERT(array <= id);
size_t index = (size_t)(id - array);
ASMJIT_ASSERT(index < 32);
return uint32_t(index);
}
inline void rewriteIdAtIndex(uint32_t index, uint32_t id) noexcept {
uint32_t* array = _getRewriteArray();
array[index] = id;
}
//! \endcond
//! \}
//! \name Static Functions
//! \{
//! \cond INTERNAL
static inline uint32_t capacityOfOpCount(uint32_t opCount) noexcept {
return opCount <= kBaseOpCapacity ? kBaseOpCapacity : Globals::kMaxOpCount;
}
static inline size_t nodeSizeOfOpCapacity(uint32_t opCapacity) noexcept {
size_t base = sizeof(InstNode) - kBaseOpCapacity * sizeof(Operand);
return base + opCapacity * sizeof(Operand);
}
//! \endcond
//! \}
};
//! Instruction node with maximum number of operands.
//!
//! This node is created automatically by Builder/Compiler in case that the required number of operands exceeds
//! the default capacity of `InstNode`.
class InstExNode : public InstNode {
public:
ASMJIT_NONCOPYABLE(InstExNode)
//! \name Members
//! \{
//! Continued `_opArray[]` to hold up to `kMaxOpCount` operands.
Operand_ _opArrayEx[Globals::kMaxOpCount - kBaseOpCapacity];
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `InstExNode` instance.
inline InstExNode(BaseBuilder* cb, InstId instId, InstOptions options, uint32_t opCapacity = Globals::kMaxOpCount) noexcept
: InstNode(cb, instId, options, opCapacity) {}
//! \}
};
//! Section node.
class SectionNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(SectionNode)
//! \name Members
//! \{
//! Section id.
uint32_t _id;
//! Next section node that follows this section.
//!
//! This link is only valid when the section is active (is part of the code) and when `Builder::hasDirtySectionLinks()`
//! returns `false`. If you intend to use this field you should always call `Builder::updateSectionLinks()` before you
//! do so.
SectionNode* _nextSection;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `SectionNode` instance.
inline SectionNode(BaseBuilder* cb, uint32_t secionId = 0) noexcept
: BaseNode(cb, NodeType::kSection, NodeFlags::kHasNoEffect),
_id(secionId),
_nextSection(nullptr) {}
//! \}
//! \name Accessors
//! \{
//! Returns the section id.
inline uint32_t id() const noexcept { return _id; }
//! \}
};
//! Label node.
class LabelNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(LabelNode)
//! \name Members
//! \{
//! Label identifier.
uint32_t _labelId;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `LabelNode` instance.
inline LabelNode(BaseBuilder* cb, uint32_t labelId = 0) noexcept
: BaseNode(cb, NodeType::kLabel, NodeFlags::kHasNoEffect | NodeFlags::kActsAsLabel),
_labelId(labelId) {}
//! \}
//! \name Accessors
//! \{
//! Returns \ref Label representation of the \ref LabelNode.
inline Label label() const noexcept { return Label(_labelId); }
//! Returns the id of the label.
inline uint32_t labelId() const noexcept { return _labelId; }
//! \}
};
//! Align directive (BaseBuilder).
//!
//! Wraps `.align` directive.
class AlignNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(AlignNode)
//! \name Members
//! \{
//! Alignment (in bytes).
uint32_t _alignment;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `AlignNode` instance.
inline AlignNode(BaseBuilder* cb, AlignMode alignMode, uint32_t alignment) noexcept
: BaseNode(cb, NodeType::kAlign, NodeFlags::kIsCode | NodeFlags::kHasNoEffect) {
_alignData._alignMode = alignMode;
_alignment = alignment;
}
//! \}
//! \name Accessors
//! \{
//! Returns align mode.
inline AlignMode alignMode() const noexcept { return _alignData._alignMode; }
//! Sets align mode to `alignMode`.
inline void setAlignMode(AlignMode alignMode) noexcept { _alignData._alignMode = alignMode; }
//! Returns align offset in bytes.
inline uint32_t alignment() const noexcept { return _alignment; }
//! Sets align offset in bytes to `offset`.
inline void setAlignment(uint32_t alignment) noexcept { _alignment = alignment; }
//! \}
};
//! Embed data node.
//!
//! Wraps `.data` directive. The node contains data that will be placed at the node's position in the assembler
//! stream. The data is considered to be RAW; no analysis nor byte-order conversion is performed on RAW data.
class EmbedDataNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(EmbedDataNode)
//! \cond INTERNAL
enum : uint32_t {
kInlineBufferSize = 128 - (sizeof(BaseNode) + sizeof(size_t) * 2)
};
//! \endcond
//! \name Members
//! \{
size_t _itemCount;
size_t _repeatCount;
union {
uint8_t* _externalData;
uint8_t _inlineData[kInlineBufferSize];
};
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `EmbedDataNode` instance.
inline EmbedDataNode(BaseBuilder* cb) noexcept
: BaseNode(cb, NodeType::kEmbedData, NodeFlags::kIsData),
_itemCount(0),
_repeatCount(0) {
_embed._typeId = TypeId::kUInt8;
_embed._typeSize = uint8_t(1);
memset(_inlineData, 0, kInlineBufferSize);
}
//! \}
//! \name Accessors
//! \{
//! Returns data type as \ref TypeId.
inline TypeId typeId() const noexcept { return _embed._typeId; }
//! Returns the size of a single data element.
inline uint32_t typeSize() const noexcept { return _embed._typeSize; }
//! Returns a pointer to the data casted to `uint8_t`.
inline uint8_t* data() const noexcept {
return dataSize() <= kInlineBufferSize ? const_cast<uint8_t*>(_inlineData) : _externalData;
}
//! Returns a pointer to the data casted to `T`.
template<typename T>
inline T* dataAs() const noexcept { return reinterpret_cast<T*>(data()); }
//! Returns the number of (typed) items in the array.
inline size_t itemCount() const noexcept { return _itemCount; }
//! Returns how many times the data is repeated (default 1).
//!
//! Repeated data is useful when defining constants for SIMD, for example.
inline size_t repeatCount() const noexcept { return _repeatCount; }
//! Returns the size of the data, not considering the number of times it repeats.
//!
//! \note The returned value is the same as `typeSize() * itemCount()`.
inline size_t dataSize() const noexcept { return typeSize() * _itemCount; }
//! \}
};
//! Label data node.
class EmbedLabelNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(EmbedLabelNode)
//! \name Members
//! \{
uint32_t _labelId;
uint32_t _dataSize;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `EmbedLabelNode` instance.
inline EmbedLabelNode(BaseBuilder* cb, uint32_t labelId = 0, uint32_t dataSize = 0) noexcept
: BaseNode(cb, NodeType::kEmbedLabel, NodeFlags::kIsData),
_labelId(labelId),
_dataSize(dataSize) {}
//! \}
//! \name Accessors
//! \{
//! Returns the label to embed as \ref Label operand.
inline Label label() const noexcept { return Label(_labelId); }
//! Returns the id of the label.
inline uint32_t labelId() const noexcept { return _labelId; }
//! Sets the label id from `label` operand.
inline void setLabel(const Label& label) noexcept { setLabelId(label.id()); }
//! Sets the label id (use with caution, improper use can break a lot of things).
inline void setLabelId(uint32_t labelId) noexcept { _labelId = labelId; }
//! Returns the data size.
inline uint32_t dataSize() const noexcept { return _dataSize; }
//! Sets the data size.
inline void setDataSize(uint32_t dataSize) noexcept { _dataSize = dataSize; }
//! \}
};
//! Label data node.
class EmbedLabelDeltaNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(EmbedLabelDeltaNode)
//! \name Members
//! \{
uint32_t _labelId;
uint32_t _baseLabelId;
uint32_t _dataSize;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `EmbedLabelDeltaNode` instance.
inline EmbedLabelDeltaNode(BaseBuilder* cb, uint32_t labelId = 0, uint32_t baseLabelId = 0, uint32_t dataSize = 0) noexcept
: BaseNode(cb, NodeType::kEmbedLabelDelta, NodeFlags::kIsData),
_labelId(labelId),
_baseLabelId(baseLabelId),
_dataSize(dataSize) {}
//! \}
//! \name Accessors
//! \{
//! Returns the label as `Label` operand.
inline Label label() const noexcept { return Label(_labelId); }
//! Returns the id of the label.
inline uint32_t labelId() const noexcept { return _labelId; }
//! Sets the label id from `label` operand.
inline void setLabel(const Label& label) noexcept { setLabelId(label.id()); }
//! Sets the label id.
inline void setLabelId(uint32_t labelId) noexcept { _labelId = labelId; }
//! Returns the base label as `Label` operand.
inline Label baseLabel() const noexcept { return Label(_baseLabelId); }
//! Returns the id of the base label.
inline uint32_t baseLabelId() const noexcept { return _baseLabelId; }
//! Sets the base label id from `label` operand.
inline void setBaseLabel(const Label& baseLabel) noexcept { setBaseLabelId(baseLabel.id()); }
//! Sets the base label id.
inline void setBaseLabelId(uint32_t baseLabelId) noexcept { _baseLabelId = baseLabelId; }
//! Returns the size of the embedded label address.
inline uint32_t dataSize() const noexcept { return _dataSize; }
//! Sets the size of the embedded label address.
inline void setDataSize(uint32_t dataSize) noexcept { _dataSize = dataSize; }
//! \}
};
//! A node that wraps `ConstPool`.
class ConstPoolNode : public LabelNode {
public:
ASMJIT_NONCOPYABLE(ConstPoolNode)
//! \name Members
//! \{
ConstPool _constPool;
//! \}
//! \name Construction & Destruction
//! \{
//! Creates a new `ConstPoolNode` instance.
inline ConstPoolNode(BaseBuilder* cb, uint32_t id = 0) noexcept
: LabelNode(cb, id),
_constPool(&cb->_codeZone) {
setType(NodeType::kConstPool);
addFlags(NodeFlags::kIsData);
clearFlags(NodeFlags::kIsCode | NodeFlags::kHasNoEffect);
}
//! \}
//! \name Accessors
//! \{
//! Tests whether the constant-pool is empty.
inline bool empty() const noexcept { return _constPool.empty(); }
//! Returns the size of the constant-pool in bytes.
inline size_t size() const noexcept { return _constPool.size(); }
//! Returns minimum alignment.
inline size_t alignment() const noexcept { return _constPool.alignment(); }
//! Returns the wrapped `ConstPool` instance.
inline ConstPool& constPool() noexcept { return _constPool; }
//! Returns the wrapped `ConstPool` instance (const).
inline const ConstPool& constPool() const noexcept { return _constPool; }
//! \}
//! \name Utilities
//! \{
//! See `ConstPool::add()`.
inline Error add(const void* data, size_t size, size_t& dstOffset) noexcept {
return _constPool.add(data, size, dstOffset);
}
//! \}
};
//! Comment node.
class CommentNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(CommentNode)
//! \name Construction & Destruction
//! \{
//! Creates a new `CommentNode` instance.
inline CommentNode(BaseBuilder* cb, const char* comment) noexcept
: BaseNode(cb, NodeType::kComment, NodeFlags::kIsInformative | NodeFlags::kHasNoEffect | NodeFlags::kIsRemovable) {
_inlineComment = comment;
}
//! \}
};
//! Sentinel node.
//!
//! Sentinel is a marker that is completely ignored by the code builder. It's used to remember a position in a code
//! as it never gets removed by any pass.
class SentinelNode : public BaseNode {
public:
ASMJIT_NONCOPYABLE(SentinelNode)
//! \name Construction & Destruction
//! \{
//! Creates a new `SentinelNode` instance.
inline SentinelNode(BaseBuilder* cb, SentinelType sentinelType = SentinelType::kUnknown) noexcept
: BaseNode(cb, NodeType::kSentinel, NodeFlags::kIsInformative | NodeFlags::kHasNoEffect) {
_sentinel._sentinelType = sentinelType;
}
//! \}
//! \name Accessors
//! \{
//! Returns the type of the sentinel.
inline SentinelType sentinelType() const noexcept {
return _sentinel._sentinelType;
}
//! Sets the type of the sentinel.
inline void setSentinelType(SentinelType type) noexcept {
_sentinel._sentinelType = type;
}
//! \}
};
//! Pass can be used to implement code transformations, analysis, and lowering.
class ASMJIT_VIRTAPI Pass {
public:
ASMJIT_BASE_CLASS(Pass)
ASMJIT_NONCOPYABLE(Pass)
//! \name Members
//! \{
//! BaseBuilder this pass is assigned to.
BaseBuilder* _cb = nullptr;
//! Name of the pass.
const char* _name = nullptr;
//! \}
//! \name Construction & Destruction
//! \{
ASMJIT_API Pass(const char* name) noexcept;
ASMJIT_API virtual ~Pass() noexcept;
//! \}
//! \name Accessors
//! \{
//! Returns \ref BaseBuilder associated with the pass.
inline const BaseBuilder* cb() const noexcept { return _cb; }
//! Returns the name of the pass.
inline const char* name() const noexcept { return _name; }
//! \}
//! \name Pass Interface
//! \{
//! Processes the code stored in Builder or Compiler.
//!
//! This is the only function that is called by the `BaseBuilder` to process the code. It passes `zone`,
//! which will be reset after the `run()` finishes.
virtual Error run(Zone* zone, Logger* logger) = 0;
//! \}
};
//! \}
ASMJIT_END_NAMESPACE
#endif // !ASMJIT_NO_BUILDER
#endif // ASMJIT_CORE_BUILDER_H_INCLUDED