Defcon/hook_lib/asmjit/arm/a64assembler.cpp
MatrixMMOfficial 9631e4ca40 Initial commit
2023-11-26 08:54:06 -05:00

5112 lines
156 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#include "../core/api-build_p.h"
#if !defined(ASMJIT_NO_AARCH64)
#include "../core/codewriter_p.h"
#include "../core/cpuinfo.h"
#include "../core/emitterutils_p.h"
#include "../core/formatter.h"
#include "../core/logger.h"
#include "../core/misc_p.h"
#include "../core/support.h"
#include "../arm/armformatter_p.h"
#include "../arm/a64assembler.h"
#include "../arm/a64emithelper_p.h"
#include "../arm/a64instdb_p.h"
#include "../arm/a64utils.h"
ASMJIT_BEGIN_SUB_NAMESPACE(a64)
// a64::Assembler - Cond
// =====================
static inline uint32_t condCodeToOpcodeCond(uint32_t cond) noexcept {
return (uint32_t(cond) - 2u) & 0xFu;
}
// a64::Assembler - Bits
// =====================
template<typename T>
static inline constexpr uint32_t B(const T& index) noexcept { return uint32_t(1u) << uint32_t(index); }
static constexpr uint32_t kSP = Gp::kIdSp;
static constexpr uint32_t kZR = Gp::kIdZr;
static constexpr uint32_t kWX = InstDB::kWX;
// a64::Assembler - ShiftOpToLdStOptMap
// ====================================
// Table that maps ShiftOp to OPT part in LD/ST (register) opcode.
#define VALUE(index) index == uint32_t(ShiftOp::kUXTW) ? 2u : \
index == uint32_t(ShiftOp::kLSL) ? 3u : \
index == uint32_t(ShiftOp::kSXTW) ? 6u : \
index == uint32_t(ShiftOp::kSXTX) ? 7u : 0xFF
static const uint8_t armShiftOpToLdStOptMap[] = { ASMJIT_LOOKUP_TABLE_16(VALUE, 0) };
#undef VALUE
static inline constexpr uint32_t diff(RegType a, RegType b) noexcept {
return uint32_t(a) - uint32_t(b);
}
// asmjit::a64::Assembler - SizeOp
// ===============================
//! Struct that contains Size (2 bits), Q flag, and S (scalar) flag. These values
//! are used to encode Q, Size, and Scalar fields in an opcode.
struct SizeOp {
enum : uint8_t {
k128BitShift = 0,
kScalarShift = 1,
kSizeShift = 2,
kQ = uint8_t(1u << k128BitShift),
kS = uint8_t(1u << kScalarShift),
k00 = uint8_t(0 << kSizeShift),
k01 = uint8_t(1 << kSizeShift),
k10 = uint8_t(2 << kSizeShift),
k11 = uint8_t(3 << kSizeShift),
k00Q = k00 | kQ,
k01Q = k01 | kQ,
k10Q = k10 | kQ,
k11Q = k11 | kQ,
k00S = k00 | kS,
k01S = k01 | kS,
k10S = k10 | kS,
k11S = k11 | kS,
kInvalid = 0xFFu,
// Masks used by SizeOpMap.
kSzQ = (0x3u << kSizeShift) | kQ,
kSzS = (0x3u << kSizeShift) | kS,
kSzQS = (0x3u << kSizeShift) | kQ | kS
};
uint8_t value;
inline bool isValid() const noexcept { return value != kInvalid; }
inline void makeInvalid() noexcept { value = kInvalid; }
inline uint32_t q() const noexcept { return (value >> k128BitShift) & 0x1u; }
inline uint32_t qs() const noexcept { return ((value >> k128BitShift) | (value >> kScalarShift)) & 0x1u; }
inline uint32_t scalar() const noexcept { return (value >> kScalarShift) & 0x1u; }
inline uint32_t size() const noexcept { return (value >> kSizeShift) & 0x3u; }
inline void decrementSize() noexcept {
ASMJIT_ASSERT(size() > 0);
value = uint8_t(value - (1u << kSizeShift));
}
};
struct SizeOpTable {
enum TableId : uint8_t {
kTableBin = 0,
kTableAny,
kCount
};
// 40 elements for each combination.
SizeOp array[(uint32_t(RegType::kARM_VecV) - uint32_t(RegType::kARM_VecB) + 1) * 8];
};
#define VALUE_BIN(x) { \
x == (((uint32_t(RegType::kARM_VecD) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeNone)) ? SizeOp::k00 : \
x == (((uint32_t(RegType::kARM_VecV) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeNone)) ? SizeOp::k00Q : \
x == (((uint32_t(RegType::kARM_VecD) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeB )) ? SizeOp::k00 : \
x == (((uint32_t(RegType::kARM_VecV) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeB )) ? SizeOp::k00Q : SizeOp::kInvalid \
}
#define VALUE_ANY(x) { \
x == (((uint32_t(RegType::kARM_VecB) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeNone)) ? SizeOp::k00S : \
x == (((uint32_t(RegType::kARM_VecH) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeNone)) ? SizeOp::k01S : \
x == (((uint32_t(RegType::kARM_VecS) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeNone)) ? SizeOp::k10S : \
x == (((uint32_t(RegType::kARM_VecD) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeNone)) ? SizeOp::k11S : \
x == (((uint32_t(RegType::kARM_VecD) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeB )) ? SizeOp::k00 : \
x == (((uint32_t(RegType::kARM_VecV) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeB )) ? SizeOp::k00Q : \
x == (((uint32_t(RegType::kARM_VecD) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeH )) ? SizeOp::k01 : \
x == (((uint32_t(RegType::kARM_VecV) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeH )) ? SizeOp::k01Q : \
x == (((uint32_t(RegType::kARM_VecD) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeS )) ? SizeOp::k10 : \
x == (((uint32_t(RegType::kARM_VecV) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeS )) ? SizeOp::k10Q : \
x == (((uint32_t(RegType::kARM_VecD) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeD )) ? SizeOp::k11S : \
x == (((uint32_t(RegType::kARM_VecV) - uint32_t(RegType::kARM_VecB)) << 3) | (Vec::kElementTypeD )) ? SizeOp::k11Q : SizeOp::kInvalid \
}
static const SizeOpTable sizeOpTable[SizeOpTable::kCount] = {
{{ ASMJIT_LOOKUP_TABLE_40(VALUE_BIN, 0) }},
{{ ASMJIT_LOOKUP_TABLE_40(VALUE_ANY, 0) }}
};
#undef VALUE_ANY
#undef VALUE_BIN
struct SizeOpMap {
uint8_t tableId;
uint8_t sizeOpMask;
uint16_t acceptMask;
};
static const constexpr SizeOpMap sizeOpMap[InstDB::kVO_Count] = {
{ // kVO_V_B:
SizeOpTable::kTableBin, SizeOp::kQ , uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q))
},
{ // kVO_V_BH:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q) | B(SizeOp::k01) | B(SizeOp::k01Q))
},
{ // kVO_V_BH_4S:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q) | B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k10Q))
},
{ // kVO_V_BHS:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q) | B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k10) | B(SizeOp::k10Q))
},
{ // kVO_V_BHS_D2:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q) | B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k10) | B(SizeOp::k10Q) | B(SizeOp::k11Q))
},
{ // kVO_V_HS:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k10) | B(SizeOp::k10Q))
},
{ // kVO_V_S:
SizeOpTable::kTableAny, SizeOp::kQ , uint16_t(B(SizeOp::k10) | B(SizeOp::k10Q))
},
{ // kVO_V_B8H4:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k01))
},
{ // kVO_V_B8H4S2:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k01) | B(SizeOp::k10))
},
{ // kVO_V_B8D1:
SizeOpTable::kTableAny, SizeOp::kSzQ , uint16_t(B(SizeOp::k00) | B(SizeOp::k11S))
},
{ // kVO_V_H4S2:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k01) | B(SizeOp::k10))
},
{ // kVO_V_B16:
SizeOpTable::kTableBin, SizeOp::kQ , uint16_t(B(SizeOp::k00Q))
},
{ // kVO_V_B16H8:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00Q) | B(SizeOp::k01Q))
},
{ // kVO_V_B16H8S4:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00Q) | B(SizeOp::k01Q) | B(SizeOp::k10Q))
},
{ // kVO_V_B16D2:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00Q) | B(SizeOp::k11Q))
},
{ // kVO_V_H8S4:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k01Q) | B(SizeOp::k10Q))
},
{ // kVO_V_S4:
SizeOpTable::kTableAny, 0 , uint16_t(B(SizeOp::k10Q))
},
{ // kVO_V_D2:
SizeOpTable::kTableAny, 0 , uint16_t(B(SizeOp::k11Q))
},
{ // kVO_SV_BHS:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q) | B(SizeOp::k00S) | B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k01S) | B(SizeOp::k10) | B(SizeOp::k10Q) | B(SizeOp::k10S))
},
{ // kVO_SV_B8H4S2:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00S) | B(SizeOp::k01) | B(SizeOp::k01S) | B(SizeOp::k10) | B(SizeOp::k10S))
},
{ // kVO_SV_HS:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k01S) | B(SizeOp::k10) | B(SizeOp::k10Q) | B(SizeOp::k10S))
},
{ // kVO_V_Any:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q) | B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k10) | B(SizeOp::k10Q) | B(SizeOp::k11S) | B(SizeOp::k11Q))
},
{ // kVO_SV_Any:
SizeOpTable::kTableAny, SizeOp::kSzQS, uint16_t(B(SizeOp::k00) | B(SizeOp::k00Q) | B(SizeOp::k00S) |
B(SizeOp::k01) | B(SizeOp::k01Q) | B(SizeOp::k01S) |
B(SizeOp::k10) | B(SizeOp::k10Q) | B(SizeOp::k10S) |
B(SizeOp::k11) | B(SizeOp::k11Q) | B(SizeOp::k11S))
}
};
static const Operand_& significantSimdOp(const Operand_& o0, const Operand_& o1, uint32_t instFlags) noexcept {
return !(instFlags & InstDB::kInstFlagLong) ? o0 : o1;
}
static inline SizeOp armElementTypeToSizeOp(uint32_t vecOpType, RegType regType, uint32_t elementType) noexcept {
// Instruction data or Assembler is wrong if this triggers an assertion failure.
ASMJIT_ASSERT(vecOpType < InstDB::kVO_Count);
// ElementType uses 3 bits in the operand signature, it should never overflow.
ASMJIT_ASSERT(elementType <= 0x7u);
const SizeOpMap& map = sizeOpMap[vecOpType];
const SizeOpTable& table = sizeOpTable[map.tableId];
size_t index = (Support::min<uint32_t>(diff(regType, RegType::kARM_VecB), diff(RegType::kARM_VecV, RegType::kARM_VecB) + 1) << 3) | elementType;
SizeOp op = table.array[index];
SizeOp modifiedOp { uint8_t(op.value & map.sizeOpMask) };
if (!Support::bitTest(map.acceptMask, op.value))
modifiedOp.makeInvalid();
return modifiedOp;
}
// a64::Assembler - Immediate Encoding Utilities (Integral)
// ========================================================
using Utils::LogicalImm;
struct HalfWordImm {
uint32_t hw;
uint32_t inv;
uint32_t imm;
};
struct LMHImm {
uint32_t lm;
uint32_t h;
uint32_t maxRmId;
};
static inline uint32_t countZeroHalfWords64(uint64_t imm) noexcept {
return uint32_t((imm & 0x000000000000FFFFu) == 0) +
uint32_t((imm & 0x00000000FFFF0000u) == 0) +
uint32_t((imm & 0x0000FFFF00000000u) == 0) +
uint32_t((imm & 0xFFFF000000000000u) == 0) ;
}
static uint32_t encodeMovSequence32(uint32_t out[2], uint32_t imm, uint32_t rd, uint32_t x) noexcept {
ASMJIT_ASSERT(rd <= 31);
uint32_t kMovZ = 0b01010010100000000000000000000000 | (x << 31);
uint32_t kMovN = 0b00010010100000000000000000000000;
uint32_t kMovK = 0b01110010100000000000000000000000;
if ((imm & 0xFFFF0000u) == 0x00000000u) {
out[0] = kMovZ | (0 << 21) | ((imm & 0xFFFFu) << 5) | rd;
return 1;
}
if ((imm & 0xFFFF0000u) == 0xFFFF0000u) {
out[0] = kMovN | (0 << 21) | ((~imm & 0xFFFFu) << 5) | rd;
return 1;
}
if ((imm & 0x0000FFFFu) == 0x00000000u) {
out[0] = kMovZ | (1 << 21) | ((imm >> 16) << 5) | rd;
return 1;
}
if ((imm & 0x0000FFFFu) == 0x0000FFFFu) {
out[0] = kMovN | (1 << 21) | ((~imm >> 16) << 5) | rd;
return 1;
}
out[0] = kMovZ | (0 << 21) | ((imm & 0xFFFFu) << 5) | rd;
out[1] = kMovK | (1 << 21) | ((imm >> 16) << 5) | rd;
return 2;
}
static uint32_t encodeMovSequence64(uint32_t out[4], uint64_t imm, uint32_t rd, uint32_t x) noexcept {
ASMJIT_ASSERT(rd <= 31);
uint32_t kMovZ = 0b11010010100000000000000000000000;
uint32_t kMovN = 0b10010010100000000000000000000000;
uint32_t kMovK = 0b11110010100000000000000000000000;
if (imm <= 0xFFFFFFFFu)
return encodeMovSequence32(out, uint32_t(imm), rd, x);
uint32_t zhw = countZeroHalfWords64( imm);
uint32_t ohw = countZeroHalfWords64(~imm);
if (zhw >= ohw) {
uint32_t op = kMovZ;
uint32_t count = 0;
for (uint32_t hwIndex = 0; hwIndex < 4; hwIndex++, imm >>= 16) {
uint32_t hwImm = uint32_t(imm & 0xFFFFu);
if (hwImm == 0)
continue;
out[count++] = op | (hwIndex << 21) | (hwImm << 5) | rd;
op = kMovK;
}
// This should not happen - zero should be handled by encodeMovSequence32().
ASMJIT_ASSERT(count > 0);
return count;
}
else {
uint32_t op = kMovN;
uint32_t count = 0;
uint32_t negMask = 0xFFFFu;
for (uint32_t hwIndex = 0; hwIndex < 4; hwIndex++, imm >>= 16) {
uint32_t hwImm = uint32_t(imm & 0xFFFFu);
if (hwImm == 0xFFFFu)
continue;
out[count++] = op | (hwIndex << 21) | ((hwImm ^ negMask) << 5) | rd;
op = kMovK;
negMask = 0;
}
if (count == 0) {
out[count++] = kMovN | ((0xFFFF ^ negMask) << 5) | rd;
}
return count;
}
}
static inline bool encodeLMH(uint32_t sizeField, uint32_t elementIndex, LMHImm* out) noexcept {
if (sizeField != 1 && sizeField != 2)
return false;
uint32_t hShift = 3u - sizeField;
uint32_t lmShift = sizeField - 1u;
uint32_t maxElementIndex = 15u >> sizeField;
out->h = elementIndex >> hShift;
out->lm = (elementIndex << lmShift) & 0x3u;
out->maxRmId = (8u << sizeField) - 1;
return elementIndex <= maxElementIndex;
}
// [.......A|B.......|.......C|D.......|.......E|F.......|.......G|H.......]
static inline uint32_t encodeImm64ByteMaskToImm8(uint64_t imm) noexcept {
return uint32_t(((imm >> (7 - 0)) & 0b00000011) | // [.......G|H.......]
((imm >> (23 - 2)) & 0b00001100) | // [.......E|F.......]
((imm >> (39 - 4)) & 0b00110000) | // [.......C|D.......]
((imm >> (55 - 6)) & 0b11000000)); // [.......A|B.......]
}
// a64::Assembler - Opcode
// =======================
//! Helper class to store and manipulate ARM opcode.
struct Opcode {
uint32_t v;
enum Bits : uint32_t {
kN = (1u << 22),
kQ = (1u << 30),
kX = (1u << 31)
};
// --------------------------------------------------------------------------
// [Opcode Builder]
// --------------------------------------------------------------------------
inline uint32_t get() const noexcept { return v; }
inline void reset(uint32_t value) noexcept { v = value; }
inline bool hasQ() const noexcept { return (v & kQ) != 0; }
inline bool hasX() const noexcept { return (v & kX) != 0; }
template<typename T>
inline Opcode& addImm(T value, uint32_t bitIndex) noexcept { return operator|=(uint32_t(value) << bitIndex); }
template<typename T>
inline Opcode& xorImm(T value, uint32_t bitIndex) noexcept { return operator^=(uint32_t(value) << bitIndex); }
template<typename T, typename Condition>
inline Opcode& addIf(T value, const Condition& condition) noexcept { return operator|=(condition ? uint32_t(value) : uint32_t(0)); }
inline Opcode& addLogicalImm(const LogicalImm& logicalImm) noexcept {
addImm(logicalImm.n, 22);
addImm(logicalImm.r, 16);
addImm(logicalImm.s, 10);
return *this;
}
inline Opcode& addReg(uint32_t id, uint32_t bitIndex) noexcept { return operator|=((id & 31u) << bitIndex); }
inline Opcode& addReg(const Operand_& op, uint32_t bitIndex) noexcept { return addReg(op.id(), bitIndex); }
inline Opcode& operator=(uint32_t x) noexcept { v = x; return *this; }
inline Opcode& operator&=(uint32_t x) noexcept { v &= x; return *this; }
inline Opcode& operator|=(uint32_t x) noexcept { v |= x; return *this; }
inline Opcode& operator^=(uint32_t x) noexcept { v ^= x; return *this; }
inline uint32_t operator&(uint32_t x) const noexcept { return v & x; }
inline uint32_t operator|(uint32_t x) const noexcept { return v | x; }
inline uint32_t operator^(uint32_t x) const noexcept { return v ^ x; }
};
// a64::Assembler - Signature Utilities
// ====================================
// TODO: [ARM] Deprecate matchSignature.
static inline bool matchSignature(const Operand_& o0, const Operand_& o1, uint32_t instFlags) noexcept {
if (!(instFlags & (InstDB::kInstFlagLong | InstDB::kInstFlagNarrow)))
return o0.signature() == o1.signature();
// TODO: [ARM] Something smart to validate this.
return true;
}
static inline bool matchSignature(const Operand_& o0, const Operand_& o1, const Operand_& o2, uint32_t instFlags) noexcept {
return matchSignature(o0, o1, instFlags) && o1.signature() == o2.signature();
}
static inline bool matchSignature(const Operand_& o0, const Operand_& o1, const Operand_& o2, const Operand_& o3, uint32_t instFlags) noexcept {
return matchSignature(o0, o1, instFlags) && o1.signature() == o2.signature() && o2.signature() == o3.signature();;
}
// Memory must be either:
// 1. Absolute address, which will be converted to relative.
// 2. Relative displacement (Label).
// 3. Base register + either offset or index.
static inline bool armCheckMemBaseIndexRel(const Mem& mem) noexcept {
// Allowed base types (Nothing, Label, and GpX).
constexpr uint32_t kBaseMask = B(0) |
B(RegType::kLabelTag) |
B(RegType::kARM_GpX);
// Allowed index types (Nothing, GpW, and GpX).
constexpr uint32_t kIndexMask = B(0) |
B(RegType::kARM_GpW) |
B(RegType::kARM_GpX) ;
RegType baseType = mem.baseType();
RegType indexType = mem.indexType();
if (!Support::bitTest(kBaseMask, baseType))
return false;
if (baseType > RegType::kLabelTag) {
// Index allows either GpW or GpX.
if (!Support::bitTest(kIndexMask, indexType))
return false;
if (indexType == RegType::kNone)
return true;
else
return !mem.hasOffset();
}
else {
// No index register allowed if this is a PC relative address (literal).
return indexType == RegType::kNone;
}
}
struct EncodeFpOpcodeBits {
uint32_t sizeMask;
uint32_t mask[3];
};
static inline bool pickFpOpcode(const Vec& reg, uint32_t sOp, uint32_t sHf, uint32_t vOp, uint32_t vHf, Opcode* opcode, uint32_t* szOut) noexcept {
static constexpr uint32_t kQBitIndex = 30;
static const EncodeFpOpcodeBits szBits[InstDB::kHF_Count] = {
{ B(2) | B(1) , { 0u , 0u, B(22) } },
{ B(2) | B(1) | B(0), { 0u , 0u, 0u } },
{ B(2) | B(1) | B(0), { B(23) | B(22) , 0u, B(22) } },
{ B(2) | B(1) | B(0), { B(22) | B(20) | B(19) , 0u, B(22) } },
{ B(2) | B(1) | B(0), { B(22) | B(21) | B(15) | B(14), 0u, B(22) } },
{ B(2) | B(1) | B(0), { B(23) , 0u, B(22) } }
};
if (!reg.hasElementType()) {
// Scalar operation [HSD].
uint32_t sz = diff(reg.type(), RegType::kARM_VecH);
if (sz > 2u || !Support::bitTest(szBits[sHf].sizeMask, sz))
return false;
opcode->reset(szBits[sHf].mask[sz] ^ sOp);
*szOut = sz;
return sOp != 0;
}
else {
// Vector operation [HSD].
uint32_t q = diff(reg.type(), RegType::kARM_VecD);
uint32_t sz = reg.elementType() - Vec::kElementTypeH;
if (q > 1u || sz > 2u || !Support::bitTest(szBits[vHf].sizeMask, sz))
return false;
opcode->reset(szBits[vHf].mask[sz] ^ (vOp | (q << kQBitIndex)));
*szOut = sz;
return vOp != 0;
}
}
static inline bool pickFpOpcode(const Vec& reg, uint32_t sOp, uint32_t sHf, uint32_t vOp, uint32_t vHf, Opcode* opcode) noexcept {
uint32_t sz;
return pickFpOpcode(reg, sOp, sHf, vOp, vHf, opcode, &sz);
}
// a64::Assembler - Operand Checks
// ===============================
// Checks whether all operands have the same signature.
static inline bool checkSignature(const Operand_& o0, const Operand_& o1) noexcept {
return o0.signature() == o1.signature();
}
static inline bool checkSignature(const Operand_& o0, const Operand_& o1, const Operand_& o2) noexcept {
return o0.signature() == o1.signature() &&
o1.signature() == o2.signature();
}
static inline bool checkSignature(const Operand_& o0, const Operand_& o1, const Operand_& o2, const Operand_& o3) noexcept {
return o0.signature() == o1.signature() &&
o1.signature() == o2.signature() &&
o2.signature() == o3.signature();
}
// Checks whether the register is GP register of the allowed types.
//
// Allowed is a 2-bit mask, where the first bits allows GpW and the second bit
// allows GpX. These bits are usually stored within the instruction, but could
// be also hardcoded in the assembler for instructions where GP types are not
// selectable.
static inline bool checkGpType(const Operand_& op, uint32_t allowed) noexcept {
RegType type = op.as<Reg>().type();
return Support::bitTest(allowed << uint32_t(RegType::kARM_GpW), type);
}
static inline bool checkGpType(const Operand_& op, uint32_t allowed, uint32_t* x) noexcept {
// NOTE: We set 'x' to one only when GpW is allowed, otherwise the X is part
// of the opcode and we cannot set it. This is why this works without requiring
// additional logic.
RegType type = op.as<Reg>().type();
*x = diff(type, RegType::kARM_GpW) & allowed;
return Support::bitTest(allowed << uint32_t(RegType::kARM_GpW), type);
}
static inline bool checkGpType(const Operand_& o0, const Operand_& o1, uint32_t allowed, uint32_t* x) noexcept {
return checkGpType(o0, allowed, x) && checkSignature(o0, o1);
}
static inline bool checkGpType(const Operand_& o0, const Operand_& o1, const Operand_& o2, uint32_t allowed, uint32_t* x) noexcept {
return checkGpType(o0, allowed, x) && checkSignature(o0, o1, o2);
}
static inline bool checkGpId(const Operand_& op, uint32_t hiId = kZR) noexcept {
uint32_t id = op.as<Reg>().id();
return id < 31u || id == hiId;
}
static inline bool checkGpId(const Operand_& o0, const Operand_& o1, uint32_t hiId = kZR) noexcept {
uint32_t id0 = o0.as<Reg>().id();
uint32_t id1 = o1.as<Reg>().id();
return (id0 < 31u || id0 == hiId) && (id1 < 31u || id1 == hiId);
}
static inline bool checkGpId(const Operand_& o0, const Operand_& o1, const Operand_& o2, uint32_t hiId = kZR) noexcept {
uint32_t id0 = o0.as<Reg>().id();
uint32_t id1 = o1.as<Reg>().id();
uint32_t id2 = o2.as<Reg>().id();
return (id0 < 31u || id0 == hiId) && (id1 < 31u || id1 == hiId) && (id2 < 31u || id2 == hiId);
}
static inline bool checkVecId(const Operand_& op) noexcept {
uint32_t id = op.as<Reg>().id();
return id <= 31u;
}
static inline bool checkVecId(const Operand_& o0, const Operand_& o1) noexcept {
uint32_t id0 = o0.as<Reg>().id();
uint32_t id1 = o1.as<Reg>().id();
return (id0 | id1) <= 31u;
}
/* Unused at the moment.
static inline bool checkVecId(const Operand_& o0, const Operand_& o1, const Operand_& o2) noexcept {
uint32_t id0 = o0.as<Reg>().id();
uint32_t id1 = o1.as<Reg>().id();
uint32_t id2 = o2.as<Reg>().id();
return (id0 | id1 | id2) <= 31u;
}
static inline bool checkVecId(const Operand_& o0, const Operand_& o1, const Operand_& o2, const Operand_& o3) noexcept {
uint32_t id0 = o0.as<Reg>().id();
uint32_t id1 = o1.as<Reg>().id();
uint32_t id2 = o2.as<Reg>().id();
uint32_t id3 = o3.as<Reg>().id();
return (id0 | id1 | id2 | id3) <= 31u;
}
*/
static inline bool checkMemBase(const Mem& mem) noexcept {
return mem.baseType() == RegType::kARM_GpX && mem.baseId() <= 31;
}
static inline bool checkEven(const Operand_& o0, const Operand_& o1) noexcept {
return ((o0.id() | o1.id()) & 1) == 0;
}
static inline bool checkConsecutive(const Operand_& o0, const Operand_& o1) noexcept {
return ((o0.id() + 1u) & 0x1Fu) == o1.id();
}
static inline bool checkConsecutive(const Operand_& o0, const Operand_& o1, const Operand_& o2) noexcept {
return ((o0.id() + 1u) & 0x1Fu) == o1.id() &&
((o0.id() + 2u) & 0x1Fu) == o2.id();
}
static inline bool checkConsecutive(const Operand_& o0, const Operand_& o1, const Operand_& o2, const Operand_& o3) noexcept {
return ((o0.id() + 1u) & 0x1Fu) == o1.id() &&
((o0.id() + 2u) & 0x1Fu) == o2.id() &&
((o0.id() + 3u) & 0x1Fu) == o3.id();
}
// a64::Assembler - CheckReg
// =========================
#define V(index) (index == uint32_t(RegType::kARM_GpW) ? Gp::kIdZr : \
index == uint32_t(RegType::kARM_GpX) ? Gp::kIdZr : \
index == uint32_t(RegType::kARM_VecB) ? 31u : \
index == uint32_t(RegType::kARM_VecH) ? 31u : \
index == uint32_t(RegType::kARM_VecS) ? 31u : \
index == uint32_t(RegType::kARM_VecD) ? 31u : \
index == uint32_t(RegType::kARM_VecV) ? 31u : 0)
static const Support::Array<uint8_t, 32> commonHiRegIdOfType = {{
ASMJIT_LOOKUP_TABLE_32(V, 0)
}};
#undef V
static inline bool checkValidRegs(const Operand_& o0) noexcept {
return bool(unsigned(o0.id() < 31) | unsigned(o0.id() == commonHiRegIdOfType[o0.as<Reg>().type()]));
}
static inline bool checkValidRegs(const Operand_& o0, const Operand_& o1) noexcept {
return bool((unsigned(o0.id() < 31) | unsigned(o0.id() == commonHiRegIdOfType[o0.as<Reg>().type()])) &
(unsigned(o1.id() < 31) | unsigned(o1.id() == commonHiRegIdOfType[o1.as<Reg>().type()])));
}
static inline bool checkValidRegs(const Operand_& o0, const Operand_& o1, const Operand_& o2) noexcept {
return bool((unsigned(o0.id() < 31) | unsigned(o0.id() == commonHiRegIdOfType[o0.as<Reg>().type()])) &
(unsigned(o1.id() < 31) | unsigned(o1.id() == commonHiRegIdOfType[o1.as<Reg>().type()])) &
(unsigned(o2.id() < 31) | unsigned(o2.id() == commonHiRegIdOfType[o2.as<Reg>().type()])));
}
static inline bool checkValidRegs(const Operand_& o0, const Operand_& o1, const Operand_& o2, const Operand_& o3) noexcept {
return bool((unsigned(o0.id() < 31) | unsigned(o0.id() == commonHiRegIdOfType[o0.as<Reg>().type()])) &
(unsigned(o1.id() < 31) | unsigned(o1.id() == commonHiRegIdOfType[o1.as<Reg>().type()])) &
(unsigned(o2.id() < 31) | unsigned(o2.id() == commonHiRegIdOfType[o2.as<Reg>().type()])) &
(unsigned(o3.id() < 31) | unsigned(o3.id() == commonHiRegIdOfType[o3.as<Reg>().type()])));
}
// a64::Assembler - Construction & Destruction
// ===========================================
Assembler::Assembler(CodeHolder* code) noexcept : BaseAssembler() {
_archMask = uint64_t(1) << uint32_t(Arch::kAArch64);
assignEmitterFuncs(this);
if (code)
code->attach(this);
}
Assembler::~Assembler() noexcept {}
// a64::Assembler - Emit
// =====================
#define ENC_OPS1(OP0) \
(uint32_t(OperandType::k##OP0))
#define ENC_OPS2(OP0, OP1) \
(uint32_t(OperandType::k##OP0) + \
(uint32_t(OperandType::k##OP1) << 3))
#define ENC_OPS3(OP0, OP1, OP2) \
(uint32_t(OperandType::k##OP0) + \
(uint32_t(OperandType::k##OP1) << 3) + \
(uint32_t(OperandType::k##OP2) << 6))
#define ENC_OPS4(OP0, OP1, OP2, OP3) \
(uint32_t(OperandType::k##OP0) + \
(uint32_t(OperandType::k##OP1) << 3) + \
(uint32_t(OperandType::k##OP2) << 6) + \
(uint32_t(OperandType::k##OP3) << 9))
Error Assembler::_emit(InstId instId, const Operand_& o0, const Operand_& o1, const Operand_& o2, const Operand_* opExt) {
// Logging/Validation/Error.
constexpr InstOptions kRequiresSpecialHandling = InstOptions::kReserved;
Error err;
CodeWriter writer(this);
// Combine all instruction options and also check whether the instruction
// is valid. All options that require special handling (including invalid
// instruction) are handled by the next branch.
InstOptions options = InstOptions(instId - 1 >= Inst::_kIdCount - 1) | InstOptions((size_t)(_bufferEnd - writer.cursor()) < 4) | instOptions() | forcedInstOptions();
CondCode instCC = BaseInst::extractARMCondCode(instId);
instId = instId & uint32_t(InstIdParts::kRealId);
if (instId >= Inst::_kIdCount)
instId = 0;
const InstDB::InstInfo* instInfo = &InstDB::_instInfoTable[instId];
uint32_t encodingIndex = instInfo->_encodingDataIndex;
Opcode opcode;
uint32_t isign4;
uint32_t instFlags;
const Operand_& o3 = opExt[EmitterUtils::kOp3];
const Operand_* rmRel = nullptr;
uint32_t multipleOpData[4];
uint32_t multipleOpCount;
// These are only used when instruction uses a relative displacement.
OffsetFormat offsetFormat; // Offset format.
uint64_t offsetValue; // Offset value (if known).
if (ASMJIT_UNLIKELY(Support::test(options, kRequiresSpecialHandling))) {
if (ASMJIT_UNLIKELY(!_code))
return reportError(DebugUtils::errored(kErrorNotInitialized));
// Unknown instruction.
if (ASMJIT_UNLIKELY(instId == 0))
goto InvalidInstruction;
// Condition code can only be used with 'B' instruction.
if (ASMJIT_UNLIKELY(instCC != CondCode::kAL && instId != Inst::kIdB))
goto InvalidInstruction;
// Grow request, happens rarely.
err = writer.ensureSpace(this, 4);
if (ASMJIT_UNLIKELY(err))
goto Failed;
#ifndef ASMJIT_NO_VALIDATION
// Strict validation.
if (hasDiagnosticOption(DiagnosticOptions::kValidateAssembler)) {
Operand_ opArray[Globals::kMaxOpCount];
EmitterUtils::opArrayFromEmitArgs(opArray, o0, o1, o2, opExt);
err = _funcs.validate(arch(), BaseInst(instId, options, _extraReg), opArray, Globals::kMaxOpCount, ValidationFlags::kNone);
if (ASMJIT_UNLIKELY(err))
goto Failed;
}
#endif
}
// Signature of the first 4 operands.
isign4 = (uint32_t(o0.opType()) ) +
(uint32_t(o1.opType()) << 3) +
(uint32_t(o2.opType()) << 6) +
(uint32_t(o3.opType()) << 9);
instFlags = instInfo->flags();
switch (instInfo->_encoding) {
// ------------------------------------------------------------------------
// [Base - Universal]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseOp: {
const InstDB::EncodingData::BaseOp& opData = InstDB::EncodingData::baseOp[encodingIndex];
if (isign4 == 0) {
opcode.reset(opData.opcode);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseOpImm: {
const InstDB::EncodingData::BaseOpImm& opData = InstDB::EncodingData::baseOpImm[encodingIndex];
if (isign4 == ENC_OPS1(Imm)) {
uint64_t imm = o0.as<Imm>().valueAs<uint64_t>();
uint32_t immMax = 1u << opData.immBits;
if (imm >= immMax)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(imm, opData.immOffset);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseR: {
const InstDB::EncodingData::BaseR& opData = InstDB::EncodingData::baseR[encodingIndex];
if (isign4 == ENC_OPS1(Reg)) {
if (!checkGpType(o0, opData.rType))
goto InvalidInstruction;
if (!checkGpId(o0, opData.rHiId))
goto InvalidPhysId;
opcode.reset(opData.opcode);
opcode.addReg(o0, opData.rShift);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseRR: {
const InstDB::EncodingData::BaseRR& opData = InstDB::EncodingData::baseRR[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
uint32_t x;
if (!checkGpType(o0, opData.aType, &x))
goto InvalidInstruction;
if (!checkGpType(o1, opData.bType))
goto InvalidInstruction;
if (opData.uniform && !checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, opData.aHiId))
goto InvalidPhysId;
if (!checkGpId(o1, opData.bHiId))
goto InvalidPhysId;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addReg(o1, opData.bShift);
opcode.addReg(o0, opData.aShift);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseRRR: {
const InstDB::EncodingData::BaseRRR& opData = InstDB::EncodingData::baseRRR[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
uint32_t x;
if (!checkGpType(o0, opData.aType, &x))
goto InvalidInstruction;
if (!checkGpType(o1, opData.bType))
goto InvalidInstruction;
if (!checkGpType(o2, opData.cType))
goto InvalidInstruction;
if (opData.uniform && !checkSignature(o0, o1, o2))
goto InvalidInstruction;
if (!checkGpId(o0, opData.aHiId))
goto InvalidPhysId;
if (!checkGpId(o1, opData.bHiId))
goto InvalidPhysId;
if (!checkGpId(o2, opData.cHiId))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, 31);
opcode.addReg(o2, 16);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseRRRR: {
const InstDB::EncodingData::BaseRRRR& opData = InstDB::EncodingData::baseRRRR[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Reg)) {
uint32_t x;
if (!checkGpType(o0, opData.aType, &x))
goto InvalidInstruction;
if (!checkGpType(o1, opData.bType))
goto InvalidInstruction;
if (!checkGpType(o2, opData.cType))
goto InvalidInstruction;
if (!checkGpType(o3, opData.dType))
goto InvalidInstruction;
if (opData.uniform && !checkSignature(o0, o1, o2, o3))
goto InvalidInstruction;
if (!checkGpId(o0, opData.aHiId))
goto InvalidPhysId;
if (!checkGpId(o1, opData.bHiId))
goto InvalidPhysId;
if (!checkGpId(o2, opData.cHiId))
goto InvalidPhysId;
if (!checkGpId(o3, opData.dHiId))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, 31);
opcode.addReg(o2, 16);
opcode.addReg(o3, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseRRII: {
const InstDB::EncodingData::BaseRRII& opData = InstDB::EncodingData::baseRRII[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
if (!checkGpType(o0, opData.aType))
goto InvalidInstruction;
if (!checkGpType(o1, opData.bType))
goto InvalidInstruction;
if (!checkGpId(o0, opData.aHiId))
goto InvalidPhysId;
if (!checkGpId(o1, opData.bHiId))
goto InvalidPhysId;
if (o2.as<Imm>().valueAs<uint64_t>() >= Support::bitMask(opData.aImmSize + opData.aImmDiscardLsb) ||
o3.as<Imm>().valueAs<uint64_t>() >= Support::bitMask(opData.bImmSize + opData.bImmDiscardLsb))
goto InvalidImmediate;
uint32_t aImm = o2.as<Imm>().valueAs<uint32_t>() >> opData.aImmDiscardLsb;
uint32_t bImm = o3.as<Imm>().valueAs<uint32_t>() >> opData.bImmDiscardLsb;
if ((aImm << opData.aImmDiscardLsb) != o2.as<Imm>().valueAs<uint32_t>() ||
(bImm << opData.bImmDiscardLsb) != o3.as<Imm>().valueAs<uint32_t>())
goto InvalidImmediate;
opcode.reset(opData.opcode());
opcode.addImm(aImm, opData.aImmOffset);
opcode.addImm(bImm, opData.bImmOffset);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
// ------------------------------------------------------------------------
// [Base - Mov]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseMov: {
// MOV is a pseudo instruction that uses various instructions depending on its signature.
uint32_t x = diff(o0.as<Reg>().type(), RegType::kARM_GpW);
if (x > 1)
goto InvalidInstruction;
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (!o0.as<Reg>().isGp())
goto InvalidInstruction;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
bool hasSP = o0.as<Gp>().isSP() || o1.as<Gp>().isSP();
if (hasSP) {
// Cannot be combined with ZR.
if (!checkGpId(o0, o1, kSP))
goto InvalidPhysId;
// MOV Rd, Rm -> ADD Rd, Rn, #0.
opcode.reset(0b00010001000000000000000000000000);
opcode.addImm(x, 31);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
else {
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
// MOV Rd, Rm -> ORR Rd, <ZR>, Rm.
opcode.reset(0b00101010000000000000001111100000);
opcode.addImm(x, 31);
opcode.addReg(o1, 16);
opcode.addReg(o0, 0);
goto EmitOp;
}
}
if (isign4 == ENC_OPS2(Reg, Imm)) {
if (!o0.as<Reg>().isGp())
goto InvalidInstruction;
uint64_t immValue = o1.as<Imm>().valueAs<uint64_t>();
if (!x)
immValue &= 0xFFFFFFFFu;
// Prefer a single MOVN/MOVZ instruction over a logical instruction.
multipleOpCount = encodeMovSequence64(multipleOpData, immValue, o0.id() & 31, x);
if (multipleOpCount == 1 && !o0.as<Gp>().isSP()) {
opcode.reset(multipleOpData[0]);
goto EmitOp;
}
// Logical instructions use 13-bit immediate pattern encoded as N:ImmR:ImmS.
LogicalImm logicalImm;
if (!o0.as<Gp>().isZR()) {
if (Utils::encodeLogicalImm(immValue, x ? 64 : 32, &logicalImm)) {
if (!checkGpId(o0, kSP))
goto InvalidPhysId;
opcode.reset(0b00110010000000000000001111100000);
opcode.addImm(x, 31);
opcode.addLogicalImm(logicalImm);
opcode.addReg(o0, 0);
goto EmitOp;
}
}
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
goto EmitOp_Multiple;
}
break;
}
case InstDB::kEncodingBaseMovKNZ: {
const InstDB::EncodingData::BaseMovKNZ& opData = InstDB::EncodingData::baseMovKNZ[encodingIndex];
uint32_t x = diff(o0.as<Reg>().type(), RegType::kARM_GpW);
if (x > 1)
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
if (isign4 == ENC_OPS2(Reg, Imm)) {
uint64_t imm16 = o1.as<Imm>().valueAs<uint64_t>();
if (imm16 > 0xFFFFu)
goto InvalidImmediate;
opcode.addImm(imm16, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
if (isign4 == ENC_OPS3(Reg, Imm, Imm)) {
uint64_t imm16 = o1.as<Imm>().valueAs<uint64_t>();
uint32_t shiftType = o2.as<Imm>().predicate();
uint64_t shiftValue = o2.as<Imm>().valueAs<uint64_t>();
if (imm16 > 0xFFFFu || shiftValue > 48 || shiftType != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
// Convert shift value to 'hw' field.
uint32_t hw = uint32_t(shiftValue) >> 4;
if ((hw << 4) != uint32_t(shiftValue))
goto InvalidImmediate;
opcode.addImm(hw, 21);
opcode.addImm(imm16, 5);
opcode.addReg(o0, 0);
if (!x && hw > 1u)
goto InvalidImmediate;
goto EmitOp;
}
break;
}
// ------------------------------------------------------------------------
// [Base - Adr]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseAdr: {
const InstDB::EncodingData::BaseAdr& opData = InstDB::EncodingData::baseAdr[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Label) || isign4 == ENC_OPS2(Reg, Imm)) {
if (!o0.as<Reg>().isGpX())
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addReg(o0, 0);
offsetFormat.resetToImmValue(opData.offsetType, 4, 5, 21, 0);
if (instId == Inst::kIdAdrp)
offsetFormat._immDiscardLsb = 12;
rmRel = &o1;
goto EmitOp_Rel;
}
break;
}
// ------------------------------------------------------------------------
// [Base - Arithmetic and Logical]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseAddSub: {
const InstDB::EncodingData::BaseAddSub& opData = InstDB::EncodingData::baseAddSub[encodingIndex];
uint32_t x;
if (!checkGpType(o0, o1, kWX, &x))
goto InvalidInstruction;
if (isign4 == ENC_OPS3(Reg, Reg, Imm) || isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
opcode.reset(uint32_t(opData.immediateOp) << 24);
// ADD | SUB (immediate) - ZR is not allowed.
// ADDS|SUBS (immediate) - ZR allowed in Rd, SP allowed in Rn.
uint32_t aHiId = opcode.get() & B(29) ? kZR : kSP;
uint32_t bHiId = kSP;
if (!checkGpId(o0, aHiId) || !checkGpId(o1, bHiId))
goto InvalidPhysId;
// ADD|SUB (immediate) use 12-bit immediate optionally shifted by 'LSL #12'.
uint64_t imm = o2.as<Imm>().valueAs<uint64_t>();
uint32_t shift = 0;
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
if (o3.as<Imm>().predicate() != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
if (o3.as<Imm>().value() != 0 && o3.as<Imm>().value() != 12)
goto InvalidImmediate;
shift = uint32_t(o3.as<Imm>().value() != 0);
}
// Accept immediate value of '0x00XXX000' by setting 'shift' to 12.
if (imm > 0xFFFu) {
if (shift || (imm & ~uint64_t(0xFFFu << 12)) != 0)
goto InvalidImmediate;
shift = 1;
imm >>= 12;
}
opcode.addImm(x, 31);
opcode.addImm(shift, 22);
opcode.addImm(imm, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
if (isign4 == ENC_OPS3(Reg, Reg, Reg) || isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
if (!checkSignature(o1, o2))
goto InvalidInstruction;
uint32_t opSize = x ? 64 : 32;
uint64_t shift = 0;
uint32_t sType = uint32_t(ShiftOp::kLSL);
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
sType = o3.as<Imm>().predicate();
shift = o3.as<Imm>().valueAs<uint64_t>();
}
if (!checkGpId(o2, kZR))
goto InvalidPhysId;
// Shift operation - LSL, LSR, ASR.
if (sType <= uint32_t(ShiftOp::kASR)) {
bool hasSP = o0.as<Gp>().isSP() || o1.as<Gp>().isSP();
if (!hasSP) {
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
if (shift >= opSize)
goto InvalidImmediate;
opcode.reset(uint32_t(opData.shiftedOp) << 21);
opcode.addImm(x, 31);
opcode.addImm(sType, 22);
opcode.addReg(o2, 16);
opcode.addImm(shift, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
// SP register can only be used with LSL or Extend.
if (sType != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
sType = x ? uint32_t(ShiftOp::kUXTX) : uint32_t(ShiftOp::kUXTW);
}
// Extend operation - UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX.
opcode.reset(uint32_t(opData.extendedOp) << 21);
sType -= uint32_t(ShiftOp::kUXTB);
if (sType > 7 || shift > 4)
goto InvalidImmediate;
if (!(opcode.get() & B(29))) {
// ADD|SUB (extend) - ZR is not allowed.
if (!checkGpId(o0, o1, kSP))
goto InvalidPhysId;
}
else {
// ADDS|SUBS (extend) - ZR allowed in Rd, SP allowed in Rn.
if (!checkGpId(o0, kZR) || !checkGpId(o1, kSP))
goto InvalidPhysId;
}
opcode.addImm(x, 31);
opcode.addReg(o2, 16);
opcode.addImm(sType, 13);
opcode.addImm(shift, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseLogical: {
const InstDB::EncodingData::BaseLogical& opData = InstDB::EncodingData::baseLogical[encodingIndex];
uint32_t x;
if (!checkGpType(o0, o1, kWX, &x))
goto InvalidInstruction;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
uint32_t opSize = x ? 64 : 32;
if (isign4 == ENC_OPS3(Reg, Reg, Imm) && opData.immediateOp != 0) {
opcode.reset(uint32_t(opData.immediateOp) << 23);
// AND|ANDS|BIC|BICS|ORR|EOR (immediate) uses a LogicalImm format described by N:R:S values.
uint64_t immMask = Support::lsbMask<uint64_t>(opSize);
uint64_t immValue = o2.as<Imm>().valueAs<uint64_t>();
if (opData.negateImm)
immValue ^= immMask;
// Logical instructions use 13-bit immediate pattern encoded as N:ImmS:ImmR.
LogicalImm logicalImm;
if (!Utils::encodeLogicalImm(immValue & immMask, opSize, &logicalImm))
goto InvalidImmediate;
// AND|BIC|ORR|EOR (immediate) can have SP on destination, but ANDS|BICS (immediate) cannot.
uint32_t kOpANDS = 0x3 << 29;
bool isANDS = (opcode.get() & kOpANDS) == kOpANDS;
if (!checkGpId(o0, isANDS ? kZR : kSP) || !checkGpId(o1, kZR))
goto InvalidPhysId;
opcode.addImm(x, 31);
opcode.addLogicalImm(logicalImm);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
if (!checkSignature(o1, o2))
goto InvalidInstruction;
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (!checkGpId(o0, o1, o2, kZR))
goto InvalidPhysId;
opcode.reset(uint32_t(opData.shiftedOp) << 21);
opcode.addImm(x, 31);
opcode.addReg(o2, 16);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
if (!checkGpId(o0, o1, o2, kZR))
goto InvalidPhysId;
uint32_t shiftType = o3.as<Imm>().predicate();
uint64_t opShift = o3.as<Imm>().valueAs<uint64_t>();
if (shiftType > 0x3 || opShift >= opSize)
goto InvalidImmediate;
opcode.reset(uint32_t(opData.shiftedOp) << 21);
opcode.addImm(x, 31);
opcode.addImm(shiftType, 22);
opcode.addReg(o2, 16);
opcode.addImm(opShift, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseCmpCmn: {
const InstDB::EncodingData::BaseCmpCmn& opData = InstDB::EncodingData::baseCmpCmn[encodingIndex];
uint32_t x;
if (!checkGpType(o0, kWX, &x))
goto InvalidInstruction;
if (isign4 == ENC_OPS2(Reg, Imm)) {
// CMN|CMP (immediate) - ZR is not allowed.
if (!checkGpId(o0, kSP))
goto InvalidPhysId;
// CMN|CMP (immediate) use 12-bit immediate optionally shifted by 'LSL #12'.
const Imm& imm12 = o1.as<Imm>();
uint32_t immShift = 0;
uint64_t immValue = imm12.valueAs<uint64_t>();
if (immValue > 0xFFFu) {
if ((immValue & ~uint64_t(0xFFFu << 12)) != 0)
goto InvalidImmediate;
immShift = 1;
immValue >>= 12;
}
opcode.reset(uint32_t(opData.immediateOp) << 24);
opcode.addImm(x, 31);
opcode.addImm(immShift, 22);
opcode.addImm(immValue, 10);
opcode.addReg(o0, 5);
opcode.addReg(Gp::kIdZr, 0);
goto EmitOp;
}
if (isign4 == ENC_OPS2(Reg, Reg) || isign4 == ENC_OPS3(Reg, Reg, Imm)) {
if (!checkSignature(o0, o1))
goto InvalidInstruction;
uint32_t opSize = x ? 64 : 32;
uint32_t sType = 0;
uint64_t shift = 0;
if (isign4 == ENC_OPS3(Reg, Reg, Imm)) {
sType = o2.as<Imm>().predicate();
shift = o2.as<Imm>().valueAs<uint64_t>();
}
bool hasSP = o0.as<Gp>().isSP() || o1.as<Gp>().isSP();
// Shift operation - LSL, LSR, ASR.
if (sType <= uint32_t(ShiftOp::kASR)) {
if (!hasSP) {
if (shift >= opSize)
goto InvalidImmediate;
opcode.reset(uint32_t(opData.shiftedOp) << 21);
opcode.addImm(x, 31);
opcode.addImm(sType, 22);
opcode.addReg(o1, 16);
opcode.addImm(shift, 10);
opcode.addReg(o0, 5);
opcode.addReg(Gp::kIdZr, 0);
goto EmitOp;
}
// SP register can only be used with LSL or Extend.
if (sType != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
sType = x ? uint32_t(ShiftOp::kUXTX) : uint32_t(ShiftOp::kUXTW);
}
// Extend operation - UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX.
sType -= uint32_t(ShiftOp::kUXTB);
if (sType > 7 || shift > 4)
goto InvalidImmediate;
opcode.reset(uint32_t(opData.extendedOp) << 21);
opcode.addImm(x, 31);
opcode.addReg(o1, 16);
opcode.addImm(sType, 13);
opcode.addImm(shift, 10);
opcode.addReg(o0, 5);
opcode.addReg(Gp::kIdZr, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseMvnNeg: {
const InstDB::EncodingData::BaseMvnNeg& opData = InstDB::EncodingData::baseMvnNeg[encodingIndex];
uint32_t x;
if (!checkGpType(o0, o1, kWX, &x))
goto InvalidInstruction;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addReg(o1, 16);
opcode.addReg(o0, 0);
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
goto EmitOp;
}
if (isign4 == ENC_OPS3(Reg, Reg, Imm)) {
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
uint32_t opSize = x ? 64 : 32;
uint32_t shiftType = o2.as<Imm>().predicate();
uint64_t opShift = o2.as<Imm>().valueAs<uint64_t>();
if (shiftType > uint32_t(ShiftOp::kROR) || opShift >= opSize)
goto InvalidImmediate;
opcode.addImm(shiftType, 22);
opcode.addImm(opShift, 10);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseTst: {
const InstDB::EncodingData::BaseTst& opData = InstDB::EncodingData::baseTst[encodingIndex];
uint32_t x;
if (!checkGpType(o0, kWX, &x))
goto InvalidInstruction;
uint32_t opSize = x ? 64 : 32;
if (isign4 == ENC_OPS2(Reg, Imm) && opData.immediateOp != 0) {
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
// TST (immediate) uses a LogicalImm format described by N:R:S values.
uint64_t immMask = Support::lsbMask<uint64_t>(opSize);
uint64_t immValue = o1.as<Imm>().valueAs<uint64_t>();
// Logical instructions use 13-bit immediate pattern encoded as N:ImmS:ImmR.
LogicalImm logicalImm;
if (!Utils::encodeLogicalImm(immValue & immMask, opSize, &logicalImm))
goto InvalidImmediate;
opcode.reset(uint32_t(opData.immediateOp) << 22);
opcode.addLogicalImm(logicalImm);
opcode.addImm(x, 31);
opcode.addReg(o0, 5);
opcode.addReg(Gp::kIdZr, 0);
goto EmitOp;
}
opcode.reset(uint32_t(opData.shiftedOp) << 21);
opcode.addImm(x, 31);
opcode.addReg(o1, 16);
opcode.addReg(o0, 5);
opcode.addReg(Gp::kIdZr, 0);
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
goto EmitOp;
}
if (isign4 == ENC_OPS3(Reg, Reg, Imm)) {
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
uint32_t shiftType = o2.as<Imm>().predicate();
uint64_t opShift = o2.as<Imm>().valueAs<uint64_t>();
if (shiftType > 0x3 || opShift >= opSize)
goto InvalidImmediate;
opcode.addImm(shiftType, 22);
opcode.addImm(opShift, 10);
goto EmitOp;
}
break;
}
// ------------------------------------------------------------------------
// [Base - Bit Manipulation]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseBfc: {
const InstDB::EncodingData::BaseBfc& opData = InstDB::EncodingData::baseBfc[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Imm, Imm)) {
uint32_t x;
if (!checkGpType(o0, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkGpId(o0))
goto InvalidPhysId;
uint64_t lsb = o1.as<Imm>().valueAs<uint64_t>();
uint64_t width = o2.as<Imm>().valueAs<uint64_t>();
uint32_t opSize = x ? 64 : 32;
if (lsb >= opSize || width == 0 || width > opSize)
goto InvalidImmediate;
uint32_t lsb32 = Support::neg(uint32_t(lsb)) & (opSize - 1);
uint32_t width32 = uint32_t(width) - 1;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addImm(x, 22);
opcode.addImm(lsb32, 16);
opcode.addImm(width32, 10);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseBfi: {
const InstDB::EncodingData::BaseBfi& opData = InstDB::EncodingData::baseBfi[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
uint32_t x;
if (!checkGpType(o0, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, o1))
goto InvalidPhysId;
uint64_t lsb = o2.as<Imm>().valueAs<uint64_t>();
uint64_t width = o3.as<Imm>().valueAs<uint64_t>();
uint32_t opSize = x ? 64 : 32;
if (lsb >= opSize || width == 0 || width > opSize)
goto InvalidImmediate;
uint32_t lImm = Support::neg(uint32_t(lsb)) & (opSize - 1);
uint32_t wImm = uint32_t(width) - 1;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addImm(x, 22);
opcode.addImm(lImm, 16);
opcode.addImm(wImm, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseBfm: {
const InstDB::EncodingData::BaseBfm& opData = InstDB::EncodingData::baseBfm[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
uint32_t x;
if (!checkGpType(o0, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, o1))
goto InvalidPhysId;
uint64_t immR = o2.as<Imm>().valueAs<uint64_t>();
uint64_t immS = o3.as<Imm>().valueAs<uint64_t>();
uint32_t opSize = x ? 64 : 32;
if ((immR | immS) >= opSize)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addImm(x, 22);
opcode.addImm(immR, 16);
opcode.addImm(immS, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseBfx: {
const InstDB::EncodingData::BaseBfx& opData = InstDB::EncodingData::baseBfx[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
uint32_t x;
if (!checkGpType(o0, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, o1))
goto InvalidPhysId;
uint64_t lsb = o2.as<Imm>().valueAs<uint64_t>();
uint64_t width = o3.as<Imm>().valueAs<uint64_t>();
uint32_t opSize = x ? 64 : 32;
if (lsb >= opSize || width == 0 || width > opSize)
goto InvalidImmediate;
uint32_t lsb32 = uint32_t(lsb);
uint32_t width32 = lsb32 + uint32_t(width) - 1u;
if (width32 >= opSize)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addImm(x, 22);
opcode.addImm(lsb32, 16);
opcode.addImm(width32, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseExtend: {
const InstDB::EncodingData::BaseExtend& opData = InstDB::EncodingData::baseExtend[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
uint32_t x;
if (!checkGpType(o0, opData.rType, &x))
goto InvalidInstruction;
if (!o1.as<Reg>().isGpW())
goto InvalidInstruction;
if (!checkGpId(o0, o1))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, 31);
opcode.addImm(x, 22);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseExtract: {
const InstDB::EncodingData::BaseExtract& opData = InstDB::EncodingData::baseExtract[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
uint32_t x;
if (!checkGpType(o0, kWX, &x))
goto InvalidInstruction;
if (!checkSignature(o0, o1, o2))
goto InvalidInstruction;
if (!checkGpId(o0, o1, o2))
goto InvalidPhysId;
uint64_t lsb = o3.as<Imm>().valueAs<uint64_t>();
uint32_t opSize = x ? 64 : 32;
if (lsb >= opSize)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addImm(x, 22);
opcode.addReg(o2, 16);
opcode.addImm(lsb, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseRev: {
if (isign4 == ENC_OPS2(Reg, Reg)) {
uint32_t x;
if (!checkGpType(o0, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, o1))
goto InvalidPhysId;
opcode.reset(0b01011010110000000000100000000000);
opcode.addImm(x, 31);
opcode.addImm(x, 10);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseShift: {
const InstDB::EncodingData::BaseShift& opData = InstDB::EncodingData::baseShift[encodingIndex];
uint32_t x;
if (!checkGpType(o0, kWX, &x))
goto InvalidInstruction;
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (!checkSignature(o0, o1, o2))
goto InvalidInstruction;
if (!checkGpId(o0, o1, o2, kZR))
goto InvalidPhysId;
opcode.reset(opData.registerOp());
opcode.addImm(x, 31);
opcode.addReg(o2, 16);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
if (isign4 == ENC_OPS3(Reg, Reg, Imm) && opData.immediateOp()) {
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
uint64_t immR = o2.as<Imm>().valueAs<uint64_t>();
uint32_t opSize = x ? 64 : 32;
if (immR >= opSize)
goto InvalidImmediate;
opcode.reset(opData.immediateOp());
opcode.addImm(x, 31);
opcode.addImm(x, 22);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
if (opcode.get() & B(10)) {
// ASR and LSR (immediate) has the same logic.
opcode.addImm(x, 15);
opcode.addImm(immR, 16);
goto EmitOp;
}
if (opData.ror == 0) {
// LSL (immediate) is an alias to UBFM
uint32_t ubfmImmR = Support::neg(uint32_t(immR)) & (opSize - 1);
uint32_t ubfmImmS = opSize - 1 - uint32_t(immR);
opcode.addImm(ubfmImmR, 16);
opcode.addImm(ubfmImmS, 10);
goto EmitOp;
}
else {
// ROR (immediate) is an alias to EXTR.
opcode.addImm(immR, 10);
opcode.addReg(o1, 16);
goto EmitOp;
}
}
break;
}
// ------------------------------------------------------------------------
// [Base - Conditionals]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseCCmp: {
const InstDB::EncodingData::BaseCCmp& opData = InstDB::EncodingData::baseCCmp[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm) || isign4 == ENC_OPS4(Reg, Imm, Imm, Imm)) {
uint32_t x;
if (!checkGpType(o0, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
uint64_t nzcv = o2.as<Imm>().valueAs<uint64_t>();
uint64_t cond = o3.as<Imm>().valueAs<uint64_t>();
if ((nzcv | cond) > 0xFu)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addImm(condCodeToOpcodeCond(uint32_t(cond)), 12);
opcode.addImm(nzcv, 0);
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
// CCMN|CCMP (register) form.
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o1, kZR))
goto InvalidPhysId;
opcode.addReg(o1, 16);
opcode.addReg(o0, 5);
goto EmitOp;
}
else {
// CCMN|CCMP (immediate) form.
uint64_t imm5 = o1.as<Imm>().valueAs<uint64_t>();
if (imm5 > 0x1F)
goto InvalidImmediate;
opcode.addImm(1, 11);
opcode.addImm(imm5, 16);
opcode.addReg(o0, 5);
goto EmitOp;
}
}
break;
}
case InstDB::kEncodingBaseCInc: {
const InstDB::EncodingData::BaseCInc& opData = InstDB::EncodingData::baseCInc[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Imm)) {
uint32_t x;
if (!checkGpType(o0, o1, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
uint64_t cond = o2.as<Imm>().valueAs<uint64_t>();
if (cond - 2u > 0xEu)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addReg(o1, 16);
opcode.addImm(condCodeToOpcodeCond(uint32_t(cond)) ^ 1u, 12);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseCSel: {
const InstDB::EncodingData::BaseCSel& opData = InstDB::EncodingData::baseCSel[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
uint32_t x;
if (!checkGpType(o0, o1, o2, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkGpId(o0, o1, o2, kZR))
goto InvalidPhysId;
uint64_t cond = o3.as<Imm>().valueAs<uint64_t>();
if (cond > 0xFu)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addReg(o2, 16);
opcode.addImm(condCodeToOpcodeCond(uint32_t(cond)), 12);
opcode.addReg(o1, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseCSet: {
const InstDB::EncodingData::BaseCSet& opData = InstDB::EncodingData::baseCSet[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Imm)) {
uint32_t x;
if (!checkGpType(o0, InstDB::kWX, &x))
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
uint64_t cond = o1.as<Imm>().valueAs<uint64_t>();
if (cond - 2u >= 0xEu)
goto InvalidImmediate;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addImm(condCodeToOpcodeCond(uint32_t(cond)) ^ 1u, 12);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
// ------------------------------------------------------------------------
// [Base - Special]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseAtDcIcTlbi: {
const InstDB::EncodingData::BaseAtDcIcTlbi& opData = InstDB::EncodingData::baseAtDcIcTlbi[encodingIndex];
if (isign4 == ENC_OPS1(Imm) || isign4 == ENC_OPS2(Imm, Reg)) {
if (opData.mandatoryReg && isign4 != ENC_OPS2(Imm, Reg))
goto InvalidInstruction;
if (o0.as<Imm>().valueAs<uint64_t>() > 0x7FFFu)
goto InvalidImmediate;
uint32_t imm = o0.as<Imm>().valueAs<uint32_t>();
if ((imm & opData.immVerifyMask) != opData.immVerifyData)
goto InvalidImmediate;
uint32_t rt = 31;
if (o1.isReg()) {
if (!o1.as<Reg>().isGpX())
goto InvalidInstruction;
if (!checkGpId(o1, kZR))
goto InvalidPhysId;
rt = o1.id() & 31;
}
opcode.reset(0b11010101000010000000000000000000);
opcode.addImm(imm, 5);
opcode.addReg(rt, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseMrs: {
if (isign4 == ENC_OPS2(Reg, Imm)) {
if (!o0.as<Reg>().isGpX())
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
if (o1.as<Imm>().valueAs<uint64_t>() > 0xFFFFu)
goto InvalidImmediate;
uint32_t imm = o1.as<Imm>().valueAs<uint32_t>();
if (!(imm & B(15)))
goto InvalidImmediate;
opcode.reset(0b11010101001100000000000000000000);
opcode.addImm(imm, 5);
opcode.addReg(o0, 0);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseMsr: {
if (isign4 == ENC_OPS2(Imm, Reg)) {
if (!o1.as<Reg>().isGpX())
goto InvalidInstruction;
if (o0.as<Imm>().valueAs<uint64_t>() > 0xFFFFu)
goto InvalidImmediate;
uint32_t imm = o0.as<Imm>().valueAs<uint32_t>();
if (!(imm & B(15)))
goto InvalidImmediate;
if (!checkGpId(o1, kZR))
goto InvalidPhysId;
opcode.reset(0b11010101000100000000000000000000);
opcode.addImm(imm, 5);
opcode.addReg(o1, 0);
goto EmitOp;
}
if (isign4 == ENC_OPS2(Imm, Imm)) {
if (o0.as<Imm>().valueAs<uint64_t>() > 0x1Fu)
goto InvalidImmediate;
if (o1.as<Imm>().valueAs<uint64_t>() > 0xFu)
goto InvalidImmediate;
uint32_t op = o0.as<Imm>().valueAs<uint32_t>();
uint32_t cRm = o1.as<Imm>().valueAs<uint32_t>();
uint32_t op1 = uint32_t(op) >> 3;
uint32_t op2 = uint32_t(op) & 0x7u;
opcode.reset(0b11010101000000000100000000011111);
opcode.addImm(op1, 16);
opcode.addImm(cRm, 8);
opcode.addImm(op2, 5);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseSys: {
if (isign4 == ENC_OPS4(Imm, Imm, Imm, Imm)) {
if (o0.as<Imm>().valueAs<uint64_t>() > 0x7u ||
o1.as<Imm>().valueAs<uint64_t>() > 0xFu ||
o2.as<Imm>().valueAs<uint64_t>() > 0xFu ||
o3.as<Imm>().valueAs<uint64_t>() > 0x7u)
goto InvalidImmediate;
uint32_t op1 = o0.as<Imm>().valueAs<uint32_t>();
uint32_t cRn = o1.as<Imm>().valueAs<uint32_t>();
uint32_t cRm = o2.as<Imm>().valueAs<uint32_t>();
uint32_t op2 = o3.as<Imm>().valueAs<uint32_t>();
uint32_t rt = 31;
const Operand_& o4 = opExt[EmitterUtils::kOp4];
if (o4.isReg()) {
if (!o4.as<Reg>().isGpX())
goto InvalidInstruction;
if (!checkGpId(o4, kZR))
goto InvalidPhysId;
rt = o4.id() & 31;
}
else if (!o4.isNone()) {
goto InvalidInstruction;
}
opcode.reset(0b11010101000010000000000000000000);
opcode.addImm(op1, 16);
opcode.addImm(cRn, 12);
opcode.addImm(cRm, 8);
opcode.addImm(op2, 5);
opcode.addImm(rt, 0);
goto EmitOp;
}
break;
}
// ------------------------------------------------------------------------
// [Base - Branch]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseBranchReg: {
const InstDB::EncodingData::BaseBranchReg& opData = InstDB::EncodingData::baseBranchReg[encodingIndex];
if (isign4 == ENC_OPS1(Reg)) {
if (!o0.as<Reg>().isGpX())
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode);
opcode.addReg(o0, 5);
goto EmitOp;
}
break;
}
case InstDB::kEncodingBaseBranchRel: {
const InstDB::EncodingData::BaseBranchRel& opData = InstDB::EncodingData::baseBranchRel[encodingIndex];
if (isign4 == ENC_OPS1(Label) || isign4 == ENC_OPS1(Imm)) {
opcode.reset(opData.opcode);
rmRel = &o0;
if (instCC != CondCode::kAL) {
opcode |= B(30);
opcode.addImm(condCodeToOpcodeCond(uint32_t(instCC)), 0);
offsetFormat.resetToImmValue(OffsetType::kSignedOffset, 4, 5, 19, 2);
goto EmitOp_Rel;
}
offsetFormat.resetToImmValue(OffsetType::kSignedOffset, 4, 0, 26, 2);
goto EmitOp_Rel;
}
break;
}
case InstDB::kEncodingBaseBranchCmp: {
const InstDB::EncodingData::BaseBranchCmp& opData = InstDB::EncodingData::baseBranchCmp[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Label) || isign4 == ENC_OPS2(Reg, Imm)) {
uint32_t x;
if (!checkGpType(o0, kWX, &x))
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode);
opcode.addImm(x, 31);
opcode.addReg(o0, 0);
offsetFormat.resetToImmValue(OffsetType::kSignedOffset, 4, 5, 19, 2);
rmRel = &o1;
goto EmitOp_Rel;
}
break;
}
case InstDB::kEncodingBaseBranchTst: {
const InstDB::EncodingData::BaseBranchTst& opData = InstDB::EncodingData::baseBranchTst[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Imm, Label) || isign4 == ENC_OPS3(Reg, Imm, Imm)) {
uint32_t x;
if (!checkGpType(o0, kWX, &x))
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
uint64_t imm = o1.as<Imm>().valueAs<uint64_t>();
opcode.reset(opData.opcode);
if (imm >= 32) {
if (!x)
goto InvalidImmediate;
opcode.addImm(x, 31);
imm &= 0x1F;
}
opcode.addReg(o0, 0);
opcode.addImm(imm, 19);
offsetFormat.resetToImmValue(OffsetType::kSignedOffset, 4, 5, 14, 2);
rmRel = &o2;
goto EmitOp_Rel;
}
break;
}
// ------------------------------------------------------------------------
// [Base - Load / Store]
// ------------------------------------------------------------------------
case InstDB::kEncodingBaseLdSt: {
const InstDB::EncodingData::BaseLdSt& opData = InstDB::EncodingData::baseLdSt[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Mem)) {
const Mem& m = o1.as<Mem>();
rmRel = &m;
uint32_t x;
if (!checkGpType(o0, opData.rType, &x))
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
// Instructions that work with either word or dword have the unsigned
// offset shift set to 2 (word), so we set it to 3 (dword) if this is
// X version of the instruction.
uint32_t xShiftMask = uint32_t(opData.uOffsetShift == 2);
uint32_t immShift = uint32_t(opData.uOffsetShift) + (x & xShiftMask);
if (!armCheckMemBaseIndexRel(m))
goto InvalidAddress;
int64_t offset = m.offset();
if (m.hasBaseReg()) {
// [Base {Offset | Index}]
if (m.hasIndex()) {
uint32_t opt = armShiftOpToLdStOptMap[m.predicate()];
if (opt == 0xFF)
goto InvalidAddress;
uint32_t shift = m.shift();
uint32_t s = shift != 0;
if (s && shift != immShift)
goto InvalidAddressScale;
opcode.reset(uint32_t(opData.registerOp) << 21);
opcode.xorImm(x, opData.xOffset);
opcode.addImm(opt, 13);
opcode.addImm(s, 12);
opcode |= B(11);
opcode.addReg(o0, 0);
goto EmitOp_MemBaseIndex_Rn5_Rm16;
}
// Makes it easier to work with the offset especially on 32-bit arch.
if (!Support::isInt32(offset))
goto InvalidDisplacement;
int32_t offset32 = int32_t(offset);
if (m.isPreOrPost()) {
if (!Support::isInt9(offset32))
goto InvalidDisplacement;
opcode.reset(uint32_t(opData.prePostOp) << 21);
opcode.xorImm(x, opData.xOffset);
opcode.addImm(offset32 & 0x1FF, 12);
opcode.addImm(m.isPreIndex(), 11);
opcode |= B(10);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
else {
uint32_t imm12 = uint32_t(offset32) >> immShift;
// Alternative form of LDUR/STUR and related instructions as described by AArch64 reference manual:
//
// If this instruction is not encodable with scaled unsigned offset, try unscaled signed offset.
if (!Support::isUInt12(imm12) || (imm12 << immShift) != uint32_t(offset32)) {
instId = opData.uAltInstId;
instInfo = &InstDB::_instInfoTable[instId];
encodingIndex = instInfo->_encodingDataIndex;
goto Case_BaseLdurStur;
}
opcode.reset(uint32_t(opData.uOffsetOp) << 22);
opcode.xorImm(x, opData.xOffset);
opcode.addImm(imm12, 10);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
}
else {
if (!opData.literalOp)
goto InvalidAddress;
opcode.reset(uint32_t(opData.literalOp) << 24);
opcode.xorImm(x, opData.xOffset);
opcode.addReg(o0, 0);
offsetFormat.resetToImmValue(OffsetType::kSignedOffset, 4, 5, 19, 2);
goto EmitOp_Rel;
}
}
break;
}
case InstDB::kEncodingBaseLdpStp: {
const InstDB::EncodingData::BaseLdpStp& opData = InstDB::EncodingData::baseLdpStp[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Mem)) {
const Mem& m = o2.as<Mem>();
rmRel = &m;
uint32_t x;
if (!checkGpType(o0, o1, opData.rType, &x))
goto InvalidInstruction;
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
if (m.baseType() != RegType::kARM_GpX || m.hasIndex())
goto InvalidAddress;
if (m.isOffset64Bit())
goto InvalidDisplacement;
uint32_t offsetShift = opData.offsetShift + x;
int32_t offset32 = m.offsetLo32() >> offsetShift;
// Make sure we didn't lose bits by applying the mandatory offset shift.
if (uint32_t(offset32) << offsetShift != uint32_t(m.offsetLo32()))
goto InvalidDisplacement;
// Offset is encoded as 7-bit immediate.
if (!Support::isInt7(offset32))
goto InvalidDisplacement;
if (m.isPreOrPost() && offset32 != 0) {
if (!opData.prePostOp)
goto InvalidAddress;
opcode.reset(uint32_t(opData.prePostOp) << 22);
opcode.addImm(m.isPreIndex(), 24);
}
else {
opcode.reset(uint32_t(opData.offsetOp) << 22);
}
opcode.addImm(x, opData.xOffset);
opcode.addImm(offset32 & 0x7F, 15);
opcode.addReg(o1, 10);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
break;
}
case InstDB::kEncodingBaseStx: {
const InstDB::EncodingData::BaseStx& opData = InstDB::EncodingData::baseStx[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Mem)) {
const Mem& m = o2.as<Mem>();
uint32_t x;
if (!o0.as<Reg>().isGpW() || !checkGpType(o1, opData.rType, &x))
goto InvalidInstruction;
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, opData.xOffset);
opcode.addReg(o0, 16);
opcode.addReg(o1, 0);
rmRel = &m;
goto EmitOp_MemBaseNoImm_Rn5;
}
break;
}
case InstDB::kEncodingBaseLdxp: {
const InstDB::EncodingData::BaseLdxp& opData = InstDB::EncodingData::baseLdxp[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Mem)) {
const Mem& m = o2.as<Mem>();
uint32_t x;
if (!checkGpType(o0, opData.rType, &x) || !checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, o1, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, opData.xOffset);
opcode.addReg(o1, 10);
opcode.addReg(o0, 0);
rmRel = &m;
goto EmitOp_MemBaseNoImm_Rn5;
}
break;
}
case InstDB::kEncodingBaseStxp: {
const InstDB::EncodingData::BaseStxp& opData = InstDB::EncodingData::baseStxp[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Mem)) {
const Mem& m = o3.as<Mem>();
uint32_t x;
if (!o0.as<Reg>().isGpW() || !checkGpType(o1, opData.rType, &x) || !checkSignature(o1, o2))
goto InvalidInstruction;
if (!checkGpId(o0, o1, o2, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, opData.xOffset);
opcode.addReg(o0, 16);
opcode.addReg(o2, 10);
opcode.addReg(o1, 0);
rmRel = &m;
goto EmitOp_MemBaseNoImm_Rn5;
}
break;
}
case InstDB::kEncodingBaseRM_NoImm: {
const InstDB::EncodingData::BaseRM_NoImm& opData = InstDB::EncodingData::baseRM_NoImm[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Mem)) {
const Mem& m = o1.as<Mem>();
rmRel = &m;
uint32_t x;
if (!checkGpType(o0, opData.rType, &x))
goto InvalidInstruction;
if (!checkGpId(o0, opData.rHiId))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, opData.xOffset);
opcode.addReg(o0, 0);
goto EmitOp_MemBaseNoImm_Rn5;
}
break;
}
case InstDB::kEncodingBaseRM_SImm9: {
Case_BaseLdurStur:
const InstDB::EncodingData::BaseRM_SImm9& opData = InstDB::EncodingData::baseRM_SImm9[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Mem)) {
const Mem& m = o1.as<Mem>();
rmRel = &m;
uint32_t x;
if (!checkGpType(o0, opData.rType, &x))
goto InvalidInstruction;
if (!checkGpId(o0, opData.rHiId))
goto InvalidPhysId;
if (m.hasBaseReg() && !m.hasIndex()) {
if (m.isOffset64Bit())
goto InvalidDisplacement;
int32_t offset32 = m.offsetLo32() >> opData.immShift;
if (Support::shl(offset32, opData.immShift) != m.offsetLo32())
goto InvalidDisplacement;
if (!Support::isInt9(offset32))
goto InvalidDisplacement;
if (m.isFixedOffset()) {
opcode.reset(opData.offsetOp());
}
else {
if (!opData.prePostOp())
goto InvalidInstruction;
opcode.reset(opData.prePostOp());
opcode.xorImm(m.isPreIndex(), 11);
}
opcode.xorImm(x, opData.xOffset);
opcode.addImm(offset32 & 0x1FF, 12);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
goto InvalidAddress;
}
break;
}
case InstDB::kEncodingBaseRM_SImm10: {
const InstDB::EncodingData::BaseRM_SImm10& opData = InstDB::EncodingData::baseRM_SImm10[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Mem)) {
const Mem& m = o1.as<Mem>();
rmRel = &m;
uint32_t x;
if (!checkGpType(o0, opData.rType, &x))
goto InvalidInstruction;
if (!checkGpId(o0, opData.rHiId))
goto InvalidPhysId;
if (m.hasBaseReg() && !m.hasIndex()) {
if (m.isOffset64Bit())
goto InvalidDisplacement;
int32_t offset32 = m.offsetLo32() >> opData.immShift;
if (Support::shl(offset32, opData.immShift) != m.offsetLo32())
goto InvalidDisplacement;
if (!Support::isInt10(offset32))
goto InvalidDisplacement;
if (m.isPostIndex())
goto InvalidAddress;
// Offset has 10 bits, sign is stored in the 10th bit.
offset32 &= 0x3FF;
opcode.reset(opData.opcode());
opcode.xorImm(m.isPreIndex(), 11);
opcode.xorImm(x, opData.xOffset);
opcode.addImm(offset32 >> 9, 22);
opcode.addImm(offset32, 12);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
goto InvalidAddress;
}
break;
}
case InstDB::kEncodingBaseAtomicOp: {
const InstDB::EncodingData::BaseAtomicOp& opData = InstDB::EncodingData::baseAtomicOp[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Mem)) {
const Mem& m = o2.as<Mem>();
uint32_t x;
if (!checkGpType(o0, opData.rType, &x) || !checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkGpId(o0, o1, kZR))
goto InvalidInstruction;
opcode.reset(opData.opcode());
opcode.addImm(x, opData.xOffset);
opcode.addReg(o0, 16);
opcode.addReg(o1, 0);
rmRel = &m;
goto EmitOp_MemBaseNoImm_Rn5;
}
break;
}
case InstDB::kEncodingBaseAtomicSt: {
const InstDB::EncodingData::BaseAtomicSt& opData = InstDB::EncodingData::baseAtomicSt[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Mem)) {
const Mem& m = o1.as<Mem>();
uint32_t x;
if (!checkGpType(o0, opData.rType, &x))
goto InvalidInstruction;
if (!checkGpId(o0, kZR))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, opData.xOffset);
opcode.addReg(o0, 16);
opcode.addReg(Gp::kIdZr, 0);
rmRel = &m;
goto EmitOp_MemBaseNoImm_Rn5;
}
break;
}
case InstDB::kEncodingBaseAtomicCasp: {
const InstDB::EncodingData::BaseAtomicCasp& opData = InstDB::EncodingData::baseAtomicCasp[encodingIndex];
const Operand_& o4 = opExt[EmitterUtils::kOp4];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Reg) && o4.isMem()) {
const Mem& m = o4.as<Mem>();
uint32_t x;
if (!checkGpType(o0, opData.rType, &x))
goto InvalidInstruction;
if (!checkSignature(o0, o1, o2, o3))
goto InvalidInstruction;
if (!checkEven(o0, o2) || !checkGpId(o0, o2, kZR))
goto InvalidPhysId;
if (!checkConsecutive(o0, o1) || !checkConsecutive(o2, o3))
goto InvalidPhysId;
opcode.reset(opData.opcode());
opcode.addImm(x, opData.xOffset);
opcode.addReg(o0, 16);
opcode.addReg(o2, 0);
rmRel = &m;
goto EmitOp_MemBaseNoImm_Rn5;
}
break;
}
// ------------------------------------------------------------------------
// [FSimd - Instructions]
// ------------------------------------------------------------------------
case InstDB::kEncodingFSimdSV: {
const InstDB::EncodingData::FSimdSV& opData = InstDB::EncodingData::fSimdSV[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
uint32_t q = diff(o1.as<Reg>().type(), RegType::kARM_VecD);
if (q > 1)
goto InvalidInstruction;
if (o0.as<Vec>().hasElementType())
goto InvalidInstruction;
// This operation is only defined for:
// hD, vS.{4|8}h (16-bit)
// sD, vS.4s (32-bit)
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
uint32_t elementSz = o1.as<Vec>().elementType() - Vec::kElementTypeH;
// Size greater than 1 means 64-bit elements, not supported.
if ((sz | elementSz) > 1 || sz != elementSz)
goto InvalidInstruction;
// Size 1 (32-bit float) requires at least 4 elements.
if (sz && !q)
goto InvalidInstruction;
// Bit flipping according to sz.
static const uint32_t szBits[] = { B(29), 0 };
opcode.reset(opData.opcode << 10);
opcode ^= szBits[sz];
opcode.addImm(q, 30);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingFSimdVV: {
const InstDB::EncodingData::FSimdVV& opData = InstDB::EncodingData::fSimdVV[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
if (!pickFpOpcode(o0.as<Vec>(), opData.scalarOp(), opData.scalarHf(), opData.vectorOp(), opData.vectorHf(), &opcode))
goto InvalidInstruction;
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingFSimdVVV: {
const InstDB::EncodingData::FSimdVVV& opData = InstDB::EncodingData::fSimdVVV[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
if (!pickFpOpcode(o0.as<Vec>(), opData.scalarOp(), opData.scalarHf(), opData.vectorOp(), opData.vectorHf(), &opcode))
goto InvalidInstruction;
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingFSimdVVVe: {
const InstDB::EncodingData::FSimdVVVe& opData = InstDB::EncodingData::fSimdVVVe[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (!o2.as<Vec>().hasElementIndex()) {
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
if (!pickFpOpcode(o0.as<Vec>(), opData.scalarOp(), opData.scalarHf(), opData.vectorOp(), opData.vectorHf(), &opcode))
goto InvalidInstruction;
goto EmitOp_Rd0_Rn5_Rm16;
}
else {
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
uint32_t q = o1.as<Reg>().isVecQ();
uint32_t sz;
if (!pickFpOpcode(o0.as<Vec>(), opData.elementScalarOp(), InstDB::kHF_D, opData.elementVectorOp(), InstDB::kHF_D, &opcode, &sz))
goto InvalidInstruction;
if (sz == 0 && o2.as<Reg>().id() > 15)
goto InvalidPhysId;
uint32_t elementIndex = o2.as<Vec>().elementIndex();
if (elementIndex > (7u >> sz))
goto InvalidElementIndex;
uint32_t hlm = elementIndex << sz;
opcode.addImm(q, 30);
opcode.addImm(hlm & 3u, 20);
opcode.addImm(hlm >> 2, 11);
goto EmitOp_Rd0_Rn5_Rm16;
}
}
break;
}
case InstDB::kEncodingFSimdVVVV: {
const InstDB::EncodingData::FSimdVVVV& opData = InstDB::EncodingData::fSimdVVVV[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Reg)) {
if (!matchSignature(o0, o1, o2, o3, instFlags))
goto InvalidInstruction;
if (!pickFpOpcode(o0.as<Vec>(), opData.scalarOp(), opData.scalarHf(), opData.vectorOp(), opData.vectorHf(), &opcode))
goto InvalidInstruction;
goto EmitOp_Rd0_Rn5_Rm16_Ra10;
}
break;
}
case InstDB::kEncodingSimdFcadd: {
const InstDB::EncodingData::SimdFcadd& opData = InstDB::EncodingData::simdFcadd[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
if (!checkSignature(o0, o1, o2) || o0.as<Vec>().hasElementIndex())
goto InvalidInstruction;
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
if (q > 1)
goto InvalidInstruction;
uint32_t sz = o0.as<Vec>().elementType() - Vec::kElementTypeB;
if (sz == 0 || sz > 3)
goto InvalidInstruction;
// 0 <- 90deg.
// 1 <- 270deg.
uint32_t rot = 0;
if (o3.as<Imm>().value() == 270)
rot = 1;
else if (o3.as<Imm>().value() != 90)
goto InvalidImmediate;
opcode.reset(opData.opcode());
opcode.addImm(q, 30);
opcode.addImm(sz, 22);
opcode.addImm(rot, 12);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingSimdFccmpFccmpe: {
const InstDB::EncodingData::SimdFccmpFccmpe& opData = InstDB::EncodingData::simdFccmpFccmpe[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Imm, Imm)) {
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
if (sz > 2)
goto InvalidInstruction;
if (!checkSignature(o0, o1) || o0.as<Vec>().hasElementType())
goto InvalidInstruction;
uint64_t nzcv = o2.as<Imm>().valueAs<uint64_t>();
uint64_t cond = o3.as<Imm>().valueAs<uint64_t>();
if ((nzcv | cond) > 0xFu)
goto InvalidImmediate;
uint32_t type = (sz - 1) & 0x3u;
opcode.reset(opData.opcode());
opcode.addImm(type, 22);
opcode.addImm(condCodeToOpcodeCond(uint32_t(cond)), 12);
opcode.addImm(nzcv, 0);
goto EmitOp_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingSimdFcm: {
const InstDB::EncodingData::SimdFcm& opData = InstDB::EncodingData::simdFcm[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg) && opData.hasRegisterOp()) {
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
if (!pickFpOpcode(o0.as<Vec>(), opData.registerScalarOp(), opData.registerScalarHf(), opData.registerVectorOp(), opData.registerVectorHf(), &opcode))
goto InvalidInstruction;
goto EmitOp_Rd0_Rn5_Rm16;
}
if (isign4 == ENC_OPS3(Reg, Reg, Imm) && opData.hasZeroOp()) {
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (o2.as<Imm>().value() != 0 || o2.as<Imm>().predicate() != 0)
goto InvalidImmediate;
if (!pickFpOpcode(o0.as<Vec>(), opData.zeroScalarOp(), InstDB::kHF_B, opData.zeroVectorOp(), InstDB::kHF_B, &opcode))
goto InvalidInstruction;
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingSimdFcmla: {
const InstDB::EncodingData::SimdFcmla& opData = InstDB::EncodingData::simdFcmla[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
if (!checkSignature(o0, o1))
goto InvalidInstruction;
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
if (q > 1)
goto InvalidInstruction;
uint32_t sz = o0.as<Vec>().elementType() - Vec::kElementTypeB;
if (sz == 0 || sz > 3)
goto InvalidInstruction;
uint32_t rot = 0;
switch (o3.as<Imm>().value()) {
case 0 : rot = 0; break;
case 90 : rot = 1; break;
case 180: rot = 2; break;
case 270: rot = 3; break;
default:
goto InvalidImmediate;
}
if (!o2.as<Vec>().hasElementIndex()) {
if (!checkSignature(o1, o2))
goto InvalidInstruction;
opcode.reset(opData.regularOp());
opcode.addImm(q, 30);
opcode.addImm(sz, 22);
opcode.addImm(rot, 11);
goto EmitOp_Rd0_Rn5_Rm16;
}
else {
if (o0.as<Vec>().elementType() != o2.as<Vec>().elementType())
goto InvalidInstruction;
// Only allowed vectors are: 4H, 8H, and 4S.
if (!(sz == 1 || (q == 1 && sz == 2)))
goto InvalidInstruction;
// Element index ranges:
// 4H - ElementIndex[0..1] (index 2..3 is UNDEFINED).
// 8H - ElementIndex[0..3].
// 4S - ElementIndex[0..1].
uint32_t elementIndex = o2.as<Vec>().elementIndex();
uint32_t hlFieldShift = sz == 1 ? 0u : 1u;
uint32_t maxElementIndex = q == 1 && sz == 1 ? 3u : 1u;
if (elementIndex > maxElementIndex)
goto InvalidElementIndex;
uint32_t hl = elementIndex << hlFieldShift;
opcode.reset(opData.elementOp());
opcode.addImm(q, 30);
opcode.addImm(sz, 22);
opcode.addImm(hl & 1u, 21); // L field.
opcode.addImm(hl >> 1, 11); // H field.
opcode.addImm(rot, 13);
goto EmitOp_Rd0_Rn5_Rm16;
}
}
break;
}
case InstDB::kEncodingSimdFcmpFcmpe: {
const InstDB::EncodingData::SimdFcmpFcmpe& opData = InstDB::EncodingData::simdFcmpFcmpe[encodingIndex];
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
uint32_t type = (sz - 1) & 0x3u;
if (sz > 2)
goto InvalidInstruction;
if (o0.as<Vec>().hasElementType())
goto InvalidInstruction;
opcode.reset(opData.opcode());
opcode.addImm(type, 22);
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (!checkSignature(o0, o1))
goto InvalidInstruction;
goto EmitOp_Rn5_Rm16;
}
if (isign4 == ENC_OPS2(Reg, Imm)) {
if (o1.as<Imm>().value() != 0 || o1.as<Imm>().predicate() != 0)
goto InvalidInstruction;
opcode |= B(3);
goto EmitOp_Rn5;
}
break;
}
case InstDB::kEncodingSimdFcsel: {
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
if (!checkSignature(o0, o1, o2))
goto InvalidInstruction;
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
uint32_t type = (sz - 1) & 0x3u;
if (sz > 2 || o0.as<Vec>().hasElementType())
goto InvalidInstruction;
uint64_t cond = o3.as<Imm>().valueAs<uint64_t>();
if (cond > 0xFu)
goto InvalidImmediate;
opcode.reset(0b00011110001000000000110000000000);
opcode.addImm(type, 22);
opcode.addImm(condCodeToOpcodeCond(uint32_t(cond)), 12);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingSimdFcvt: {
if (isign4 == ENC_OPS2(Reg, Reg)) {
uint32_t dstSz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
uint32_t srcSz = diff(o1.as<Reg>().type(), RegType::kARM_VecH);
if ((dstSz | srcSz) > 3)
goto InvalidInstruction;
if (o0.as<Vec>().hasElementType() || o1.as<Vec>().hasElementType())
goto InvalidInstruction;
// Table that provides 'type' and 'opc' according to the dst/src combination.
static const uint8_t table[] = {
0xFFu, // H <- H (Invalid).
0x03u, // H <- S (type=00 opc=11).
0x13u, // H <- D (type=01 opc=11).
0xFFu, // H <- Q (Invalid).
0x30u, // S <- H (type=11 opc=00).
0xFFu, // S <- S (Invalid).
0x10u, // S <- D (type=01 opc=00).
0xFFu, // S <- Q (Invalid).
0x31u, // D <- H (type=11 opc=01).
0x01u, // D <- S (type=00 opc=01).
0xFFu, // D <- D (Invalid).
0xFFu, // D <- Q (Invalid).
0xFFu, // Q <- H (Invalid).
0xFFu, // Q <- S (Invalid).
0xFFu, // Q <- D (Invalid).
0xFFu // Q <- Q (Invalid).
};
uint32_t typeOpc = table[(dstSz << 2) | srcSz];
opcode.reset(0b0001111000100010010000 << 10);
opcode.addImm(typeOpc >> 4, 22);
opcode.addImm(typeOpc & 15, 15);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingSimdFcvtLN: {
const InstDB::EncodingData::SimdFcvtLN& opData = InstDB::EncodingData::simdFcvtLN[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
// Scalar form - only FCVTXN.
if (o0.as<Vec>().isVecS() && o1.as<Vec>().isVecD()) {
if (!opData.hasScalar())
goto InvalidInstruction;
if (o0.as<Vec>().hasElementType() || o1.as<Vec>().hasElementType())
goto InvalidInstruction;
opcode.reset(opData.scalarOp());
opcode |= B(22); // sz bit must be 1, the only supported combination of FCVTXN.
goto EmitOp_Rd0_Rn5;
}
opcode.reset(opData.vectorOp());
const Vec& rL = (instFlags & InstDB::kInstFlagLong) ? o0.as<Vec>() : o1.as<Vec>();
const Vec& rN = (instFlags & InstDB::kInstFlagLong) ? o1.as<Vec>() : o0.as<Vec>();
uint32_t q = diff(rN.type(), RegType::kARM_VecD);
if (uint32_t(opcode.hasQ()) != q)
goto InvalidInstruction;
if (rL.isVecS4() && rN.elementType() == Vec::kElementTypeH && !opData.isCvtxn()) {
goto EmitOp_Rd0_Rn5;
}
if (rL.isVecD2() && rN.elementType() == Vec::kElementTypeS) {
opcode |= B(22);
goto EmitOp_Rd0_Rn5;
}
}
break;
}
case InstDB::kEncodingSimdFcvtSV: {
const InstDB::EncodingData::SimdFcvtSV& opData = InstDB::EncodingData::simdFcvtSV[encodingIndex];
// So we can support both IntToFloat and FloatToInt conversions.
const Operand_& oGp = opData.isFloatToInt() ? o0 : o1;
const Operand_& oVec = opData.isFloatToInt() ? o1 : o0;
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (oGp.as<Reg>().isGp() && oVec.as<Reg>().isVec()) {
uint32_t x = oGp.as<Reg>().isGpX();
uint32_t type = diff(oVec.as<Reg>().type(), RegType::kARM_VecH);
if (type > 2u)
goto InvalidInstruction;
type = (type - 1u) & 0x3;
opcode.reset(opData.generalOp());
opcode.addImm(type, 22);
opcode.addImm(x, 31);
goto EmitOp_Rd0_Rn5;
}
if (o0.as<Reg>().isVec() && o1.as<Reg>().isVec()) {
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!pickFpOpcode(o0.as<Vec>(), opData.scalarIntOp(), InstDB::kHF_B, opData.vectorIntOp(), InstDB::kHF_B, &opcode))
goto InvalidInstruction;
goto EmitOp_Rd0_Rn5;
}
}
if (isign4 == ENC_OPS3(Reg, Reg, Imm) && opData.isFixedPoint()) {
if (o2.as<Imm>().valueAs<uint64_t>() >= 64)
goto InvalidInstruction;
uint32_t scale = o2.as<Imm>().valueAs<uint32_t>();
if (scale == 0)
goto InvalidInstruction;
if (oGp.as<Reg>().isGp() && oVec.as<Reg>().isVec()) {
uint32_t x = oGp.as<Reg>().isGpX();
uint32_t type = diff(oVec.as<Reg>().type(), RegType::kARM_VecH);
uint32_t scaleLimit = 32u << x;
if (scale > scaleLimit)
goto InvalidInstruction;
type = (type - 1u) & 0x3;
opcode.reset(opData.generalOp() ^ B(21));
opcode.addImm(type, 22);
opcode.addImm(x, 31);
opcode.addImm(64u - scale, 10);
goto EmitOp_Rd0_Rn5;
}
if (o0.as<Reg>().isVec() && o1.as<Reg>().isVec()) {
if (!checkSignature(o0, o1))
goto InvalidInstruction;
uint32_t sz;
if (!pickFpOpcode(o0.as<Vec>(), opData.scalarFpOp(), InstDB::kHF_0, opData.vectorFpOp(), InstDB::kHF_0, &opcode, &sz))
goto InvalidInstruction;
uint32_t scaleLimit = 16u << sz;
if (scale > scaleLimit)
goto InvalidInstruction;
uint32_t imm = Support::neg(scale) & Support::lsbMask<uint32_t>(sz + 4 + 1);
opcode.addImm(imm, 16);
goto EmitOp_Rd0_Rn5;
}
}
break;
}
case InstDB::kEncodingSimdFmlal: {
const InstDB::EncodingData::SimdFmlal& opData = InstDB::EncodingData::simdFmlal[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
uint32_t qIsOptional = opData.optionalQ();
if (qIsOptional) {
// This instruction works with either 64-bit or 128-bit registers,
// encoded by Q bit.
if (q > 1)
goto InvalidInstruction;
}
else {
// This instruction requires 128-bit vector registers.
if (q != 1)
goto InvalidInstruction;
// The instruction is ehtier B (bottom) or T (top), which is part of
// the opcode, which uses Q bit, so we have to clear it explicitly.
q = 0;
}
if (uint32_t(o0.as<Reg>().type()) != uint32_t(o1.as<Reg>().type()) + qIsOptional ||
o0.as<Vec>().elementType() != opData.tA ||
o1.as<Vec>().elementType() != opData.tB)
goto InvalidInstruction;
if (!o2.as<Vec>().hasElementIndex()) {
if (!checkSignature(o1, o2))
goto InvalidInstruction;
opcode.reset(opData.vectorOp());
opcode.addImm(q, 30);
goto EmitOp_Rd0_Rn5_Rm16;
}
else {
if (o2.as<Vec>().elementType() != opData.tElement)
goto InvalidInstruction;
if (o2.as<Reg>().id() > 15)
goto InvalidPhysId;
uint32_t elementIndex = o2.as<Vec>().elementIndex();
if (elementIndex > 7u)
goto InvalidElementIndex;
opcode.reset(opData.elementOp());
opcode.addImm(q, 30);
opcode.addImm(elementIndex & 3u, 20);
opcode.addImm(elementIndex >> 2, 11);
goto EmitOp_Rd0_Rn5_Rm16;
}
}
break;
}
case InstDB::kEncodingSimdFmov: {
if (isign4 == ENC_OPS2(Reg, Reg)) {
// FMOV Gp <-> Vec opcode:
opcode.reset(0b00011110001001100000000000000000);
if (o0.as<Reg>().isGp() && o1.as<Reg>().isVec()) {
// FMOV Wd, Hn (sf=0 type=11 rmode=00 op=110)
// FMOV Xd, Hn (sf=1 type=11 rmode=00 op=110)
// FMOV Wd, Sn (sf=0 type=00 rmode=00 op=110)
// FMOV Xd, Dn (sf=1 type=11 rmode=00 op=110)
// FMOV Xd, Vn.d[1] (sf=1 type=10 rmode=01 op=110)
uint32_t x = o0.as<Reg>().isGpX();
uint32_t sz = diff(o1.as<Reg>().type(), RegType::kARM_VecH);
uint32_t type = (sz - 1) & 0x3u;
uint32_t rModeOp = 0b00110;
if (o1.as<Vec>().hasElementIndex()) {
// Special case.
if (!x || !o1.as<Vec>().isVecD2() || o1.as<Vec>().elementIndex() != 1)
goto InvalidInstruction;
type = 0b10;
rModeOp = 0b01110;
}
else {
// Must be scalar.
if (sz > 2)
goto InvalidInstruction;
if (o1.as<Vec>().hasElementType())
goto InvalidInstruction;
if (o1.as<Vec>().isVecS() && x)
goto InvalidInstruction;
if (o1.as<Vec>().isVecD() && !x)
goto InvalidInstruction;
}
opcode.addImm(x, 31);
opcode.addImm(type, 22);
opcode.addImm(rModeOp, 16);
goto EmitOp_Rd0_Rn5;
}
if (o0.as<Reg>().isVec() && o1.as<Reg>().isGp()) {
// FMOV Hd, Wn (sf=0 type=11 rmode=00 op=111)
// FMOV Hd, Xn (sf=1 type=11 rmode=00 op=111)
// FMOV Sd, Wn (sf=0 type=00 rmode=00 op=111)
// FMOV Dd, Xn (sf=1 type=11 rmode=00 op=111)
// FMOV Vd.d[1], Xn (sf=1 type=10 rmode=01 op=111)
uint32_t x = o1.as<Reg>().isGpX();
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
uint32_t type = (sz - 1) & 0x3u;
uint32_t rModeOp = 0b00111;
if (o0.as<Vec>().hasElementIndex()) {
// Special case.
if (!x || !o0.as<Vec>().isVecD2() || o0.as<Vec>().elementIndex() != 1)
goto InvalidInstruction;
type = 0b10;
rModeOp = 0b01111;
}
else {
// Must be scalar.
if (sz > 2)
goto InvalidInstruction;
if (o0.as<Vec>().hasElementType())
goto InvalidInstruction;
if (o0.as<Vec>().isVecS() && x)
goto InvalidInstruction;
if (o0.as<Vec>().isVecD() && !x)
goto InvalidInstruction;
}
opcode.addImm(x, 31);
opcode.addImm(type, 22);
opcode.addImm(rModeOp, 16);
goto EmitOp_Rd0_Rn5;
}
if (checkSignature(o0, o1)) {
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
if (sz > 2)
goto InvalidInstruction;
if (o0.as<Vec>().hasElementType())
goto InvalidInstruction;
uint32_t type = (sz - 1) & 0x3;
opcode.reset(0b00011110001000000100000000000000);
opcode.addImm(type, 22);
goto EmitOp_Rd0_Rn5;
}
}
if (isign4 == ENC_OPS2(Reg, Imm)) {
if (o0.as<Reg>().isVec()) {
double fpValue;
if (o1.as<Imm>().isDouble())
fpValue = o1.as<Imm>().valueAs<double>();
else if (o1.as<Imm>().isInt32())
fpValue = o1.as<Imm>().valueAs<int32_t>();
else
goto InvalidImmediate;
if (!Utils::isFP64Imm8(fpValue))
goto InvalidImmediate;
uint32_t imm8 = Utils::encodeFP64ToImm8(fpValue);
if (!o0.as<Vec>().hasElementType()) {
// FMOV (scalar, immediate).
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
uint32_t type = (sz - 1u) & 0x3u;
if (sz > 2)
goto InvalidInstruction;
opcode.reset(0b00011110001000000001000000000000);
opcode.addImm(type, 22);
opcode.addImm(imm8, 13);
goto EmitOp_Rd0;
}
else {
uint32_t q = diff(o0.as<Vec>().type(), RegType::kARM_VecD);
uint32_t sz = o0.as<Vec>().elementType() - Vec::kElementTypeH;
if (q > 1 || sz > 2)
goto InvalidInstruction;
static const uint32_t szBits[3] = { B(11), B(0), B(29) };
opcode.reset(0b00001111000000001111010000000000);
opcode ^= szBits[sz];
opcode.addImm(q, 30);
opcode.addImm(imm8 >> 5, 16);
opcode.addImm(imm8 & 31, 5);
goto EmitOp_Rd0;
}
}
}
break;
}
case InstDB::kEncodingFSimdPair: {
const InstDB::EncodingData::FSimdPair& opData = InstDB::EncodingData::fSimdPair[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
// This operation is only defined for:
// hD, vS.2h (16-bit)
// sD, vS.2s (32-bit)
// dD, vS.2d (64-bit)
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecH);
if (sz > 2)
goto InvalidInstruction;
static const uint32_t szSignatures[3] = {
VecS::kSignature | (Vec::kSignatureElementH),
VecD::kSignature | (Vec::kSignatureElementS),
VecV::kSignature | (Vec::kSignatureElementD)
};
if (o1.signature() != szSignatures[sz])
goto InvalidInstruction;
static const uint32_t szBits[] = { B(29), 0, B(22) };
opcode.reset(opData.scalarOp());
opcode ^= szBits[sz];
goto EmitOp_Rd0_Rn5;
}
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (!checkSignature(o0, o1, o2))
goto InvalidInstruction;
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
if (q > 1)
goto InvalidInstruction;
uint32_t sz = o0.as<Vec>().elementType() - Vec::kElementTypeH;
if (sz > 2)
goto InvalidInstruction;
static const uint32_t szBits[3] = { B(22) | B(21) | B(15) | B(14), 0, B(22) };
opcode.reset(opData.vectorOp());
opcode ^= szBits[sz];
opcode.addImm(q, 30);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
// ------------------------------------------------------------------------
// [ISimd - Instructions]
// ------------------------------------------------------------------------
case InstDB::kEncodingISimdSV: {
const InstDB::EncodingData::ISimdSV& opData = InstDB::EncodingData::iSimdSV[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
// The first destination operand is scalar, which matches element-type of source vectors.
uint32_t L = (instFlags & InstDB::kInstFlagLong) != 0;
if (diff(o0.as<Vec>().type(), RegType::kARM_VecB) != o1.as<Vec>().elementType() - Vec::kElementTypeB + L)
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, o1.as<Reg>().type(), o1.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(opData.opcode());
opcode.addImm(sizeOp.q(), 30);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingISimdVV: {
const InstDB::EncodingData::ISimdVV& opData = InstDB::EncodingData::iSimdVV[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
const Operand_& sop = significantSimdOp(o0, o1, instFlags);
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, sop.as<Reg>().type(), sop.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(opData.opcode());
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingISimdVVx: {
const InstDB::EncodingData::ISimdVVx& opData = InstDB::EncodingData::iSimdVVx[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (o0.signature() != opData.op0Signature ||
o1.signature() != opData.op1Signature)
goto InvalidInstruction;
opcode.reset(opData.opcode());
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingISimdVVV: {
const InstDB::EncodingData::ISimdVVV& opData = InstDB::EncodingData::iSimdVVV[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
const Operand_& sop = significantSimdOp(o0, o1, instFlags);
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, sop.as<Reg>().type(), sop.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(opData.opcode());
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingISimdVVVx: {
const InstDB::EncodingData::ISimdVVVx& opData = InstDB::EncodingData::iSimdVVVx[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (o0.signature() != opData.op0Signature ||
o1.signature() != opData.op1Signature ||
o2.signature() != opData.op2Signature)
goto InvalidInstruction;
opcode.reset(opData.opcode());
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingISimdWWV: {
// Special case for wide add/sub [s|b][add|sub][w]{2}.
const InstDB::EncodingData::ISimdWWV& opData = InstDB::EncodingData::iSimdWWV[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, o2.as<Reg>().type(), o2.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
if (!checkSignature(o0, o1) || !o0.as<Reg>().isVecV() || o0.as<Vec>().elementType() != o2.as<Vec>().elementType() + 1)
goto InvalidInstruction;
opcode.reset(opData.opcode());
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingISimdVVVe: {
const InstDB::EncodingData::ISimdVVVe& opData = InstDB::EncodingData::iSimdVVVe[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
const Operand_& sop = significantSimdOp(o0, o1, instFlags);
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
if (!o2.as<Vec>().hasElementIndex()) {
SizeOp sizeOp = armElementTypeToSizeOp(opData.regularVecType, sop.as<Reg>().type(), sop.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
if (!checkSignature(o1, o2))
goto InvalidInstruction;
opcode.reset(uint32_t(opData.regularOp) << 10);
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5_Rm16;
}
else {
SizeOp sizeOp = armElementTypeToSizeOp(opData.elementVecType, sop.as<Reg>().type(), sop.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
uint32_t elementIndex = o2.as<Vec>().elementIndex();
LMHImm lmh;
if (!encodeLMH(sizeOp.size(), elementIndex, &lmh))
goto InvalidElementIndex;
if (o2.as<Reg>().id() > lmh.maxRmId)
goto InvalidPhysId;
opcode.reset(uint32_t(opData.elementOp) << 10);
opcode.addImm(sizeOp.q(), 30);
opcode.addImm(sizeOp.size(), 22);
opcode.addImm(lmh.lm, 20);
opcode.addImm(lmh.h, 11);
goto EmitOp_Rd0_Rn5_Rm16;
}
}
break;
}
case InstDB::kEncodingISimdVVVI: {
const InstDB::EncodingData::ISimdVVVI& opData = InstDB::EncodingData::iSimdVVVI[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Imm)) {
const Operand_& sop = significantSimdOp(o0, o1, instFlags);
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, sop.as<Reg>().type(), sop.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
uint64_t immValue = o3.as<Imm>().valueAs<uint64_t>();
uint32_t immSize = opData.immSize;
if (opData.imm64HasOneBitLess && !sizeOp.q())
immSize--;
uint32_t immMax = 1u << immSize;
if (immValue >= immMax)
goto InvalidImmediate;
opcode.reset(opData.opcode());
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
opcode.addImm(immValue, opData.immShift);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingISimdVVVV: {
const InstDB::EncodingData::ISimdVVVV& opData = InstDB::EncodingData::iSimdVVVV[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Reg)) {
const Operand_& sop = significantSimdOp(o0, o1, instFlags);
if (!matchSignature(o0, o1, o2, o3, instFlags))
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, sop.as<Reg>().type(), sop.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(uint32_t(opData.opcode) << 10);
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5_Rm16_Ra10;
}
break;
}
case InstDB::kEncodingISimdVVVVx: {
const InstDB::EncodingData::ISimdVVVVx& opData = InstDB::EncodingData::iSimdVVVVx[encodingIndex];
if (isign4 == ENC_OPS4(Reg, Reg, Reg, Reg)) {
if (o0.signature() != opData.op0Signature ||
o1.signature() != opData.op1Signature ||
o2.signature() != opData.op2Signature ||
o3.signature() != opData.op3Signature)
goto InvalidInstruction;
opcode.reset(uint32_t(opData.opcode) << 10);
goto EmitOp_Rd0_Rn5_Rm16_Ra10;
}
break;
}
case InstDB::kEncodingISimdPair: {
const InstDB::EncodingData::ISimdPair& opData = InstDB::EncodingData::iSimdPair[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg) && opData.opcode2) {
if (o0.as<Vec>().isVecD1() && o1.as<Vec>().isVecD2()) {
opcode.reset(uint32_t(opData.opcode2) << 10);
opcode.addImm(0x3, 22); // size.
goto EmitOp_Rd0_Rn5;
}
}
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(opData.opType3, o0.as<Reg>().type(), o0.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(uint32_t(opData.opcode3) << 10);
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingSimdBicOrr: {
const InstDB::EncodingData::SimdBicOrr& opData = InstDB::EncodingData::simdBicOrr[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(InstDB::kVO_V_B, o0.as<Reg>().type(), o0.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(uint32_t(opData.registerOp) << 10);
opcode.addImm(sizeOp.q(), 30);
goto EmitOp_Rd0_Rn5_Rm16;
}
if (isign4 == ENC_OPS2(Reg, Imm) || isign4 == ENC_OPS3(Reg, Imm, Imm)) {
SizeOp sizeOp = armElementTypeToSizeOp(InstDB::kVO_V_HS, o0.as<Reg>().type(), o0.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
if (o1.as<Imm>().valueAs<uint64_t>() > 0xFFFFFFFFu)
goto InvalidImmediate;
uint32_t imm = o1.as<Imm>().valueAs<uint32_t>();
uint32_t shift = 0;
uint32_t maxShift = (8u << sizeOp.size()) - 8u;
if (o2.isImm()) {
if (o2.as<Imm>().predicate() != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
if (imm > 0xFFu || o2.as<Imm>().valueAs<uint64_t>() > maxShift)
goto InvalidImmediate;
shift = o2.as<Imm>().valueAs<uint32_t>();
if ((shift & 0x7u) != 0u)
goto InvalidImmediate;
}
else if (imm) {
shift = Support::ctz(imm) & 0x7u;
imm >>= shift;
if (imm > 0xFFu || shift > maxShift)
goto InvalidImmediate;
}
uint32_t cmode = 0x1u | ((shift / 8u) << 1);
if (sizeOp.size() == 1)
cmode |= B(3);
// The immediate value is split into ABC and DEFGH parts.
uint32_t abc = (imm >> 5) & 0x7u;
uint32_t defgh = imm & 0x1Fu;
opcode.reset(uint32_t(opData.immediateOp) << 10);
opcode.addImm(sizeOp.q(), 30);
opcode.addImm(abc, 16);
opcode.addImm(cmode, 12);
opcode.addImm(defgh, 5);
goto EmitOp_Rd0;
}
break;
}
case InstDB::kEncodingSimdCmp: {
const InstDB::EncodingData::SimdCmp& opData = InstDB::EncodingData::simdCmp[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg) && opData.regOp) {
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, o0.as<Reg>().type(), o0.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(uint32_t(opData.regOp) << 10);
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5_Rm16;
}
if (isign4 == ENC_OPS3(Reg, Reg, Imm) && opData.zeroOp) {
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
if (o2.as<Imm>().value() != 0)
goto InvalidImmediate;
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, o0.as<Reg>().type(), o0.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
opcode.reset(uint32_t(opData.zeroOp) << 10);
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingSimdDot: {
const InstDB::EncodingData::SimdDot& opData = InstDB::EncodingData::simdDot[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
uint32_t size = 2;
if (q > 1u)
goto InvalidInstruction;
if (!o2.as<Vec>().hasElementIndex()) {
if (!opData.vectorOp)
goto InvalidInstruction;
if (o0.as<Reg>().type() != o1.as<Reg>().type() || o1.as<Reg>().type() != o2.as<Reg>().type())
goto InvalidInstruction;
if (o0.as<Vec>().elementType() != opData.tA ||
o1.as<Vec>().elementType() != opData.tB ||
o2.as<Vec>().elementType() != opData.tB)
goto InvalidInstruction;
opcode.reset(uint32_t(opData.vectorOp) << 10);
opcode.addImm(q, 30);
goto EmitOp_Rd0_Rn5_Rm16;
}
else {
if (!opData.elementOp)
goto InvalidInstruction;
if (o0.as<Reg>().type() != o1.as<Reg>().type() || !o2.as<Reg>().isVecV())
goto InvalidInstruction;
if (o0.as<Vec>().elementType() != opData.tA ||
o1.as<Vec>().elementType() != opData.tB ||
o2.as<Vec>().elementType() != opData.tElement)
goto InvalidInstruction;
uint32_t elementIndex = o2.as<Vec>().elementIndex();
LMHImm lmh;
if (!encodeLMH(size, elementIndex, &lmh))
goto InvalidElementIndex;
if (o2.as<Reg>().id() > lmh.maxRmId)
goto InvalidPhysId;
opcode.reset(uint32_t(opData.elementOp) << 10);
opcode.addImm(q, 30);
opcode.addImm(lmh.lm, 20);
opcode.addImm(lmh.h, 11);
goto EmitOp_Rd0_Rn5_Rm16;
}
}
break;
}
case InstDB::kEncodingSimdDup: SimdDup: {
if (isign4 == ENC_OPS2(Reg, Reg)) {
// Truth table of valid encodings of `Q:1|ElementType:3`
uint32_t kValidEncodings = B(Vec::kElementTypeB + 0) |
B(Vec::kElementTypeH + 0) |
B(Vec::kElementTypeS + 0) |
B(Vec::kElementTypeB + 8) |
B(Vec::kElementTypeH + 8) |
B(Vec::kElementTypeS + 8) |
B(Vec::kElementTypeD + 8) ;
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
if (o1.as<Reg>().isGp()) {
// DUP - Vec (scalar|vector) <- GP register.
//
// NOTE: This is only scalar for `dup d, x` case, otherwise the value
// would be duplicated across all vector elements (1, 2, 4, 8, or 16).
uint32_t elementType = o0.as<Vec>().elementType();
if (q > 1 || !Support::bitTest(kValidEncodings, (q << 3) | elementType))
goto InvalidInstruction;
uint32_t lsbIndex = elementType - 1u;
uint32_t imm5 = 1u << lsbIndex;
opcode.reset(0b0000111000000000000011 << 10);
opcode.addImm(q, 30);
opcode.addImm(imm5, 16);
goto EmitOp_Rd0_Rn5;
}
if (!o1.as<Reg>().isVec() || !o1.as<Vec>().hasElementIndex())
goto InvalidInstruction;
uint32_t dstIndex = o1.as<Vec>().elementIndex();
if (!o0.as<Vec>().hasElementType()) {
// DUP - Vec (scalar) <- Vec[N].
uint32_t lsbIndex = diff(o0.as<Reg>().type(), RegType::kARM_VecB);
if (lsbIndex != o1.as<Vec>().elementType() - Vec::kElementTypeB || lsbIndex > 3)
goto InvalidInstruction;
uint32_t imm5 = ((dstIndex << 1) | 1u) << lsbIndex;
if (imm5 > 31)
goto InvalidElementIndex;
opcode.reset(0b0101111000000000000001 << 10);
opcode.addImm(imm5, 16);
goto EmitOp_Rd0_Rn5;
}
else {
// DUP - Vec (all) <- Vec[N].
uint32_t elementType = o0.as<Vec>().elementType();
if (q > 1 || !Support::bitTest(kValidEncodings, (q << 3) | elementType))
goto InvalidInstruction;
uint32_t lsbIndex = elementType - 1u;
uint32_t imm5 = ((dstIndex << 1) | 1u) << lsbIndex;
if (imm5 > 31)
goto InvalidElementIndex;
opcode.reset(0b0000111000000000000001 << 10);
opcode.addImm(q, 30);
opcode.addImm(imm5, 16);
goto EmitOp_Rd0_Rn5;
}
}
break;
}
case InstDB::kEncodingSimdIns: SimdIns: {
if (isign4 == ENC_OPS2(Reg, Reg) && o0.as<Reg>().isVecV()) {
if (!o0.as<Vec>().hasElementIndex())
goto InvalidInstruction;
uint32_t elementType = o0.as<Vec>().elementType();
uint32_t dstIndex = o0.as<Vec>().elementIndex();
uint32_t lsbIndex = elementType - 1u;
uint32_t imm5 = ((dstIndex << 1) | 1u) << lsbIndex;
if (imm5 > 31)
goto InvalidElementIndex;
if (o1.as<Reg>().isGp()) {
// INS - Vec[N] <- GP register.
opcode.reset(0b0100111000000000000111 << 10);
opcode.addImm(imm5, 16);
goto EmitOp_Rd0_Rn5;
}
else if (o1.as<Reg>().isVecV() && o1.as<Vec>().hasElementIndex()) {
// INS - Vec[N] <- Vec[M].
if (o0.as<Vec>().elementType() != o1.as<Vec>().elementType())
goto InvalidInstruction;
uint32_t srcIndex = o1.as<Vec>().elementIndex();
if (o0.as<Reg>().type() != o1.as<Reg>().type())
goto InvalidInstruction;
uint32_t imm4 = srcIndex << lsbIndex;
if (imm4 > 15)
goto InvalidElementIndex;
opcode.reset(0b0110111000000000000001 << 10);
opcode.addImm(imm5, 16);
opcode.addImm(imm4, 11);
goto EmitOp_Rd0_Rn5;
}
}
break;
}
case InstDB::kEncodingSimdMov: {
if (isign4 == ENC_OPS2(Reg, Reg)) {
if (o0.as<Reg>().isVec() && o1.as<Reg>().isVec()) {
// INS v.x[index], v.x[index].
if (o0.as<Vec>().hasElementIndex() && o1.as<Vec>().hasElementIndex())
goto SimdIns;
// DUP {b|h|s|d}, v.{b|h|s|d}[index].
if (o1.as<Vec>().hasElementIndex())
goto SimdDup;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
// ORR Vd, Vn, Vm
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
if (q > 1)
goto InvalidInstruction;
opcode.reset(0b0000111010100000000111 << 10);
opcode.addImm(q, 30);
opcode.addReg(o1, 16); // Vn == Vm.
goto EmitOp_Rd0_Rn5;
}
if (o0.as<Reg>().isVec() && o1.as<Reg>().isGp()) {
// INS v.x[index], Rn.
if (o0.as<Vec>().hasElementIndex())
goto SimdIns;
goto InvalidInstruction;
}
if (o0.as<Reg>().isGp() && o1.as<Reg>().isVec()) {
// UMOV Rd, V.{s|d}[index].
encodingIndex = 1;
goto SimdUmov;
}
}
break;
}
case InstDB::kEncodingSimdMoviMvni: {
const InstDB::EncodingData::SimdMoviMvni& opData = InstDB::EncodingData::simdMoviMvni[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Imm) || isign4 == ENC_OPS3(Reg, Imm, Imm)) {
SizeOp sizeOp = armElementTypeToSizeOp(InstDB::kVO_V_Any, o0.as<Reg>().type(), o0.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
uint64_t imm64 = o1.as<Imm>().valueAs<uint64_t>();
uint32_t imm8 = 0;
uint32_t cmode = 0;
uint32_t inverted = opData.inverted;
uint32_t op = 0;
uint32_t shift = 0;
uint32_t shiftOp = uint32_t(ShiftOp::kLSL);
if (sizeOp.size() == 3u) {
// The second immediate should not be present, however, we accept
// an immediate value of zero as some user code may still pass it.
if (o2.isImm() && o0.as<Imm>().value() != 0)
goto InvalidImmediate;
if (Utils::isByteMaskImm8(imm64)) {
imm8 = encodeImm64ByteMaskToImm8(imm64);
}
else {
// Change from D to S and from 64-bit imm to 32-bit imm if this
// is not a byte-mask pattern.
if ((imm64 >> 32) == (imm64 & 0xFFFFFFFFu)) {
imm64 &= 0xFFFFFFFFu;
sizeOp.decrementSize();
}
else {
goto InvalidImmediate;
}
}
}
if (sizeOp.size() < 3u) {
if (imm64 > 0xFFFFFFFFu)
goto InvalidImmediate;
imm8 = uint32_t(imm64);
if (sizeOp.size() == 2) {
if ((imm8 >> 16) == (imm8 & 0xFFFFu)) {
imm8 >>= 16;
sizeOp.decrementSize();
}
}
if (sizeOp.size() == 1) {
if (imm8 > 0xFFFFu)
goto InvalidImmediate;
if ((imm8 >> 8) == (imm8 & 0xFFu)) {
imm8 >>= 8;
sizeOp.decrementSize();
}
}
uint32_t maxShift = (8u << sizeOp.size()) - 8u;
if (o2.isImm()) {
if (imm8 > 0xFFu || o2.as<Imm>().valueAs<uint64_t>() > maxShift)
goto InvalidImmediate;
shift = o2.as<Imm>().valueAs<uint32_t>();
shiftOp = o2.as<Imm>().predicate();
}
else if (imm8) {
shift = Support::ctz(imm8) & ~0x7u;
imm8 >>= shift;
if (imm8 > 0xFFu || shift > maxShift)
goto InvalidImmediate;
}
if ((shift & 0x7u) != 0u)
goto InvalidImmediate;
}
shift /= 8u;
switch (sizeOp.size()) {
case 0:
if (shiftOp != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
if (inverted) {
imm8 = ~imm8 & 0xFFu;
inverted = 0;
}
cmode = B(3) | B(2) | B(1);
break;
case 1:
if (shiftOp != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
cmode = B(3) | (shift << 1);
op = inverted;
break;
case 2:
if (shiftOp == uint32_t(ShiftOp::kLSL)) {
cmode = shift << 1;
}
else if (shiftOp == uint32_t(ShiftOp::kMSL)) {
if (shift == 0 || shift > 2)
goto InvalidImmediate;
cmode = B(3) | B(2) | (shift - 1u);
}
else {
goto InvalidImmediate;
}
op = inverted;
break;
case 3:
if (inverted) {
imm8 = ~imm8 & 0xFFu;
inverted = 0;
}
op = 1;
cmode = B(3) | B(2) | B(1);
break;
}
// The immediate value is split into ABC and DEFGH parts.
uint32_t abc = (imm8 >> 5) & 0x7u;
uint32_t defgh = imm8 & 0x1Fu;
opcode.reset(uint32_t(opData.opcode) << 10);
opcode.addImm(sizeOp.q(), 30);
opcode.addImm(op, 29);
opcode.addImm(abc, 16);
opcode.addImm(cmode, 12);
opcode.addImm(defgh, 5);
goto EmitOp_Rd0;
}
break;
}
case InstDB::kEncodingSimdShift: {
const InstDB::EncodingData::SimdShift& opData = InstDB::EncodingData::simdShift[encodingIndex];
const Operand_& sop = significantSimdOp(o0, o1, instFlags);
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, sop.as<Reg>().type(), sop.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
if (isign4 == ENC_OPS3(Reg, Reg, Imm) && opData.immediateOp) {
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
if (o2.as<Imm>().valueAs<uint64_t>() > 63)
goto InvalidImmediate;
uint32_t lsbShift = sizeOp.size() + 3u;
uint32_t lsbMask = (1u << lsbShift) - 1u;
uint32_t imm = o2.as<Imm>().valueAs<uint32_t>();
// Some instructions use IMM and some X - IMM, so negate if required.
if (opData.invertedImm) {
if (imm == 0 || imm > (1u << lsbShift))
goto InvalidImmediate;
imm = Support::neg(imm) & lsbMask;
}
if (imm > lsbMask)
goto InvalidImmediate;
imm |= (1u << lsbShift);
opcode.reset(uint32_t(opData.immediateOp) << 10);
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(imm, 16);
goto EmitOp_Rd0_Rn5;
}
if (isign4 == ENC_OPS3(Reg, Reg, Reg) && opData.registerOp) {
if (!matchSignature(o0, o1, o2, instFlags))
goto InvalidInstruction;
opcode.reset(uint32_t(opData.registerOp) << 10);
opcode.addImm(sizeOp.qs(), 30);
opcode.addImm(sizeOp.scalar(), 28);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5_Rm16;
}
break;
}
case InstDB::kEncodingSimdShiftES: {
const InstDB::EncodingData::SimdShiftES& opData = InstDB::EncodingData::simdShiftES[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Imm)) {
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, o1.as<Reg>().type(), o1.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
// The immediate value must match the element size.
uint64_t shift = o2.as<Imm>().valueAs<uint64_t>();
uint32_t shiftOp = o2.as<Imm>().predicate();
if (shift != (8u << sizeOp.size()) || shiftOp != uint32_t(ShiftOp::kLSL))
goto InvalidImmediate;
opcode.reset(uint32_t(opData.opcode) << 10);
opcode.addImm(sizeOp.q(), 30);
opcode.addImm(sizeOp.size(), 22);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingSimdSm3tt: {
const InstDB::EncodingData::SimdSm3tt& opData = InstDB::EncodingData::simdSm3tt[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg)) {
if (o0.as<Vec>().isVecS4() && o1.as<Vec>().isVecS4() && o2.as<Vec>().isVecS4() && o2.as<Vec>().hasElementIndex()) {
uint32_t imm2 = o2.as<Vec>().elementIndex();
if (imm2 > 3)
goto InvalidElementIndex;
opcode.reset(uint32_t(opData.opcode) << 10);
opcode.addImm(imm2, 12);
goto EmitOp_Rd0_Rn5_Rm16;
}
}
break;
}
case InstDB::kEncodingSimdSmovUmov: SimdUmov: {
const InstDB::EncodingData::SimdSmovUmov& opData = InstDB::EncodingData::simdSmovUmov[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg) && o0.as<Reg>().isGp() && o1.as<Reg>().isVec()) {
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, o1.as<Reg>().type(), o1.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
if (!o1.as<Vec>().hasElementIndex())
goto InvalidInstruction;
uint32_t x = o0.as<Gp>().isGpX();
uint32_t gpMustBeX = uint32_t(sizeOp.size() >= 3u - opData.isSigned);
if (opData.isSigned) {
if (gpMustBeX && !x)
goto InvalidInstruction;
}
else {
if (x != gpMustBeX)
goto InvalidInstruction;
}
uint32_t elementIndex = o1.as<Vec>().elementIndex();
uint32_t maxElementIndex = 15u >> sizeOp.size();
if (elementIndex > maxElementIndex)
goto InvalidElementIndex;
uint32_t imm5 = (1u | (elementIndex << 1)) << sizeOp.size();
opcode.reset(uint32_t(opData.opcode) << 10);
opcode.addImm(x, 30);
opcode.addImm(imm5, 16);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingSimdSxtlUxtl: {
const InstDB::EncodingData::SimdSxtlUxtl& opData = InstDB::EncodingData::simdSxtlUxtl[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Reg)) {
SizeOp sizeOp = armElementTypeToSizeOp(opData.vecOpType, o1.as<Reg>().type(), o1.as<Vec>().elementType());
if (!sizeOp.isValid())
goto InvalidInstruction;
if (!matchSignature(o0, o1, instFlags))
goto InvalidInstruction;
opcode.reset(uint32_t(opData.opcode) << 10);
opcode.addImm(sizeOp.q(), 30);
opcode.addImm(1u, sizeOp.size() + 19);
goto EmitOp_Rd0_Rn5;
}
break;
}
case InstDB::kEncodingSimdTblTbx: {
const InstDB::EncodingData::SimdTblTbx& opData = InstDB::EncodingData::simdTblTbx[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Reg) || isign4 == ENC_OPS4(Reg, Reg, Reg, Reg)) {
// TBL/TBX <Vd>.<Ta>, { <Vn>.16B }, <Vm>.<Ta>
// TBL/TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B }, <Vm>.<Ta>
// TBL/TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B }, <Vm>.<Ta>
// TBL/TBX <Vd>.<Ta>, { <Vn>.16B, <Vn+1>.16B, <Vn+2>.16B, <Vn+3>.16B }, <Vm>.<Ta>
opcode.reset(uint32_t(opData.opcode) << 10);
const Operand_& o4 = opExt[EmitterUtils::kOp4];
const Operand_& o5 = opExt[EmitterUtils::kOp5];
uint32_t q = diff(o0.as<Reg>().type(), RegType::kARM_VecD);
if (q > 1 || o0.as<Vec>().hasElementIndex())
goto InvalidInstruction;
if (!o1.as<Vec>().isVecB16() || o1.as<Vec>().hasElementIndex())
goto InvalidInstruction;
uint32_t len = uint32_t(!o3.isNone()) + uint32_t(!o4.isNone()) + uint32_t(!o5.isNone());
opcode.addImm(q, 30);
opcode.addImm(len, 13);
switch (len) {
case 0:
if (!checkSignature(o0, o2))
goto InvalidInstruction;
if (o2.id() > 31)
goto InvalidPhysId;
opcode.addReg(o2, 16);
goto EmitOp_Rd0_Rn5;
case 1:
if (!checkSignature(o0, o3))
goto InvalidInstruction;
if (o3.id() > 31)
goto InvalidPhysId;
opcode.addReg(o3, 16);
goto EmitOp_Rd0_Rn5;
case 2:
if (!checkSignature(o0, o4))
goto InvalidInstruction;
if (o4.id() > 31)
goto InvalidPhysId;
opcode.addReg(o4, 16);
goto EmitOp_Rd0_Rn5;
case 3:
if (!checkSignature(o0, o5))
goto InvalidInstruction;
if (o5.id() > 31)
goto InvalidPhysId;
opcode.addReg(o5, 16);
goto EmitOp_Rd0_Rn5;
default:
// Should never happen.
goto InvalidInstruction;
}
}
break;
}
// ------------------------------------------------------------------------
// [Simd - Load / Store]
// ------------------------------------------------------------------------
case InstDB::kEncodingSimdLdSt: {
const InstDB::EncodingData::SimdLdSt& opData = InstDB::EncodingData::simdLdSt[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Mem)) {
const Mem& m = o1.as<Mem>();
rmRel = &m;
// Width | SZ | XY | XSZ
// -------+----------+-----------+-----
// 8-bit | size==00 | opc == 01 | 000
// 16-bit | size==01 | opc == 01 | 001
// 32-bit | size==10 | opc == 01 | 010
// 64-bit | size==11 | opc == 01 | 011
// 128-bit| size==00 | opc == 11 | 100
uint32_t xsz = diff(o0.as<Reg>().type(), RegType::kARM_VecB);
if (xsz > 4u || o0.as<Vec>().hasElementIndex())
goto InvalidRegType;
if (!checkVecId(o0))
goto InvalidPhysId;
if (!armCheckMemBaseIndexRel(m))
goto InvalidAddress;
int64_t offset = m.offset();
if (m.hasBaseReg()) {
// [Base {Offset | Index}]
if (m.hasIndex()) {
uint32_t opt = armShiftOpToLdStOptMap[m.predicate()];
if (opt == 0xFFu)
goto InvalidAddress;
uint32_t shift = m.shift();
uint32_t s = (shift != 0);
if (s && shift != xsz)
goto InvalidAddressScale;
opcode.reset(uint32_t(opData.registerOp) << 21);
opcode.addImm(xsz & 3u, 30);
opcode.addImm(xsz >> 2, 23);
opcode.addImm(opt, 13);
opcode.addImm(s, 12);
opcode |= B(11);
opcode.addReg(o0, 0);
goto EmitOp_MemBaseIndex_Rn5_Rm16;
}
// Makes it easier to work with the offset especially on 32-bit arch.
if (!Support::isInt32(offset))
goto InvalidDisplacement;
int32_t offset32 = int32_t(offset);
if (m.isPreOrPost()) {
if (!Support::isInt9(offset32))
goto InvalidDisplacement;
opcode.reset(uint32_t(opData.prePostOp) << 21);
opcode.addImm(xsz & 3u, 30);
opcode.addImm(xsz >> 2, 23);
opcode.addImm(offset32 & 0x1FF, 12);
opcode.addImm(m.isPreIndex(), 11);
opcode |= B(10);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
else {
uint32_t imm12 = uint32_t(offset32) >> xsz;
// If this instruction is not encodable with scaled unsigned offset, try unscaled signed offset.
if (!Support::isUInt12(imm12) || (imm12 << xsz) != uint32_t(offset32)) {
instId = opData.uAltInstId;
instInfo = &InstDB::_instInfoTable[instId];
encodingIndex = instInfo->_encodingDataIndex;
goto Case_SimdLdurStur;
}
opcode.reset(uint32_t(opData.uOffsetOp) << 22);
opcode.addImm(xsz & 3u, 30);
opcode.addImm(xsz >> 2, 23);
opcode.addImm(imm12, 10);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
}
else {
if (!opData.literalOp)
goto InvalidAddress;
if (xsz < 2u)
goto InvalidRegType;
uint32_t opc = xsz - 2u;
opcode.reset(uint32_t(opData.literalOp) << 24);
opcode.addImm(opc, 30);
opcode.addReg(o0, 0);
offsetFormat.resetToImmValue(OffsetType::kSignedOffset, 4, 5, 19, 2);
goto EmitOp_Rel;
}
}
break;
}
case InstDB::kEncodingSimdLdpStp: {
const InstDB::EncodingData::SimdLdpStp& opData = InstDB::EncodingData::simdLdpStp[encodingIndex];
if (isign4 == ENC_OPS3(Reg, Reg, Mem)) {
const Mem& m = o2.as<Mem>();
rmRel = &m;
uint32_t opc = diff(o0.as<Reg>().type(), RegType::kARM_VecS);
if (opc > 2u || o0.as<Vec>().hasElementTypeOrIndex())
goto InvalidInstruction;
if (!checkSignature(o0, o1))
goto InvalidInstruction;
if (!checkVecId(o0, o1))
goto InvalidPhysId;
if (m.baseType() != RegType::kARM_GpX || m.hasIndex())
goto InvalidAddress;
if (m.isOffset64Bit())
goto InvalidDisplacement;
uint32_t offsetShift = 2u + opc;
int32_t offset32 = m.offsetLo32() >> offsetShift;
// Make sure we didn't lose bits by applying the mandatory offset shift.
if (Support::shl(offset32, offsetShift) != m.offsetLo32())
goto InvalidDisplacement;
// Offset is encoded as a 7-bit immediate.
if (!Support::isInt7(offset32))
goto InvalidDisplacement;
if (m.isPreOrPost() && offset32 != 0) {
if (!opData.prePostOp)
goto InvalidAddress;
opcode.reset(uint32_t(opData.prePostOp) << 22);
opcode.addImm(m.isPreIndex(), 24);
}
else {
opcode.reset(uint32_t(opData.offsetOp) << 22);
}
opcode.addImm(opc, 30);
opcode.addImm(offset32 & 0x7F, 15);
opcode.addReg(o1, 10);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
break;
}
case InstDB::kEncodingSimdLdurStur: {
Case_SimdLdurStur:
const InstDB::EncodingData::SimdLdurStur& opData = InstDB::EncodingData::simdLdurStur[encodingIndex];
if (isign4 == ENC_OPS2(Reg, Mem)) {
const Mem& m = o1.as<Mem>();
rmRel = &m;
uint32_t sz = diff(o0.as<Reg>().type(), RegType::kARM_VecB);
if (sz > 4 || o0.as<Vec>().hasElementTypeOrIndex())
goto InvalidInstruction;
if (!checkVecId(o0))
goto InvalidPhysId;
if (!armCheckMemBaseIndexRel(m))
goto InvalidAddress;
if (m.hasBaseReg() && !m.hasIndex() && !m.isPreOrPost()) {
if (m.isOffset64Bit())
goto InvalidDisplacement;
int32_t offset32 = m.offsetLo32();
if (!Support::isInt9(offset32))
goto InvalidDisplacement;
opcode.reset(uint32_t(opData.opcode) << 10);
opcode.addImm(sz & 3u, 30);
opcode.addImm(sz >> 2, 23);
opcode.addImm(offset32 & 0x1FF, 12);
opcode.addReg(o0, 0);
goto EmitOp_MemBase_Rn5;
}
goto InvalidAddress;
}
break;
}
case InstDB::kEncodingSimdLdNStN: {
const InstDB::EncodingData::SimdLdNStN& opData = InstDB::EncodingData::simdLdNStN[encodingIndex];
const Operand_& o4 = opExt[EmitterUtils::kOp4];
uint32_t n = 1;
if (isign4 == ENC_OPS2(Reg, Mem)) {
if (opData.n != 1)
goto InvalidInstruction;
rmRel = &o1;
}
else if (isign4 == ENC_OPS3(Reg, Reg, Mem)) {
if (opData.n != 1 && opData.n != 2)
goto InvalidInstruction;
if (!checkSignature(o0, o1) || !checkConsecutive(o0, o1))
goto InvalidInstruction;
n = 2;
rmRel = &o2;
}
else if (isign4 == ENC_OPS4(Reg, Reg, Reg, Mem) && o4.isNone()) {
if (opData.n != 1 && opData.n != 3)
goto InvalidInstruction;
if (!checkSignature(o0, o1, o2) || !checkConsecutive(o0, o1, o2))
goto InvalidInstruction;
n = 3;
rmRel = &o3;
}
else if (isign4 == ENC_OPS4(Reg, Reg, Reg, Reg) && o4.isMem()) {
if (opData.n != 1 && opData.n != 4)
goto InvalidInstruction;
if (!checkSignature(o0, o1, o2, o3) || !checkConsecutive(o0, o1, o2, o3))
goto InvalidInstruction;
n = 4;
rmRel = &o4;
}
else {
goto InvalidInstruction;
}
// We will use `v` and `m` from now as those are relevant for encoding.
const Vec& v = o0.as<Vec>();
const Mem& m = rmRel->as<Mem>();
uint32_t q = 0;
uint32_t rm = 0;
uint32_t rn = m.baseId();
uint32_t sz = v.elementType() - Vec::kElementTypeB;
uint32_t opcSsize = sz;
uint32_t offsetPossibility = 0;
if (sz > 3)
goto InvalidInstruction;
if (m.baseType() != RegType::kARM_GpX)
goto InvalidAddress;
// Rn cannot be ZR, but can be SP.
if (rn > 30 && rn != Gp::kIdSp)
goto InvalidAddress;
rn &= 31;
if (opData.replicate) {
if (n != opData.n)
goto InvalidInstruction;
// Replicates to the whole register, element index cannot be used.
if (v.hasElementIndex())
goto InvalidInstruction;
q = diff(v.type(), RegType::kARM_VecD);
if (q > 1)
goto InvalidInstruction;
opcode.reset(uint32_t(opData.singleOp) << 10);
offsetPossibility = (1u << sz) * n;
}
else if (v.hasElementIndex()) {
if (n != opData.n)
goto InvalidInstruction;
// LDx/STx (single structure).
static const uint8_t opcSsizeBySzS[] = { 0x0u << 3, 0x2u << 3, 0x4u << 3, (0x4u << 3) | 1u };
opcode.reset(uint32_t(opData.singleOp) << 10);
opcSsize = opcSsizeBySzS[sz];
offsetPossibility = (1u << sz) * opData.n;
uint32_t elementIndex = v.elementIndex();
uint32_t maxElementIndex = 15 >> sz;
if (elementIndex > maxElementIndex)
goto InvalidElementIndex;
elementIndex <<= sz;
q = elementIndex >> 3;
opcSsize |= elementIndex & 0x7u;
}
else {
// LDx/STx (multiple structures).
static const uint8_t opcSsizeByN[] = { 0u, 0x7u << 2, 0xAu << 2, 0x6u << 2, 0x2u << 2 };
q = diff(v.type(), RegType::kARM_VecD);
if (q > 1)
goto InvalidInstruction;
if (opData.n == 1)
opcSsize |= opcSsizeByN[n];
opcode.reset(uint32_t(opData.multipleOp) << 10);
offsetPossibility = (8u << q) * n;
}
if (m.hasIndex()) {
if (m.hasOffset() || !m.isPostIndex())
goto InvalidAddress;
rm = m.indexId();
if (rm > 30)
goto InvalidAddress;
// Bit 23 - PostIndex.
opcode |= B(23);
}
else {
if (m.hasOffset()) {
if (m.offset() != int32_t(offsetPossibility) || !m.isPostIndex())
goto InvalidAddress;
rm = 31;
// Bit 23 - PostIndex.
opcode |= B(23);
}
}
opcode.addImm(q, 30);
opcode.addImm(rm, 16);
opcode.addImm(opcSsize, 10);
opcode.addImm(rn, 5);
goto EmitOp_Rd0;
}
default:
break;
}
goto InvalidInstruction;
// --------------------------------------------------------------------------
// [EmitGp - Single]
// --------------------------------------------------------------------------
EmitOp_Rd0:
if (!checkValidRegs(o0))
goto InvalidPhysId;
opcode.addReg(o0, 0);
goto EmitOp;
EmitOp_Rn5:
if (!checkValidRegs(o0))
goto InvalidPhysId;
opcode.addReg(o0, 5);
goto EmitOp;
EmitOp_Rn5_Rm16:
if (!checkValidRegs(o0, o1))
goto InvalidPhysId;
opcode.addReg(o0, 5);
opcode.addReg(o1, 16);
goto EmitOp;
EmitOp_Rd0_Rn5:
if (!checkValidRegs(o0, o1))
goto InvalidPhysId;
opcode.addReg(o0, 0);
opcode.addReg(o1, 5);
goto EmitOp;
EmitOp_Rd0_Rn5_Rm16_Ra10:
if (!checkValidRegs(o0, o1, o2, o3))
goto InvalidPhysId;
opcode.addReg(o0, 0);
opcode.addReg(o1, 5);
opcode.addReg(o2, 16);
opcode.addReg(o3, 10);
goto EmitOp;
EmitOp_Rd0_Rn5_Rm16:
if (!checkValidRegs(o0, o1, o3))
goto InvalidPhysId;
opcode.addReg(o0, 0);
opcode.addReg(o1, 5);
opcode.addReg(o2, 16);
goto EmitOp;
// --------------------------------------------------------------------------
// [EmitGp - Multiple]
// --------------------------------------------------------------------------
EmitOp_Multiple:
{
ASMJIT_ASSERT(multipleOpCount > 0);
err = writer.ensureSpace(this, multipleOpCount * 4u);
if (ASMJIT_UNLIKELY(err))
goto Failed;
for (uint32_t i = 0; i < multipleOpCount; i++)
writer.emit32uLE(multipleOpData[i]);
goto EmitDone;
}
// --------------------------------------------------------------------------
// [EmitGp - Memory]
// --------------------------------------------------------------------------
EmitOp_MemBase_Rn5:
if (!checkMemBase(rmRel->as<Mem>()))
goto InvalidAddress;
opcode.addReg(rmRel->as<Mem>().baseId(), 5);
goto EmitOp;
EmitOp_MemBaseNoImm_Rn5:
if (!checkMemBase(rmRel->as<Mem>()) || rmRel->as<Mem>().hasIndex())
goto InvalidAddress;
if (rmRel->as<Mem>().hasOffset())
goto InvalidDisplacement;
opcode.addReg(rmRel->as<Mem>().baseId(), 5);
goto EmitOp;
EmitOp_MemBaseIndex_Rn5_Rm16:
if (!rmRel->as<Mem>().hasBaseReg())
goto InvalidAddress;
if (rmRel->as<Mem>().indexId() > 30 && rmRel->as<Mem>().indexId() != Gp::kIdZr)
goto InvalidPhysId;
opcode.addReg(rmRel->as<Mem>().indexId(), 16);
opcode.addReg(rmRel->as<Mem>().baseId(), 5);
goto EmitOp;
// --------------------------------------------------------------------------
// [EmitOp - PC Relative]
// --------------------------------------------------------------------------
EmitOp_Rel:
{
if (rmRel->isLabel() || rmRel->isMem()) {
uint32_t labelId;
int64_t labelOffset = 0;
if (rmRel->isLabel()) {
labelId = rmRel->as<Label>().id();
}
else {
labelId = rmRel->as<Mem>().baseId();
labelOffset = rmRel->as<Mem>().offset();
}
LabelEntry* label = _code->labelEntry(labelId);
if (ASMJIT_UNLIKELY(!label))
goto InvalidLabel;
if (offsetFormat.type() == OffsetType::kAArch64_ADRP) {
// TODO: [ARM] Always create relocation entry.
}
if (label->isBoundTo(_section)) {
// Label bound to the current section.
offsetValue = label->offset() - uint64_t(offset()) + uint64_t(labelOffset);
goto EmitOp_DispImm;
}
else {
// Record non-bound label.
size_t codeOffset = writer.offsetFrom(_bufferData);
LabelLink* link = _code->newLabelLink(label, _section->id(), codeOffset, intptr_t(labelOffset), offsetFormat);
if (ASMJIT_UNLIKELY(!link))
goto OutOfMemory;
goto EmitOp;
}
}
}
if (rmRel->isImm()) {
uint64_t baseAddress = _code->baseAddress();
uint64_t targetOffset = rmRel->as<Imm>().valueAs<uint64_t>();
size_t codeOffset = writer.offsetFrom(_bufferData);
if (baseAddress == Globals::kNoBaseAddress || _section->id() != 0) {
// Create a new RelocEntry as we cannot calculate the offset right now.
RelocEntry* re;
err = _code->newRelocEntry(&re, RelocType::kAbsToRel);
if (err)
goto Failed;
re->_sourceSectionId = _section->id();
re->_sourceOffset = codeOffset;
re->_format = offsetFormat;
re->_payload = rmRel->as<Imm>().valueAs<uint64_t>() + 4u;
goto EmitOp;
}
else {
uint64_t pc = baseAddress + codeOffset;
if (offsetFormat.type() == OffsetType::kAArch64_ADRP)
pc &= ~uint64_t(4096 - 1);
offsetValue = targetOffset - pc;
goto EmitOp_DispImm;
}
}
goto InvalidInstruction;
EmitOp_DispImm:
{
if ((offsetValue & Support::lsbMask<uint32_t>(offsetFormat.immDiscardLsb())) != 0)
goto InvalidDisplacement;
int64_t dispImm64 = int64_t(offsetValue) >> offsetFormat.immDiscardLsb();
if (!Support::isEncodableOffset64(dispImm64, offsetFormat.immBitCount()))
goto InvalidDisplacement;
uint32_t dispImm32 = uint32_t(dispImm64 & Support::lsbMask<uint32_t>(offsetFormat.immBitCount()));
switch (offsetFormat.type()) {
case OffsetType::kSignedOffset: {
opcode.addImm(dispImm32, offsetFormat.immBitShift());
goto EmitOp;
}
case OffsetType::kAArch64_ADR:
case OffsetType::kAArch64_ADRP: {
uint32_t immLo = dispImm32 & 0x3u;
uint32_t immHi = dispImm32 >> 2;
opcode.addImm(immLo, 29);
opcode.addImm(immHi, 5);
goto EmitOp;
}
default:
goto InvalidDisplacement;
}
}
// --------------------------------------------------------------------------
// [EmitOp - Opcode]
// --------------------------------------------------------------------------
EmitOp:
writer.emit32uLE(opcode.get());
goto EmitDone;
// --------------------------------------------------------------------------
// [Done]
// --------------------------------------------------------------------------
EmitDone:
if (Support::test(options, InstOptions::kReserved)) {
#ifndef ASMJIT_NO_LOGGING
if (_logger)
EmitterUtils::logInstructionEmitted(this, BaseInst::composeARMInstId(instId, instCC), options, o0, o1, o2, opExt, 0, 0, writer.cursor());
#endif
}
resetState();
writer.done(this);
return kErrorOk;
// --------------------------------------------------------------------------
// [Error Handler]
// --------------------------------------------------------------------------
#define ERROR_HANDLER(ERR) ERR: err = DebugUtils::errored(kError##ERR); goto Failed;
ERROR_HANDLER(OutOfMemory)
ERROR_HANDLER(InvalidAddress)
ERROR_HANDLER(InvalidAddressScale)
ERROR_HANDLER(InvalidDisplacement)
ERROR_HANDLER(InvalidElementIndex)
ERROR_HANDLER(InvalidLabel)
ERROR_HANDLER(InvalidImmediate)
ERROR_HANDLER(InvalidInstruction)
ERROR_HANDLER(InvalidPhysId)
ERROR_HANDLER(InvalidRegType)
#undef ERROR_HANDLER
Failed:
#ifndef ASMJIT_NO_LOGGING
return EmitterUtils::logInstructionFailed(this, err, instId, options, o0, o1, o2, opExt);
#else
resetState();
return reportError(err);
#endif
}
#undef ENC_OPS1
#undef ENC_OPS2
#undef ENC_OPS3
#undef ENC_OPS4
// a64::Assembler - Align
// ======================
Error Assembler::align(AlignMode alignMode, uint32_t alignment) {
constexpr uint32_t kNopA64 = 0xD503201Fu; // [11010101|00000011|00100000|00011111].
if (ASMJIT_UNLIKELY(!_code))
return reportError(DebugUtils::errored(kErrorNotInitialized));
if (ASMJIT_UNLIKELY(uint32_t(alignMode) > uint32_t(AlignMode::kMaxValue)))
return reportError(DebugUtils::errored(kErrorInvalidArgument));
if (alignment <= 1)
return kErrorOk;
if (ASMJIT_UNLIKELY(alignment > Globals::kMaxAlignment || !Support::isPowerOf2(alignment)))
return reportError(DebugUtils::errored(kErrorInvalidArgument));
uint32_t i = uint32_t(Support::alignUpDiff<size_t>(offset(), alignment));
if (i == 0)
return kErrorOk;
CodeWriter writer(this);
ASMJIT_PROPAGATE(writer.ensureSpace(this, i));
switch (alignMode) {
case AlignMode::kCode: {
uint32_t pattern = kNopA64;
if (ASMJIT_UNLIKELY(offset() & 0x3u))
return DebugUtils::errored(kErrorInvalidState);
while (i >= 4) {
writer.emit32uLE(pattern);
i -= 4;
}
ASMJIT_ASSERT(i == 0);
break;
}
case AlignMode::kData:
case AlignMode::kZero:
writer.emitZeros(i);
break;
}
writer.done(this);
#ifndef ASMJIT_NO_LOGGING
if (_logger) {
StringTmp<128> sb;
sb.appendChars(' ', _logger->indentation(FormatIndentationGroup::kCode));
sb.appendFormat("align %u\n", alignment);
_logger->log(sb);
}
#endif
return kErrorOk;
}
// a64::Assembler - Events
// =======================
Error Assembler::onAttach(CodeHolder* code) noexcept {
ASMJIT_PROPAGATE(Base::onAttach(code));
return kErrorOk;
}
Error Assembler::onDetach(CodeHolder* code) noexcept {
return Base::onDetach(code);
}
ASMJIT_END_SUB_NAMESPACE
#endif // !ASMJIT_NO_AARCH64