Defcon/hook_lib/asmjit/core/radefs_p.h
MatrixMMOfficial 9631e4ca40 Initial commit
2023-11-26 08:54:06 -05:00

1205 lines
40 KiB
C++

// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#ifndef ASMJIT_CORE_RADEFS_P_H_INCLUDED
#define ASMJIT_CORE_RADEFS_P_H_INCLUDED
#include "../core/api-config.h"
#include "../core/archtraits.h"
#include "../core/compilerdefs.h"
#include "../core/logger.h"
#include "../core/operand.h"
#include "../core/support.h"
#include "../core/type.h"
#include "../core/zone.h"
#include "../core/zonevector.h"
ASMJIT_BEGIN_NAMESPACE
//! \cond INTERNAL
//! \addtogroup asmjit_ra
//! \{
#ifndef ASMJIT_NO_LOGGING
# define ASMJIT_RA_LOG_FORMAT(...) \
do { \
if (logger) \
logger->logf(__VA_ARGS__); \
} while (0)
# define ASMJIT_RA_LOG_COMPLEX(...) \
do { \
if (logger) { \
__VA_ARGS__ \
} \
} while (0)
#else
# define ASMJIT_RA_LOG_FORMAT(...) ((void)0)
# define ASMJIT_RA_LOG_COMPLEX(...) ((void)0)
#endif
class BaseRAPass;
class RABlock;
class BaseNode;
struct RAStackSlot;
typedef ZoneVector<RABlock*> RABlocks;
typedef ZoneVector<RAWorkReg*> RAWorkRegs;
//! Maximum number of consecutive registers aggregated from all supported backends.
static constexpr uint32_t kMaxConsecutiveRegs = 4;
//! Provides architecture constraints used by register allocator.
class RAConstraints {
public:
//! \name Members
//! \{
Support::Array<RegMask, Globals::kNumVirtGroups> _availableRegs {};
//! \}
ASMJIT_NOINLINE Error init(Arch arch) noexcept {
switch (arch) {
case Arch::kX86:
case Arch::kX64: {
uint32_t registerCount = arch == Arch::kX86 ? 8 : 16;
_availableRegs[RegGroup::kGp] = Support::lsbMask<RegMask>(registerCount) & ~Support::bitMask(4u);
_availableRegs[RegGroup::kVec] = Support::lsbMask<RegMask>(registerCount);
_availableRegs[RegGroup::kExtraVirt2] = Support::lsbMask<RegMask>(8);
_availableRegs[RegGroup::kExtraVirt3] = Support::lsbMask<RegMask>(8);
return kErrorOk;
}
case Arch::kAArch64: {
_availableRegs[RegGroup::kGp] = 0xFFFFFFFFu & ~Support::bitMask(18, 31u);
_availableRegs[RegGroup::kVec] = 0xFFFFFFFFu;
_availableRegs[RegGroup::kExtraVirt2] = 0;
_availableRegs[RegGroup::kExtraVirt3] = 0;
return kErrorOk;
}
default:
return DebugUtils::errored(kErrorInvalidArch);
}
}
inline RegMask availableRegs(RegGroup group) const noexcept { return _availableRegs[group]; }
};
enum class RAStrategyType : uint8_t {
kSimple = 0,
kComplex = 1
};
ASMJIT_DEFINE_ENUM_COMPARE(RAStrategyType)
enum class RAStrategyFlags : uint8_t {
kNone = 0
};
ASMJIT_DEFINE_ENUM_FLAGS(RAStrategyFlags)
//! Register allocation strategy.
//!
//! The idea is to select the best register allocation strategy for each virtual register group based on the
//! complexity of the code.
struct RAStrategy {
//! \name Members
//! \{
RAStrategyType _type = RAStrategyType::kSimple;
RAStrategyFlags _flags = RAStrategyFlags::kNone;
//! \}
//! \name Accessors
//! \{
inline void reset() noexcept {
_type = RAStrategyType::kSimple;
_flags = RAStrategyFlags::kNone;
}
inline RAStrategyType type() const noexcept { return _type; }
inline void setType(RAStrategyType type) noexcept { _type = type; }
inline bool isSimple() const noexcept { return _type == RAStrategyType::kSimple; }
inline bool isComplex() const noexcept { return _type >= RAStrategyType::kComplex; }
inline RAStrategyFlags flags() const noexcept { return _flags; }
inline bool hasFlag(RAStrategyFlags flag) const noexcept { return Support::test(_flags, flag); }
inline void addFlags(RAStrategyFlags flags) noexcept { _flags |= flags; }
//! \}
};
//! Count of virtual or physical registers per group.
//!
//! \note This class uses 8-bit integers to represent counters, it's only used in places where this is sufficient,
//! for example total count of machine's physical registers, count of virtual registers per instruction, etc...
//! There is also `RALiveCount`, which uses 32-bit integers and is indeed much safer.
struct RARegCount {
//! \name Members
//! \{
union {
uint8_t _regs[4];
uint32_t _packed;
};
//! \}
//! \name Construction & Destruction
//! \{
//! Resets all counters to zero.
inline void reset() noexcept { _packed = 0; }
//! \}
//! \name Overloaded Operators
//! \{
inline uint8_t& operator[](RegGroup group) noexcept {
ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
return _regs[size_t(group)];
}
inline const uint8_t& operator[](RegGroup group) const noexcept {
ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
return _regs[size_t(group)];
}
inline bool operator==(const RARegCount& other) const noexcept { return _packed == other._packed; }
inline bool operator!=(const RARegCount& other) const noexcept { return _packed != other._packed; }
//! \}
//! \name Accessors
//! \{
//! Returns the count of registers by the given register `group`.
inline uint32_t get(RegGroup group) const noexcept {
ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
uint32_t shift = Support::byteShiftOfDWordStruct(uint32_t(group));
return (_packed >> shift) & uint32_t(0xFF);
}
//! Sets the register count by a register `group`.
inline void set(RegGroup group, uint32_t n) noexcept {
ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
ASMJIT_ASSERT(n <= 0xFF);
uint32_t shift = Support::byteShiftOfDWordStruct(uint32_t(group));
_packed = (_packed & ~uint32_t(0xFF << shift)) + (n << shift);
}
//! Adds the register count by a register `group`.
inline void add(RegGroup group, uint32_t n = 1) noexcept {
ASMJIT_ASSERT(group <= RegGroup::kMaxVirt);
ASMJIT_ASSERT(0xFF - uint32_t(_regs[size_t(group)]) >= n);
uint32_t shift = Support::byteShiftOfDWordStruct(uint32_t(group));
_packed += n << shift;
}
//! \}
};
//! Provides mapping that can be used to fast index architecture register groups.
struct RARegIndex : public RARegCount {
//! Build register indexes based on the given `count` of registers.
ASMJIT_FORCE_INLINE void buildIndexes(const RARegCount& count) noexcept {
uint32_t x = uint32_t(count._regs[0]);
uint32_t y = uint32_t(count._regs[1]) + x;
uint32_t z = uint32_t(count._regs[2]) + y;
ASMJIT_ASSERT(y <= 0xFF);
ASMJIT_ASSERT(z <= 0xFF);
_packed = Support::bytepack32_4x8(0, x, y, z);
}
};
//! Registers mask.
struct RARegMask {
//! \name Members
//! \{
Support::Array<RegMask, Globals::kNumVirtGroups> _masks;
//! \}
//! \name Construction & Destruction
//! \{
inline void init(const RARegMask& other) noexcept { _masks = other._masks; }
//! Reset all register masks to zero.
inline void reset() noexcept { _masks.fill(0); }
//! \}
//! \name Overloaded Operators
//! \{
inline bool operator==(const RARegMask& other) const noexcept { return _masks == other._masks; }
inline bool operator!=(const RARegMask& other) const noexcept { return _masks != other._masks; }
template<typename Index>
inline uint32_t& operator[](const Index& index) noexcept { return _masks[index]; }
template<typename Index>
inline const uint32_t& operator[](const Index& index) const noexcept { return _masks[index]; }
//! \}
//! \name Utilities
//! \{
//! Tests whether all register masks are zero (empty).
inline bool empty() const noexcept {
return _masks.aggregate<Support::Or>() == 0;
}
inline bool has(RegGroup group, RegMask mask = 0xFFFFFFFFu) const noexcept {
return (_masks[group] & mask) != 0;
}
template<class Operator>
inline void op(const RARegMask& other) noexcept {
_masks.combine<Operator>(other._masks);
}
template<class Operator>
inline void op(RegGroup group, RegMask mask) noexcept {
_masks[group] = Operator::op(_masks[group], mask);
}
inline void clear(RegGroup group, RegMask mask) noexcept {
_masks[group] = _masks[group] & ~mask;
}
//! \}
};
//! Information associated with each instruction, propagated to blocks, loops, and the whole function. This
//! information can be used to do minor decisions before the register allocator tries to do its job. For
//! example to use fast register allocation inside a block or loop it cannot have clobbered and/or fixed
//! registers, etc...
class RARegsStats {
public:
//! \name Constants
//! \{
enum Index : uint32_t {
kIndexUsed = 0,
kIndexFixed = 8,
kIndexClobbered = 16
};
enum Mask : uint32_t {
kMaskUsed = 0xFFu << kIndexUsed,
kMaskFixed = 0xFFu << kIndexFixed,
kMaskClobbered = 0xFFu << kIndexClobbered
};
//! \}
//! \name Members
//! \{
uint32_t _packed = 0;
//! \}
//! \name Accessors
//! \{
inline void reset() noexcept { _packed = 0; }
inline void combineWith(const RARegsStats& other) noexcept { _packed |= other._packed; }
inline bool hasUsed() const noexcept { return (_packed & kMaskUsed) != 0u; }
inline bool hasUsed(RegGroup group) const noexcept { return (_packed & Support::bitMask(kIndexUsed + uint32_t(group))) != 0u; }
inline void makeUsed(RegGroup group) noexcept { _packed |= Support::bitMask(kIndexUsed + uint32_t(group)); }
inline bool hasFixed() const noexcept { return (_packed & kMaskFixed) != 0u; }
inline bool hasFixed(RegGroup group) const noexcept { return (_packed & Support::bitMask(kIndexFixed + uint32_t(group))) != 0u; }
inline void makeFixed(RegGroup group) noexcept { _packed |= Support::bitMask(kIndexFixed + uint32_t(group)); }
inline bool hasClobbered() const noexcept { return (_packed & kMaskClobbered) != 0u; }
inline bool hasClobbered(RegGroup group) const noexcept { return (_packed & Support::bitMask(kIndexClobbered + uint32_t(group))) != 0u; }
inline void makeClobbered(RegGroup group) noexcept { _packed |= Support::bitMask(kIndexClobbered + uint32_t(group)); }
//! \}
};
//! Count of live registers, per group.
class RALiveCount {
public:
//! \name Members
//! \{
Support::Array<uint32_t, Globals::kNumVirtGroups> n {};
//! \}
//! \name Construction & Destruction
//! \{
inline RALiveCount() noexcept = default;
inline RALiveCount(const RALiveCount& other) noexcept = default;
inline void init(const RALiveCount& other) noexcept { n = other.n; }
inline void reset() noexcept { n.fill(0); }
//! \}
//! \name Overloaded Operators
//! \{
inline RALiveCount& operator=(const RALiveCount& other) noexcept = default;
inline uint32_t& operator[](RegGroup group) noexcept { return n[group]; }
inline const uint32_t& operator[](RegGroup group) const noexcept { return n[group]; }
//! \}
//! \name Utilities
//! \{
template<class Operator>
inline void op(const RALiveCount& other) noexcept { n.combine<Operator>(other.n); }
//! \}
};
struct RALiveInterval {
//! \name Constants
//! \{
enum : uint32_t {
kNaN = 0,
kInf = 0xFFFFFFFFu
};
//! \}
//! \name Members
//! \{
uint32_t a, b;
//! \}
//! \name Construction & Destruction
//! \{
inline RALiveInterval() noexcept : a(0), b(0) {}
inline RALiveInterval(uint32_t a, uint32_t b) noexcept : a(a), b(b) {}
inline RALiveInterval(const RALiveInterval& other) noexcept : a(other.a), b(other.b) {}
inline void init(uint32_t aVal, uint32_t bVal) noexcept {
a = aVal;
b = bVal;
}
inline void init(const RALiveInterval& other) noexcept { init(other.a, other.b); }
inline void reset() noexcept { init(0, 0); }
//! \}
//! \name Overloaded Operators
//! \{
inline RALiveInterval& operator=(const RALiveInterval& other) = default;
//! \}
//! \name Accessors
//! \{
inline bool isValid() const noexcept { return a < b; }
inline uint32_t width() const noexcept { return b - a; }
//! \}
};
//! Live span with payload of type `T`.
template<typename T>
class RALiveSpan : public RALiveInterval, public T {
public:
//! \name Types
//! \{
typedef T DataType;
//! \}
//! \name Construction & Destruction
//! \{
inline RALiveSpan() noexcept : RALiveInterval(), T() {}
inline RALiveSpan(const RALiveSpan<T>& other) noexcept : RALiveInterval(other), T() {}
inline RALiveSpan(const RALiveInterval& interval, const T& data) noexcept : RALiveInterval(interval), T(data) {}
inline RALiveSpan(uint32_t a, uint32_t b) noexcept : RALiveInterval(a, b), T() {}
inline RALiveSpan(uint32_t a, uint32_t b, const T& data) noexcept : RALiveInterval(a, b), T(data) {}
inline void init(const RALiveSpan<T>& other) noexcept {
RALiveInterval::init(static_cast<const RALiveInterval&>(other));
T::init(static_cast<const T&>(other));
}
inline void init(const RALiveSpan<T>& span, const T& data) noexcept {
RALiveInterval::init(static_cast<const RALiveInterval&>(span));
T::init(data);
}
inline void init(const RALiveInterval& interval, const T& data) noexcept {
RALiveInterval::init(interval);
T::init(data);
}
//! \}
//! \name Overloaded Operators
//! \{
inline RALiveSpan& operator=(const RALiveSpan& other) {
init(other);
return *this;
}
//! \}
};
//! Vector of `RALiveSpan<T>` with additional convenience API.
template<typename T>
class RALiveSpans {
public:
ASMJIT_NONCOPYABLE(RALiveSpans)
typedef typename T::DataType DataType;
ZoneVector<T> _data;
//! \name Construction & Destruction
//! \{
inline RALiveSpans() noexcept : _data() {}
inline void reset() noexcept { _data.reset(); }
inline void release(ZoneAllocator* allocator) noexcept { _data.release(allocator); }
//! \}
//! \name Accessors
//! \{
inline bool empty() const noexcept { return _data.empty(); }
inline uint32_t size() const noexcept { return _data.size(); }
inline T* data() noexcept { return _data.data(); }
inline const T* data() const noexcept { return _data.data(); }
inline bool isOpen() const noexcept {
uint32_t size = _data.size();
return size > 0 && _data[size - 1].b == RALiveInterval::kInf;
}
//! \}
//! \name Utilities
//! \{
inline void swap(RALiveSpans<T>& other) noexcept { _data.swap(other._data); }
//! Open the current live span.
ASMJIT_FORCE_INLINE Error openAt(ZoneAllocator* allocator, uint32_t start, uint32_t end) noexcept {
bool wasOpen;
return openAt(allocator, start, end, wasOpen);
}
ASMJIT_FORCE_INLINE Error openAt(ZoneAllocator* allocator, uint32_t start, uint32_t end, bool& wasOpen) noexcept {
uint32_t size = _data.size();
wasOpen = false;
if (size > 0) {
T& last = _data[size - 1];
if (last.b >= start) {
wasOpen = last.b > start;
last.b = end;
return kErrorOk;
}
}
return _data.append(allocator, T(start, end));
}
ASMJIT_FORCE_INLINE void closeAt(uint32_t end) noexcept {
ASMJIT_ASSERT(!empty());
uint32_t size = _data.size();
_data[size - 1].b = end;
}
//! Returns the sum of width of all spans.
//!
//! \note Don't overuse, this iterates over all spans so it's O(N). It should be only called once and then cached.
inline uint32_t width() const noexcept {
uint32_t width = 0;
for (const T& span : _data)
width += span.width();
return width;
}
inline T& operator[](uint32_t index) noexcept { return _data[index]; }
inline const T& operator[](uint32_t index) const noexcept { return _data[index]; }
inline bool intersects(const RALiveSpans<T>& other) const noexcept {
return intersects(*this, other);
}
ASMJIT_FORCE_INLINE Error nonOverlappingUnionOf(ZoneAllocator* allocator, const RALiveSpans<T>& x, const RALiveSpans<T>& y, const DataType& yData) noexcept {
uint32_t finalSize = x.size() + y.size();
ASMJIT_PROPAGATE(_data.reserve(allocator, finalSize));
T* dstPtr = _data.data();
const T* xSpan = x.data();
const T* ySpan = y.data();
const T* xEnd = xSpan + x.size();
const T* yEnd = ySpan + y.size();
// Loop until we have intersection or either `xSpan == xEnd` or `ySpan == yEnd`, which means that there is no
// intersection. We advance either `xSpan` or `ySpan` depending on their ranges.
if (xSpan != xEnd && ySpan != yEnd) {
uint32_t xa, ya;
xa = xSpan->a;
for (;;) {
while (ySpan->b <= xa) {
dstPtr->init(*ySpan, yData);
dstPtr++;
if (++ySpan == yEnd)
goto Done;
}
ya = ySpan->a;
while (xSpan->b <= ya) {
*dstPtr++ = *xSpan;
if (++xSpan == xEnd)
goto Done;
}
// We know that `xSpan->b > ySpan->a`, so check if `ySpan->b > xSpan->a`.
xa = xSpan->a;
if (ySpan->b > xa)
return 0xFFFFFFFFu;
}
}
Done:
while (xSpan != xEnd) {
*dstPtr++ = *xSpan++;
}
while (ySpan != yEnd) {
dstPtr->init(*ySpan, yData);
dstPtr++;
ySpan++;
}
_data._setEndPtr(dstPtr);
return kErrorOk;
}
static ASMJIT_FORCE_INLINE bool intersects(const RALiveSpans<T>& x, const RALiveSpans<T>& y) noexcept {
const T* xSpan = x.data();
const T* ySpan = y.data();
const T* xEnd = xSpan + x.size();
const T* yEnd = ySpan + y.size();
// Loop until we have intersection or either `xSpan == xEnd` or `ySpan == yEnd`, which means that there is no
// intersection. We advance either `xSpan` or `ySpan` depending on their end positions.
if (xSpan == xEnd || ySpan == yEnd)
return false;
uint32_t xa, ya;
xa = xSpan->a;
for (;;) {
while (ySpan->b <= xa)
if (++ySpan == yEnd)
return false;
ya = ySpan->a;
while (xSpan->b <= ya)
if (++xSpan == xEnd)
return false;
// We know that `xSpan->b > ySpan->a`, so check if `ySpan->b > xSpan->a`.
xa = xSpan->a;
if (ySpan->b > xa)
return true;
}
}
//! \}
};
//! Statistics about a register liveness.
class RALiveStats {
public:
uint32_t _width = 0;
float _freq = 0.0f;
float _priority = 0.0f;
//! \name Accessors
//! \{
inline uint32_t width() const noexcept { return _width; }
inline float freq() const noexcept { return _freq; }
inline float priority() const noexcept { return _priority; }
//! \}
};
struct LiveRegData {
uint32_t id;
inline explicit LiveRegData(uint32_t id = BaseReg::kIdBad) noexcept : id(id) {}
inline LiveRegData(const LiveRegData& other) noexcept = default;
inline void init(const LiveRegData& other) noexcept { id = other.id; }
inline bool operator==(const LiveRegData& other) const noexcept { return id == other.id; }
inline bool operator!=(const LiveRegData& other) const noexcept { return id != other.id; }
};
typedef RALiveSpan<LiveRegData> LiveRegSpan;
typedef RALiveSpans<LiveRegSpan> LiveRegSpans;
//! Flags used by \ref RATiedReg.
//!
//! Register access information is encoded in 4 flags in total:
//!
//! - `kRead` - Register is Read (ReadWrite if combined with `kWrite`).
//! - `kWrite` - Register is Written (ReadWrite if combined with `kRead`).
//! - `kUse` - Encoded as Read or ReadWrite.
//! - `kOut` - Encoded as WriteOnly.
//!
//! Let's describe all of these on two X86 instructions:
//!
//! - ADD x{R|W|Use}, x{R|Use} -> {x:R|W|Use }
//! - LEA x{ W|Out}, [x{R|Use} + x{R|Out}] -> {x:R|W|Use|Out }
//! - ADD x{R|W|Use}, y{R|Use} -> {x:R|W|Use y:R|Use}
//! - LEA x{ W|Out}, [x{R|Use} + y{R|Out}] -> {x:R|W|Use|Out y:R|Use}
//!
//! It should be obvious from the example above how these flags get created. Each operand contains READ/WRITE
//! information, which is then merged to RATiedReg's flags. However, we also need to represent the possitility
//! to view the operation as two independent operations - USE and OUT, because the register allocator first
//! allocates USE registers, and then assigns OUT registers independently of USE registers.
enum class RATiedFlags : uint32_t {
//! No flags.
kNone = 0,
// Access Flags
// ------------
//! Register is read.
kRead = uint32_t(OpRWFlags::kRead),
//! Register is written.
kWrite = uint32_t(OpRWFlags::kWrite),
//! Register both read and written.
kRW = uint32_t(OpRWFlags::kRW),
// Use / Out Flags
// ---------------
//! Register has a USE slot (read/rw).
kUse = 0x00000004u,
//! Register has an OUT slot (write-only).
kOut = 0x00000008u,
//! Register in USE slot can be patched to memory.
kUseRM = 0x00000010u,
//! Register in OUT slot can be patched to memory.
kOutRM = 0x00000020u,
//! Register has a fixed USE slot.
kUseFixed = 0x00000040u,
//! Register has a fixed OUT slot.
kOutFixed = 0x00000080u,
//! Register USE slot has been allocated.
kUseDone = 0x00000100u,
//! Register OUT slot has been allocated.
kOutDone = 0x00000200u,
// Consecutive Flags / Data
// ------------------------
kUseConsecutive = 0x00000400u,
kOutConsecutive = 0x00000800u,
kLeadConsecutive = 0x00001000u,
kConsecutiveData = 0x00006000u,
// Liveness Flags
// --------------
//! Register must be duplicated (function call only).
kDuplicate = 0x00010000u,
//! Last occurrence of this VirtReg in basic block.
kLast = 0x00020000u,
//! Kill this VirtReg after use.
kKill = 0x00040000u,
// X86 Specific Flags
// ------------------
// Architecture specific flags are used during RATiedReg building to ensure that architecture-specific constraints
// are handled properly. These flags are not really needed after RATiedReg[] is built and copied to `RAInst`.
//! This RATiedReg references GPB-LO or GPB-HI.
kX86_Gpb = 0x01000000u,
// Instruction Flags (Never used by RATiedReg)
// -------------------------------------------
//! Instruction is transformable to another instruction if necessary.
//!
//! This is flag that is only used by \ref RAInst to inform register allocator that the instruction has some
//! constraints that can only be solved by transforming the instruction into another instruction, most likely
//! by changing its InstId.
kInst_IsTransformable = 0x80000000u
};
ASMJIT_DEFINE_ENUM_FLAGS(RATiedFlags)
static_assert(uint32_t(RATiedFlags::kRead ) == 0x1, "RATiedFlags::kRead must be 0x1");
static_assert(uint32_t(RATiedFlags::kWrite) == 0x2, "RATiedFlags::kWrite must be 0x2");
static_assert(uint32_t(RATiedFlags::kRW ) == 0x3, "RATiedFlags::kRW must be 0x3");
//! Tied register merges one ore more register operand into a single entity. It contains information about its access
//! (Read|Write) and allocation slots (Use|Out) that are used by the register allocator and liveness analysis.
struct RATiedReg {
//! \name Members
//! \{
//! WorkReg id.
uint32_t _workId;
//! WorkReg id that is an immediate consecutive parent of this register, or Globals::kInvalidId if it has no parent.
uint32_t _consecutiveParent;
//! Allocation flags.
RATiedFlags _flags;
union {
struct {
//! How many times the VirtReg is referenced in all operands.
uint8_t _refCount;
//! Size of a memory operand in case that it's use instead of the register.
uint8_t _rmSize;
//! Physical register for use operation (ReadOnly / ReadWrite).
uint8_t _useId;
//! Physical register for out operation (WriteOnly).
uint8_t _outId;
};
//! Packed data.
uint32_t _packed;
};
//! Registers where inputs {R|X} can be allocated to.
RegMask _useRegMask;
//! Registers where outputs {W} can be allocated to.
RegMask _outRegMask;
//! Indexes used to rewrite USE regs.
uint32_t _useRewriteMask;
//! Indexes used to rewrite OUT regs.
uint32_t _outRewriteMask;
//! \}
//! \name Statics
//! \{
static inline RATiedFlags consecutiveDataToFlags(uint32_t offset) noexcept {
ASMJIT_ASSERT(offset < 4);
constexpr uint32_t kOffsetShift = Support::ConstCTZ<uint32_t(RATiedFlags::kConsecutiveData)>::value;
return (RATiedFlags)(offset << kOffsetShift);
}
static inline uint32_t consecutiveDataFromFlags(RATiedFlags flags) noexcept {
constexpr uint32_t kOffsetShift = Support::ConstCTZ<uint32_t(RATiedFlags::kConsecutiveData)>::value;
return uint32_t(flags & RATiedFlags::kConsecutiveData) >> kOffsetShift;
}
//! \}
//! \name Construction & Destruction
//! \{
inline void init(uint32_t workId, RATiedFlags flags, RegMask useRegMask, uint32_t useId, uint32_t useRewriteMask, RegMask outRegMask, uint32_t outId, uint32_t outRewriteMask, uint32_t rmSize = 0, uint32_t consecutiveParent = Globals::kInvalidId) noexcept {
_workId = workId;
_consecutiveParent = consecutiveParent;
_flags = flags;
_refCount = 1;
_rmSize = uint8_t(rmSize);
_useId = uint8_t(useId);
_outId = uint8_t(outId);
_useRegMask = useRegMask;
_outRegMask = outRegMask;
_useRewriteMask = useRewriteMask;
_outRewriteMask = outRewriteMask;
}
//! \}
//! \name Accessors
//! \{
//! Returns the associated WorkReg id.
inline uint32_t workId() const noexcept { return _workId; }
inline bool hasConsecutiveParent() const noexcept { return _consecutiveParent != Globals::kInvalidId; }
inline uint32_t consecutiveParent() const noexcept { return _consecutiveParent; }
inline uint32_t consecutiveData() const noexcept { return consecutiveDataFromFlags(_flags); }
//! Returns TiedReg flags.
inline RATiedFlags flags() const noexcept { return _flags; }
//! Checks if the given `flag` is set.
inline bool hasFlag(RATiedFlags flag) const noexcept { return Support::test(_flags, flag); }
//! Adds tied register flags.
inline void addFlags(RATiedFlags flags) noexcept { _flags |= flags; }
//! Tests whether the register is read (writes `true` also if it's Read/Write).
inline bool isRead() const noexcept { return hasFlag(RATiedFlags::kRead); }
//! Tests whether the register is written (writes `true` also if it's Read/Write).
inline bool isWrite() const noexcept { return hasFlag(RATiedFlags::kWrite); }
//! Tests whether the register is read only.
inline bool isReadOnly() const noexcept { return (_flags & RATiedFlags::kRW) == RATiedFlags::kRead; }
//! Tests whether the register is write only.
inline bool isWriteOnly() const noexcept { return (_flags & RATiedFlags::kRW) == RATiedFlags::kWrite; }
//! Tests whether the register is read and written.
inline bool isReadWrite() const noexcept { return (_flags & RATiedFlags::kRW) == RATiedFlags::kRW; }
//! Tests whether the tied register has use operand (Read/ReadWrite).
inline bool isUse() const noexcept { return hasFlag(RATiedFlags::kUse); }
//! Tests whether the tied register has out operand (Write).
inline bool isOut() const noexcept { return hasFlag(RATiedFlags::kOut); }
//! Tests whether the tied register has \ref RATiedFlags::kLeadConsecutive flag set.
inline bool isLeadConsecutive() const noexcept { return hasFlag(RATiedFlags::kLeadConsecutive); }
//! Tests whether the tied register has \ref RATiedFlags::kUseConsecutive flag set.
inline bool isUseConsecutive() const noexcept { return hasFlag(RATiedFlags::kUseConsecutive); }
//! Tests whether the tied register has \ref RATiedFlags::kOutConsecutive flag set.
inline bool isOutConsecutive() const noexcept { return hasFlag(RATiedFlags::kOutConsecutive); }
//! Tests whether the tied register has any consecutive flag.
inline bool hasAnyConsecutiveFlag() const noexcept { return hasFlag(RATiedFlags::kLeadConsecutive | RATiedFlags::kUseConsecutive | RATiedFlags::kOutConsecutive); }
//! Tests whether the USE slot can be patched to memory operand.
inline bool hasUseRM() const noexcept { return hasFlag(RATiedFlags::kUseRM); }
//! Tests whether the OUT slot can be patched to memory operand.
inline bool hasOutRM() const noexcept { return hasFlag(RATiedFlags::kOutRM); }
inline uint32_t rmSize() const noexcept { return _rmSize; }
inline void makeReadOnly() noexcept {
_flags = (_flags & ~(RATiedFlags::kOut | RATiedFlags::kWrite)) | RATiedFlags::kUse;
_useRewriteMask |= _outRewriteMask;
_outRewriteMask = 0;
}
inline void makeWriteOnly() noexcept {
_flags = (_flags & ~(RATiedFlags::kUse | RATiedFlags::kRead)) | RATiedFlags::kOut;
_outRewriteMask |= _useRewriteMask;
_useRewriteMask = 0;
}
//! Tests whether the register would duplicate.
inline bool isDuplicate() const noexcept { return hasFlag(RATiedFlags::kDuplicate); }
//! Tests whether the register (and the instruction it's part of) appears last in the basic block.
inline bool isLast() const noexcept { return hasFlag(RATiedFlags::kLast); }
//! Tests whether the register should be killed after USEd and/or OUTed.
inline bool isKill() const noexcept { return hasFlag(RATiedFlags::kKill); }
//! Tests whether the register is OUT or KILL (used internally by local register allocator).
inline bool isOutOrKill() const noexcept { return hasFlag(RATiedFlags::kOut | RATiedFlags::kKill); }
//! Returns a register mask that describes allocable USE registers (Read/ReadWrite access).
inline RegMask useRegMask() const noexcept { return _useRegMask; }
//! Returns a register mask that describes allocable OUT registers (WriteOnly access).
inline RegMask outRegMask() const noexcept { return _outRegMask; }
inline uint32_t refCount() const noexcept { return _refCount; }
inline void addRefCount(uint32_t n = 1) noexcept { _refCount = uint8_t(_refCount + n); }
//! Tests whether the register must be allocated to a fixed physical register before it's used.
inline bool hasUseId() const noexcept { return _useId != BaseReg::kIdBad; }
//! Tests whether the register must be allocated to a fixed physical register before it's written.
inline bool hasOutId() const noexcept { return _outId != BaseReg::kIdBad; }
//! Returns a physical register id used for 'use' operation.
inline uint32_t useId() const noexcept { return _useId; }
//! Returns a physical register id used for 'out' operation.
inline uint32_t outId() const noexcept { return _outId; }
inline uint32_t useRewriteMask() const noexcept { return _useRewriteMask; }
inline uint32_t outRewriteMask() const noexcept { return _outRewriteMask; }
//! Sets a physical register used for 'use' operation.
inline void setUseId(uint32_t index) noexcept { _useId = uint8_t(index); }
//! Sets a physical register used for 'out' operation.
inline void setOutId(uint32_t index) noexcept { _outId = uint8_t(index); }
inline bool isUseDone() const noexcept { return hasFlag(RATiedFlags::kUseDone); }
inline bool isOutDone() const noexcept { return hasFlag(RATiedFlags::kUseDone); }
inline void markUseDone() noexcept { addFlags(RATiedFlags::kUseDone); }
inline void markOutDone() noexcept { addFlags(RATiedFlags::kUseDone); }
//! \}
};
//! Flags used by \ref RAWorkReg.
enum class RAWorkRegFlags : uint32_t {
//! No flags.
kNone = 0,
//! This register has already been allocated.
kAllocated = 0x00000001u,
//! Has been coalesced to another WorkReg.
kCoalesced = 0x00000002u,
//! Set when this register is used as a LEAD consecutive register at least once.
kLeadConsecutive = 0x00000004u,
//! Used to mark consecutive registers during processing.
kProcessedConsecutive = 0x00000008u,
//! Stack slot has to be allocated.
kStackUsed = 0x00000010u,
//! Stack allocation is preferred.
kStackPreferred = 0x00000020u,
//! Marked for stack argument reassignment.
kStackArgToStack = 0x00000040u
};
ASMJIT_DEFINE_ENUM_FLAGS(RAWorkRegFlags)
//! Work register provides additional data of \ref VirtReg that is used by register allocator.
//!
//! In general when a virtual register is found by register allocator it maps it to \ref RAWorkReg
//! and then only works with it. The reason for such mapping is that users can create many virtual
//! registers, which are not used inside a register allocation scope (which is currently always a
//! function). So register allocator basically scans the function for virtual registers and maps
//! them into WorkRegs, which receive a temporary ID (workId), which starts from zero. This WorkId
//! is then used in bit-arrays and other mappings.
class RAWorkReg {
public:
ASMJIT_NONCOPYABLE(RAWorkReg)
//! \name Constants
//! \{
enum : uint32_t {
kIdNone = 0xFFFFFFFFu
};
enum : uint32_t {
kNoArgIndex = 0xFFu
};
//! \}
//! \name Members
//! \{
//! RAPass specific ID used during analysis and allocation.
uint32_t _workId = 0;
//! Copy of ID used by \ref VirtReg.
uint32_t _virtId = 0;
//! Permanent association with \ref VirtReg.
VirtReg* _virtReg = nullptr;
//! Temporary association with \ref RATiedReg.
RATiedReg* _tiedReg = nullptr;
//! Stack slot associated with the register.
RAStackSlot* _stackSlot = nullptr;
//! Copy of a signature used by \ref VirtReg.
OperandSignature _signature {};
//! RAPass specific flags used during analysis and allocation.
RAWorkRegFlags _flags = RAWorkRegFlags::kNone;
//! Constains all USE ids collected from all instructions.
//!
//! If this mask is non-zero and not a power of two, it means that the register is used multiple times in
//! instructions where it requires to have a different use ID. This means that in general it's not possible
//! to keep this register in a single home.
RegMask _useIdMask = 0;
//! Preferred mask of registers (if non-zero) to allocate this register to.
//!
//! If this mask is zero it means that either there is no intersection of preferred registers collected from all
//! TiedRegs or there is no preference at all (the register can be allocated to any register all the time).
RegMask _preferredMask = 0xFFFFFFFFu;
//! Consecutive mask, which was collected from all instructions where this register was used as a lead consecutive
//! register.
RegMask _consecutiveMask = 0xFFFFFFFFu;
//! IDs of all physical registers that are clobbered during the lifetime of this WorkReg.
//!
//! This mask should be updated by `RAPass::buildLiveness()`, because it's global and should
//! be updated after unreachable code has been removed.
RegMask _clobberSurvivalMask = 0;
//! IDs of all physical registers this WorkReg has been allocated to.
RegMask _allocatedMask = 0;
//! A byte-mask where each bit represents one valid byte of the register.
uint64_t _regByteMask = 0;
//! Argument index (or `kNoArgIndex` if none).
uint8_t _argIndex = kNoArgIndex;
//! Argument value index in the pack (0 by default).
uint8_t _argValueIndex = 0;
//! Global home register ID (if any, assigned by RA).
uint8_t _homeRegId = BaseReg::kIdBad;
//! Global hint register ID (provided by RA or user).
uint8_t _hintRegId = BaseReg::kIdBad;
//! Live spans of the `VirtReg`.
LiveRegSpans _liveSpans {};
//! Live statistics.
RALiveStats _liveStats {};
//! All nodes that read/write this VirtReg/WorkReg.
ZoneVector<BaseNode*> _refs {};
//! All nodes that write to this VirtReg/WorkReg.
ZoneVector<BaseNode*> _writes {};
//! Contains work IDs of all immediate consecutive registers of this register.
//!
//! \note This bit array only contains immediate consecutives. This means that if this is a register that is
//! followed by 3 more registers, then it would still have only a single immediate. The rest registers would
//! have immediate consecutive registers as well, except the last one.
ZoneBitVector _immediateConsecutives {};
//! \}
//! \name Construction & Destruction
//! \{
inline RAWorkReg(VirtReg* vReg, uint32_t workId) noexcept
: _workId(workId),
_virtId(vReg->id()),
_virtReg(vReg),
_signature(vReg->signature()) {}
//! \}
//! \name Accessors
//! \{
inline uint32_t workId() const noexcept { return _workId; }
inline uint32_t virtId() const noexcept { return _virtId; }
inline const char* name() const noexcept { return _virtReg->name(); }
inline uint32_t nameSize() const noexcept { return _virtReg->nameSize(); }
inline TypeId typeId() const noexcept { return _virtReg->typeId(); }
inline RAWorkRegFlags flags() const noexcept { return _flags; }
inline bool hasFlag(RAWorkRegFlags flag) const noexcept { return Support::test(_flags, flag); }
inline void addFlags(RAWorkRegFlags flags) noexcept { _flags |= flags; }
inline bool isAllocated() const noexcept { return hasFlag(RAWorkRegFlags::kAllocated); }
inline void markAllocated() noexcept { addFlags(RAWorkRegFlags::kAllocated); }
inline bool isLeadConsecutive() const noexcept { return hasFlag(RAWorkRegFlags::kLeadConsecutive); }
inline void markLeadConsecutive() noexcept { addFlags(RAWorkRegFlags::kLeadConsecutive); }
inline bool isProcessedConsecutive() const noexcept { return hasFlag(RAWorkRegFlags::kProcessedConsecutive); }
inline void markProcessedConsecutive() noexcept { addFlags(RAWorkRegFlags::kProcessedConsecutive); }
inline bool isStackUsed() const noexcept { return hasFlag(RAWorkRegFlags::kStackUsed); }
inline void markStackUsed() noexcept { addFlags(RAWorkRegFlags::kStackUsed); }
inline bool isStackPreferred() const noexcept { return hasFlag(RAWorkRegFlags::kStackPreferred); }
inline void markStackPreferred() noexcept { addFlags(RAWorkRegFlags::kStackPreferred); }
//! Tests whether this RAWorkReg has been coalesced with another one (cannot be used anymore).
inline bool isCoalesced() const noexcept { return hasFlag(RAWorkRegFlags::kCoalesced); }
inline OperandSignature signature() const noexcept { return _signature; }
inline RegType type() const noexcept { return _signature.regType(); }
inline RegGroup group() const noexcept { return _signature.regGroup(); }
inline VirtReg* virtReg() const noexcept { return _virtReg; }
inline bool hasTiedReg() const noexcept { return _tiedReg != nullptr; }
inline RATiedReg* tiedReg() const noexcept { return _tiedReg; }
inline void setTiedReg(RATiedReg* tiedReg) noexcept { _tiedReg = tiedReg; }
inline void resetTiedReg() noexcept { _tiedReg = nullptr; }
inline bool hasStackSlot() const noexcept { return _stackSlot != nullptr; }
inline RAStackSlot* stackSlot() const noexcept { return _stackSlot; }
inline LiveRegSpans& liveSpans() noexcept { return _liveSpans; }
inline const LiveRegSpans& liveSpans() const noexcept { return _liveSpans; }
inline RALiveStats& liveStats() noexcept { return _liveStats; }
inline const RALiveStats& liveStats() const noexcept { return _liveStats; }
inline bool hasArgIndex() const noexcept { return _argIndex != kNoArgIndex; }
inline uint32_t argIndex() const noexcept { return _argIndex; }
inline uint32_t argValueIndex() const noexcept { return _argValueIndex; }
inline void setArgIndex(uint32_t argIndex, uint32_t valueIndex) noexcept {
_argIndex = uint8_t(argIndex);
_argValueIndex = uint8_t(valueIndex);
}
inline bool hasHomeRegId() const noexcept { return _homeRegId != BaseReg::kIdBad; }
inline uint32_t homeRegId() const noexcept { return _homeRegId; }
inline void setHomeRegId(uint32_t physId) noexcept { _homeRegId = uint8_t(physId); }
inline bool hasHintRegId() const noexcept { return _hintRegId != BaseReg::kIdBad; }
inline uint32_t hintRegId() const noexcept { return _hintRegId; }
inline void setHintRegId(uint32_t physId) noexcept { _hintRegId = uint8_t(physId); }
inline RegMask useIdMask() const noexcept { return _useIdMask; }
inline bool hasUseIdMask() const noexcept { return _useIdMask != 0u; }
inline bool hasMultipleUseIds() const noexcept { return _useIdMask != 0u && !Support::isPowerOf2(_useIdMask); }
inline void addUseIdMask(RegMask mask) noexcept { _useIdMask |= mask; }
inline RegMask preferredMask() const noexcept { return _preferredMask; }
inline bool hasPrereffedMask() const noexcept { return _preferredMask != 0xFFFFFFFFu; }
inline void restrictPreferredMask(RegMask mask) noexcept { _preferredMask &= mask; }
inline RegMask consecutiveMask() const noexcept { return _consecutiveMask; }
inline bool hasConsecutiveMask() const noexcept { return _consecutiveMask != 0xFFFFFFFFu; }
inline void restrictConsecutiveMask(RegMask mask) noexcept { _consecutiveMask &= mask; }
inline RegMask clobberSurvivalMask() const noexcept { return _clobberSurvivalMask; }
inline void addClobberSurvivalMask(RegMask mask) noexcept { _clobberSurvivalMask |= mask; }
inline RegMask allocatedMask() const noexcept { return _allocatedMask; }
inline void addAllocatedMask(RegMask mask) noexcept { _allocatedMask |= mask; }
inline uint64_t regByteMask() const noexcept { return _regByteMask; }
inline void setRegByteMask(uint64_t mask) noexcept { _regByteMask = mask; }
inline bool hasImmediateConsecutives() const noexcept { return !_immediateConsecutives.empty(); }
inline const ZoneBitVector& immediateConsecutives() const noexcept { return _immediateConsecutives; }
inline Error addImmediateConsecutive(ZoneAllocator* allocator, uint32_t workId) noexcept {
if (_immediateConsecutives.size() <= workId)
ASMJIT_PROPAGATE(_immediateConsecutives.resize(allocator, workId + 1));
_immediateConsecutives.setBit(workId, true);
return kErrorOk;
}
//! \}
};
//! \}
//! \endcond
ASMJIT_END_NAMESPACE
#endif // ASMJIT_CORE_RADEFS_P_H_INCLUDED