// This file is part of AsmJit project // // See asmjit.h or LICENSE.md for license and copyright information // SPDX-License-Identifier: Zlib #ifndef ASMJIT_CORE_CODEHOLDER_H_INCLUDED #define ASMJIT_CORE_CODEHOLDER_H_INCLUDED #include "../core/archtraits.h" #include "../core/codebuffer.h" #include "../core/errorhandler.h" #include "../core/operand.h" #include "../core/string.h" #include "../core/support.h" #include "../core/target.h" #include "../core/zone.h" #include "../core/zonehash.h" #include "../core/zonestring.h" #include "../core/zonetree.h" #include "../core/zonevector.h" ASMJIT_BEGIN_NAMESPACE //! \addtogroup asmjit_core //! \{ class BaseEmitter; class CodeHolder; class LabelEntry; class Logger; //! Operator type that can be used within an \ref Expression. enum class ExpressionOpType : uint8_t { //! Addition. kAdd = 0, //! Subtraction. kSub = 1, //! Multiplication kMul = 2, //! Logical left shift. kSll = 3, //! Logical right shift. kSrl = 4, //! Arithmetic right shift. kSra = 5 }; //! Value tyoe that can be used within an \ref Expression. enum class ExpressionValueType : uint8_t { //! No value or invalid. kNone = 0, //! Value is 64-bit unsigned integer (constant). kConstant = 1, //! Value is \ref LabelEntry, which references a \ref Label. kLabel = 2, //! Value is \ref Expression kExpression = 3 }; //! Expression node that can reference constants, labels, and another expressions. struct Expression { //! Expression value. union Value { //! Constant. uint64_t constant; //! Pointer to another expression. Expression* expression; //! Pointer to \ref LabelEntry. LabelEntry* label; }; //! \name Members //! \{ //! Operation type. ExpressionOpType opType; //! Value types of \ref value. ExpressionValueType valueType[2]; //! Reserved for future use, should be initialized to zero. uint8_t reserved[5]; //! Expression left and right values. Value value[2]; //! \} //! \name Accessors //! \{ //! Resets the whole expression. //! //! Changes both values to \ref ExpressionValueType::kNone. inline void reset() noexcept { memset(this, 0, sizeof(*this)); } //! Sets the value type at `index` to \ref ExpressionValueType::kConstant and its content to `constant`. inline void setValueAsConstant(size_t index, uint64_t constant) noexcept { valueType[index] = ExpressionValueType::kConstant; value[index].constant = constant; } //! Sets the value type at `index` to \ref ExpressionValueType::kLabel and its content to `labelEntry`. inline void setValueAsLabel(size_t index, LabelEntry* labelEntry) noexcept { valueType[index] = ExpressionValueType::kLabel; value[index].label = labelEntry; } //! Sets the value type at `index` to \ref ExpressionValueType::kExpression and its content to `expression`. inline void setValueAsExpression(size_t index, Expression* expression) noexcept { valueType[index] = ExpressionValueType::kExpression; value[index].expression = expression; } //! \} }; //! Section flags, used by \ref Section. enum class SectionFlags : uint32_t { //! No flags. kNone = 0, //! Executable (.text sections). kExecutable = 0x00000001u, //! Read-only (.text and .data sections). kReadOnly = 0x00000002u, //! Zero initialized by the loader (BSS). kZeroInitialized = 0x00000004u, //! Info / comment flag. kComment = 0x00000008u, //! Section created implicitly, can be deleted by \ref Target. kImplicit = 0x80000000u }; ASMJIT_DEFINE_ENUM_FLAGS(SectionFlags) //! Flags that can be used with \ref CodeHolder::copySectionData() and \ref CodeHolder::copyFlattenedData(). enum class CopySectionFlags : uint32_t { //! No flags. kNone = 0, //! If virtual size of a section is greater than the size of its \ref CodeBuffer then all bytes between the buffer //! size and virtual size will be zeroed. If this option is not set then those bytes would be left as is, which //! means that if the user didn't initialize them they would have a previous content, which may be unwanted. kPadSectionBuffer = 0x00000001u, //! Clears the target buffer if the flattened data is less than the destination size. This option works //! only with \ref CodeHolder::copyFlattenedData() as it processes multiple sections. It is ignored by //! \ref CodeHolder::copySectionData(). kPadTargetBuffer = 0x00000002u }; ASMJIT_DEFINE_ENUM_FLAGS(CopySectionFlags) //! Section entry. class Section { public: //! \name Members //! \{ //! Section id. uint32_t _id; //! Section flags. SectionFlags _flags; //! Section alignment requirements (0 if no requirements). uint32_t _alignment; //! Order (lower value means higher priority). int32_t _order; //! Offset of this section from base-address. uint64_t _offset; //! Virtual size of the section (zero initialized sections). uint64_t _virtualSize; //! Section name (max 35 characters, PE allows max 8). FixedString _name; //! Code or data buffer. CodeBuffer _buffer; //! \} //! \name Accessors //! \{ //! Returns the section id. inline uint32_t id() const noexcept { return _id; } //! Returns the section name, as a null terminated string. inline const char* name() const noexcept { return _name.str; } //! Returns the section data. inline uint8_t* data() noexcept { return _buffer.data(); } //! \overload inline const uint8_t* data() const noexcept { return _buffer.data(); } //! Returns the section flags. inline SectionFlags flags() const noexcept { return _flags; } //! Tests whether the section has the given `flag`. inline bool hasFlag(SectionFlags flag) const noexcept { return Support::test(_flags, flag); } //! Adds `flags` to the section flags. inline void addFlags(SectionFlags flags) noexcept { _flags |= flags; } //! Removes `flags` from the section flags. inline void clearFlags(SectionFlags flags) noexcept { _flags &= ~flags; } //! Returns the minimum section alignment inline uint32_t alignment() const noexcept { return _alignment; } //! Sets the minimum section alignment inline void setAlignment(uint32_t alignment) noexcept { _alignment = alignment; } //! Returns the section order, which has a higher priority than section id. inline int32_t order() const noexcept { return _order; } //! Returns the section offset, relative to base. inline uint64_t offset() const noexcept { return _offset; } //! Set the section offset. inline void setOffset(uint64_t offset) noexcept { _offset = offset; } //! Returns the virtual size of the section. //! //! Virtual size is initially zero and is never changed by AsmJit. It's normal if virtual size is smaller than //! size returned by `bufferSize()` as the buffer stores real data emitted by assemblers or appended by users. //! //! Use `realSize()` to get the real and final size of this section. inline uint64_t virtualSize() const noexcept { return _virtualSize; } //! Sets the virtual size of the section. inline void setVirtualSize(uint64_t virtualSize) noexcept { _virtualSize = virtualSize; } //! Returns the buffer size of the section. inline size_t bufferSize() const noexcept { return _buffer.size(); } //! Returns the real size of the section calculated from virtual and buffer sizes. inline uint64_t realSize() const noexcept { return Support::max(virtualSize(), bufferSize()); } //! Returns the `CodeBuffer` used by this section. inline CodeBuffer& buffer() noexcept { return _buffer; } //! Returns the `CodeBuffer` used by this section (const). inline const CodeBuffer& buffer() const noexcept { return _buffer; } //! \} }; //! Entry in an address table. class AddressTableEntry : public ZoneTreeNodeT { public: ASMJIT_NONCOPYABLE(AddressTableEntry) //! \name Members //! \{ //! Address. uint64_t _address; //! Slot. uint32_t _slot; //! \} //! \name Construction & Destruction //! \{ inline explicit AddressTableEntry(uint64_t address) noexcept : _address(address), _slot(0xFFFFFFFFu) {} //! \} //! \name Accessors //! \{ inline uint64_t address() const noexcept { return _address; } inline uint32_t slot() const noexcept { return _slot; } inline bool hasAssignedSlot() const noexcept { return _slot != 0xFFFFFFFFu; } inline bool operator<(const AddressTableEntry& other) const noexcept { return _address < other._address; } inline bool operator>(const AddressTableEntry& other) const noexcept { return _address > other._address; } inline bool operator<(uint64_t queryAddress) const noexcept { return _address < queryAddress; } inline bool operator>(uint64_t queryAddress) const noexcept { return _address > queryAddress; } //! \} }; //! Offset format type, used by \ref OffsetFormat. enum class OffsetType : uint8_t { //! A value having `_immBitCount` bits and shifted by `_immBitShift`. //! //! This offset type is sufficient for many targets that store offset as a continuous set bits within an //! instruction word / sequence of bytes. kSignedOffset, //! An unsigned value having `_immBitCount` bits and shifted by `_immBitShift`. kUnsignedOffset, // AArch64 Specific Offset Formats // ------------------------------- //! AARCH64 ADR format of `[.|immlo:2|.....|immhi:19|.....]`. kAArch64_ADR, //! AARCH64 ADRP format of `[.|immlo:2|.....|immhi:19|.....]` (4kB pages). kAArch64_ADRP, //! Maximum value of `OffsetFormatType`. kMaxValue = kAArch64_ADRP }; //! Provides information about formatting offsets, absolute addresses, or their parts. Offset format is used by both //! \ref RelocEntry and \ref LabelLink. The illustration below describes the relation of region size and offset size. //! Region size is the size of the whole unit whereas offset size is the size of the unit that will be patched. //! //! ``` //! +-> Code buffer | The subject of the relocation (region) | //! | | (Word-Offset) (Word-Size) | //! |xxxxxxxxxxxxxxx|................|*PATCHED*|................|xxxxxxxxxxxx-> //! | | //! [Word Offset points here]----+ +--- [WordOffset + WordSize] //! ``` //! //! Once the offset word has been located it can be patched like this: //! //! ``` //! |ImmDiscardLSB (discard LSB bits). //! |.. //! [0000000000000iiiiiiiiiiiiiiiiiDD] - Offset value (32-bit) //! [000000000000000iiiiiiiiiiiiiiiii] - Offset value after discard LSB. //! [00000000000iiiiiiiiiiiiiiiii0000] - Offset value shifted by ImmBitShift. //! [xxxxxxxxxxxiiiiiiiiiiiiiiiiixxxx] - Patched word (32-bit) //! |...............| //! (ImmBitCount) +- ImmBitShift //! ``` struct OffsetFormat { //! \name Members //! \{ //! Type of the offset. OffsetType _type; //! Encoding flags. uint8_t _flags; //! Size of the region (in bytes) containing the offset value, if the offset value is part of an instruction, //! otherwise it would be the same as `_valueSize`. uint8_t _regionSize; //! Size of the offset value, in bytes (1, 2, 4, or 8). uint8_t _valueSize; //! Offset of the offset value, in bytes, relative to the start of the region or data. Value offset would be //! zero if both region size and value size are equal. uint8_t _valueOffset; //! Size of the offset immediate value in bits. uint8_t _immBitCount; //! Shift of the offset immediate value in bits in the target word. uint8_t _immBitShift; //! Number of least significant bits to discard before writing the immediate to the destination. All discarded //! bits must be zero otherwise the value is invalid. uint8_t _immDiscardLsb; //! \} //! \name Accessors //! \{ //! Returns the type of the offset. inline OffsetType type() const noexcept { return _type; } //! Returns flags. inline uint32_t flags() const noexcept { return _flags; } //! Returns the size of the region/instruction where the offset is encoded. inline uint32_t regionSize() const noexcept { return _regionSize; } //! Returns the offset of the word relative to the start of the region where the offset is. inline uint32_t valueOffset() const noexcept { return _valueOffset; } //! Returns the size of the data-type (word) that contains the offset, in bytes. inline uint32_t valueSize() const noexcept { return _valueSize; } //! Returns the count of bits of the offset value in the data it's stored in. inline uint32_t immBitCount() const noexcept { return _immBitCount; } //! Returns the bit-shift of the offset value in the data it's stored in. inline uint32_t immBitShift() const noexcept { return _immBitShift; } //! Returns the number of least significant bits of the offset value, that must be zero and that are not part of //! the encoded data. inline uint32_t immDiscardLsb() const noexcept { return _immDiscardLsb; } //! Resets this offset format to a simple data value of `dataSize` bytes. //! //! The region will be the same size as data and immediate bits would correspond to `dataSize * 8`. There will be //! no immediate bit shift or discarded bits. inline void resetToSimpleValue(OffsetType type, size_t valueSize) noexcept { ASMJIT_ASSERT(valueSize <= 8u); _type = type; _flags = uint8_t(0); _regionSize = uint8_t(valueSize); _valueSize = uint8_t(valueSize); _valueOffset = uint8_t(0); _immBitCount = uint8_t(valueSize * 8u); _immBitShift = uint8_t(0); _immDiscardLsb = uint8_t(0); } inline void resetToImmValue(OffsetType type, size_t valueSize, uint32_t immBitShift, uint32_t immBitCount, uint32_t immDiscardLsb) noexcept { ASMJIT_ASSERT(valueSize <= 8u); ASMJIT_ASSERT(immBitShift < valueSize * 8u); ASMJIT_ASSERT(immBitCount <= 64u); ASMJIT_ASSERT(immDiscardLsb <= 64u); _type = type; _flags = uint8_t(0); _regionSize = uint8_t(valueSize); _valueSize = uint8_t(valueSize); _valueOffset = uint8_t(0); _immBitCount = uint8_t(immBitCount); _immBitShift = uint8_t(immBitShift); _immDiscardLsb = uint8_t(immDiscardLsb); } inline void setRegion(size_t regionSize, size_t valueOffset) noexcept { _regionSize = uint8_t(regionSize); _valueOffset = uint8_t(valueOffset); } inline void setLeadingAndTrailingSize(size_t leadingSize, size_t trailingSize) noexcept { _regionSize = uint8_t(leadingSize + trailingSize + _valueSize); _valueOffset = uint8_t(leadingSize); } //! \} }; //! Relocation type. enum class RelocType : uint32_t { //! None/deleted (no relocation). kNone = 0, //! Expression evaluation, `_payload` is pointer to `Expression`. kExpression = 1, //! Relocate absolute to absolute. kAbsToAbs = 2, //! Relocate relative to absolute. kRelToAbs = 3, //! Relocate absolute to relative. kAbsToRel = 4, //! Relocate absolute to relative or use trampoline. kX64AddressEntry = 5 }; //! Relocation entry. struct RelocEntry { //! \name Members //! \{ //! Relocation id. uint32_t _id; //! Type of the relocation. RelocType _relocType; //! Format of the relocated value. OffsetFormat _format; //! Source section id. uint32_t _sourceSectionId; //! Target section id. uint32_t _targetSectionId; //! Source offset (relative to start of the section). uint64_t _sourceOffset; //! Payload (target offset, target address, expression, etc). uint64_t _payload; //! \} //! \name Accessors //! \{ inline uint32_t id() const noexcept { return _id; } inline RelocType relocType() const noexcept { return _relocType; } inline const OffsetFormat& format() const noexcept { return _format; } inline uint32_t sourceSectionId() const noexcept { return _sourceSectionId; } inline uint32_t targetSectionId() const noexcept { return _targetSectionId; } inline uint64_t sourceOffset() const noexcept { return _sourceOffset; } inline uint64_t payload() const noexcept { return _payload; } Expression* payloadAsExpression() const noexcept { return reinterpret_cast(uintptr_t(_payload)); } //! \} }; //! Type of the \ref Label. enum class LabelType : uint8_t { //! Anonymous label that can optionally have a name, which is only used for debugging purposes. kAnonymous = 0, //! Local label (always has parentId). kLocal = 1, //! Global label (never has parentId). kGlobal = 2, //! External label (references an external symbol). kExternal = 3, //! Maximum value of `LabelType`. kMaxValue = kExternal }; //! Data structure used to link either unbound labels or cross-section links. struct LabelLink { //! Next link (single-linked list). LabelLink* next; //! Section id where the label is bound. uint32_t sectionId; //! Relocation id or Globals::kInvalidId. uint32_t relocId; //! Label offset relative to the start of the section. size_t offset; //! Inlined rel8/rel32. intptr_t rel; //! Offset format information. OffsetFormat format; }; //! Label entry. //! //! Contains the following properties: //! - Label id - This is the only thing that is set to the `Label` operand. //! - Label name - Optional, used mostly to create executables and libraries. //! - Label type - Type of the label, default `LabelType::kAnonymous`. //! - Label parent id - Derived from many assemblers that allow to define a local label that falls under a global //! label. This allows to define many labels of the same name that have different parent (global) label. //! - Offset - offset of the label bound by `Assembler`. //! - Links - single-linked list that contains locations of code that has to be patched when the label gets bound. //! Every use of unbound label adds one link to `_links` list. //! - HVal - Hash value of label's name and optionally parentId. //! - HashNext - Hash-table implementation detail. class LabelEntry : public ZoneHashNode { public: //! \name Constants //! \{ enum : uint32_t { //! SSO size of \ref _name. //! //! \cond INTERNAL //! Let's round the size of `LabelEntry` to 64 bytes (as `ZoneAllocator` has granularity of 32 bytes anyway). This //! gives `_name` the remaining space, which is should be 16 bytes on 64-bit and 28 bytes on 32-bit architectures. //! \endcond kStaticNameSize = 64 - (sizeof(ZoneHashNode) + 8 + sizeof(Section*) + sizeof(size_t) + sizeof(LabelLink*)) }; //! \} //! \name Members //! \{ //! Type of the label. LabelType _type; //! Must be zero. uint8_t _reserved[3]; //! Label parent id or zero. uint32_t _parentId; //! Label offset relative to the start of the `_section`. uint64_t _offset; //! Section where the label was bound. Section* _section; //! Label links. LabelLink* _links; //! Label name. ZoneString _name; //! \} //! \name Accessors //! \{ // NOTE: Label id is stored in `_customData`, which is provided by ZoneHashNode to fill a padding that a C++ // compiler targeting 64-bit CPU will add to align the structure to 64-bits. //! Returns label id. inline uint32_t id() const noexcept { return _customData; } //! Sets label id (internal, used only by `CodeHolder`). inline void _setId(uint32_t id) noexcept { _customData = id; } //! Returns label type. inline LabelType type() const noexcept { return _type; } //! Tests whether the label has a parent label. inline bool hasParent() const noexcept { return _parentId != Globals::kInvalidId; } //! Returns label's parent id. inline uint32_t parentId() const noexcept { return _parentId; } //! Returns the section where the label was bound. //! //! If the label was not yet bound the return value is `nullptr`. inline Section* section() const noexcept { return _section; } //! Tests whether the label has name. inline bool hasName() const noexcept { return !_name.empty(); } //! Returns the label's name. //! //! \note Local labels will return their local name without their parent part, for example ".L1". inline const char* name() const noexcept { return _name.data(); } //! Returns size of label's name. //! //! \note Label name is always null terminated, so you can use `strlen()` to get it, however, it's also cached in //! `LabelEntry` itself, so if you want to know the size the fastest way is to call `LabelEntry::nameSize()`. inline uint32_t nameSize() const noexcept { return _name.size(); } //! Returns links associated with this label. inline LabelLink* links() const noexcept { return _links; } //! Tests whether the label is bound. inline bool isBound() const noexcept { return _section != nullptr; } //! Tests whether the label is bound to a the given `sectionId`. inline bool isBoundTo(Section* section) const noexcept { return _section == section; } //! Returns the label offset (only useful if the label is bound). inline uint64_t offset() const noexcept { return _offset; } //! Returns the hash-value of label's name and its parent label (if any). //! //! Label hash is calculated as `HASH(Name) ^ ParentId`. The hash function is implemented in `Support::hashString()` //! and `Support::hashRound()`. inline uint32_t hashCode() const noexcept { return _hashCode; } //! \} }; //! Holds assembled code and data (including sections, labels, and relocation information). //! //! CodeHolder connects emitters with their targets. It provides them interface that can be used to query information //! about the target environment (architecture, etc...) and API to create labels, sections, relocations, and to write //! data to a \ref CodeBuffer, which is always part of \ref Section. More than one emitter can be attached to a single //! CodeHolder instance at a time, which is used in practice //! //! CodeHolder provides interface for all emitter types. Assemblers use CodeHolder to write into \ref CodeBuffer, and //! higher level emitters like Builder and Compiler use CodeHolder to manage labels and sections so higher level code //! can be serialized to Assembler by \ref BaseEmitter::finalize() and \ref BaseBuilder::serializeTo(). //! //! In order to use CodeHolder, it must be first initialized by \ref init(). After the CodeHolder has been successfully //! initialized it can be used to hold assembled code, sections, labels, relocations, and to attach / detach code //! emitters. After the end of code generation it can be used to query physical locations of labels and to relocate //! the assembled code into the right address. //! //! \note \ref CodeHolder has an ability to attach an \ref ErrorHandler, however, the error handler is not triggered //! by \ref CodeHolder itself, it's instead propagated to all emitters that attach to it. class CodeHolder { public: ASMJIT_NONCOPYABLE(CodeHolder) //! \name Members //! \{ //! Environment information. Environment _environment; //! CPU features of the target architecture. CpuFeatures _cpuFeatures; //! Base address or \ref Globals::kNoBaseAddress. uint64_t _baseAddress; //! Attached `Logger`, used by all consumers. Logger* _logger; //! Attached `ErrorHandler`. ErrorHandler* _errorHandler; //! Code zone (used to allocate core structures). Zone _zone; //! Zone allocator, used to manage internal containers. ZoneAllocator _allocator; //! Attached emitters. ZoneVector _emitters; //! Section entries. ZoneVector _sections; //! Section entries sorted by section order and then section id. ZoneVector _sectionsByOrder; //! Label entries. ZoneVector _labelEntries; //! Relocation entries. ZoneVector _relocations; //! Label name -> LabelEntry (only named labels). ZoneHash _namedLabels; //! Count of label links, which are not resolved. size_t _unresolvedLinkCount; //! Pointer to an address table section (or null if this section doesn't exist). Section* _addressTableSection; //! Address table entries. ZoneTree _addressTableEntries; //! \} //! \name Construction & Destruction //! \{ //! Creates an uninitialized CodeHolder (you must init() it before it can be used). //! //! An optional `temporary` argument can be used to initialize the first block of \ref Zone that the CodeHolder //! uses into a temporary memory provided by the user. ASMJIT_API explicit CodeHolder(const Support::Temporary* temporary = nullptr) noexcept; //! \overload inline explicit CodeHolder(const Support::Temporary& temporary) noexcept : CodeHolder(&temporary) {} //! Destroys the CodeHolder and frees all resources it has allocated. ASMJIT_API ~CodeHolder() noexcept; //! Tests whether the `CodeHolder` has been initialized. //! //! Emitters can be only attached to initialized `CodeHolder` instances. inline bool isInitialized() const noexcept { return _environment.isInitialized(); } //! Initializes CodeHolder to hold code described by the given `environment` and `baseAddress`. ASMJIT_API Error init(const Environment& environment, uint64_t baseAddress = Globals::kNoBaseAddress) noexcept; //! Initializes CodeHolder to hold code described by the given `environment`, `cpuFeatures`, and `baseAddress`. ASMJIT_API Error init(const Environment& environment, const CpuFeatures& cpuFeatures, uint64_t baseAddress = Globals::kNoBaseAddress) noexcept; //! Detaches all code-generators attached and resets the `CodeHolder`. ASMJIT_API void reset(ResetPolicy resetPolicy = ResetPolicy::kSoft) noexcept; //! \} //! \name Attach & Detach //! \{ //! Attaches an emitter to this `CodeHolder`. ASMJIT_API Error attach(BaseEmitter* emitter) noexcept; //! Detaches an emitter from this `CodeHolder`. ASMJIT_API Error detach(BaseEmitter* emitter) noexcept; //! \} //! \name Allocators //! \{ //! Returns the allocator that the `CodeHolder` uses. //! //! \note This should be only used for AsmJit's purposes. Code holder uses arena allocator to allocate everything, //! so anything allocated through this allocator will be invalidated by \ref CodeHolder::reset() or by CodeHolder's //! destructor. inline ZoneAllocator* allocator() const noexcept { return const_cast(&_allocator); } //! \} //! \name Code & Architecture //! \{ //! Returns the target environment information. inline const Environment& environment() const noexcept { return _environment; } //! Returns the target architecture. inline Arch arch() const noexcept { return environment().arch(); } //! Returns the target sub-architecture. inline SubArch subArch() const noexcept { return environment().subArch(); } //! Returns the minimum CPU features of the target architecture. inline const CpuFeatures& cpuFeatures() const noexcept { return _cpuFeatures; } //! Tests whether a static base-address is set. inline bool hasBaseAddress() const noexcept { return _baseAddress != Globals::kNoBaseAddress; } //! Returns a static base-address or \ref Globals::kNoBaseAddress, if not set. inline uint64_t baseAddress() const noexcept { return _baseAddress; } //! \} //! \name Emitters //! \{ //! Returns a vector of attached emitters. inline const ZoneVector& emitters() const noexcept { return _emitters; } //! \} //! \name Logging //! \{ //! Returns the attached logger. inline Logger* logger() const noexcept { return _logger; } //! Attaches a `logger` to CodeHolder and propagates it to all attached emitters. ASMJIT_API void setLogger(Logger* logger) noexcept; //! Resets the logger to none. inline void resetLogger() noexcept { setLogger(nullptr); } //! \name Error Handling //! \{ //! Tests whether the CodeHolder has an attached error handler, see \ref ErrorHandler. inline bool hasErrorHandler() const noexcept { return _errorHandler != nullptr; } //! Returns the attached error handler. inline ErrorHandler* errorHandler() const noexcept { return _errorHandler; } //! Attach an error handler to this `CodeHolder`. ASMJIT_API void setErrorHandler(ErrorHandler* errorHandler) noexcept; //! Resets the error handler to none. inline void resetErrorHandler() noexcept { setErrorHandler(nullptr); } //! \} //! \name Code Buffer //! \{ //! Makes sure that at least `n` bytes can be added to CodeHolder's buffer `cb`. //! //! \note The buffer `cb` must be managed by `CodeHolder` - otherwise the behavior of the function is undefined. ASMJIT_API Error growBuffer(CodeBuffer* cb, size_t n) noexcept; //! Reserves the size of `cb` to at least `n` bytes. //! //! \note The buffer `cb` must be managed by `CodeHolder` - otherwise the behavior of the function is undefined. ASMJIT_API Error reserveBuffer(CodeBuffer* cb, size_t n) noexcept; //! \} //! \name Sections //! \{ //! Returns an array of `Section*` records. inline const ZoneVector& sections() const noexcept { return _sections; } //! Returns an array of `Section*` records sorted according to section order first, then section id. inline const ZoneVector& sectionsByOrder() const noexcept { return _sectionsByOrder; } //! Returns the number of sections. inline uint32_t sectionCount() const noexcept { return _sections.size(); } //! Tests whether the given `sectionId` is valid. inline bool isSectionValid(uint32_t sectionId) const noexcept { return sectionId < _sections.size(); } //! Creates a new section and return its pointer in `sectionOut`. //! //! Returns `Error`, does not report a possible error to `ErrorHandler`. ASMJIT_API Error newSection(Section** sectionOut, const char* name, size_t nameSize = SIZE_MAX, SectionFlags flags = SectionFlags::kNone, uint32_t alignment = 1, int32_t order = 0) noexcept; //! Returns a section entry of the given index. inline Section* sectionById(uint32_t sectionId) const noexcept { return _sections[sectionId]; } //! Returns section-id that matches the given `name`. //! //! If there is no such section `Section::kInvalidId` is returned. ASMJIT_API Section* sectionByName(const char* name, size_t nameSize = SIZE_MAX) const noexcept; //! Returns '.text' section (section that commonly represents code). //! //! \note Text section is always the first section in \ref CodeHolder::sections() array. inline Section* textSection() const noexcept { return _sections[0]; } //! Tests whether '.addrtab' section exists. inline bool hasAddressTable() const noexcept { return _addressTableSection != nullptr; } //! Returns '.addrtab' section. //! //! This section is used exclusively by AsmJit to store absolute 64-bit //! addresses that cannot be encoded in instructions like 'jmp' or 'call'. //! //! \note This section is created on demand, the returned pointer can be null. inline Section* addressTableSection() const noexcept { return _addressTableSection; } //! Ensures that '.addrtab' section exists (creates it if it doesn't) and //! returns it. Can return `nullptr` on out of memory condition. ASMJIT_API Section* ensureAddressTableSection() noexcept; //! Used to add an address to an address table. //! //! This implicitly calls `ensureAddressTableSection()` and then creates `AddressTableEntry` that is inserted //! to `_addressTableEntries`. If the address already exists this operation does nothing as the same addresses //! use the same slot. //! //! This function should be considered internal as it's used by assemblers to insert an absolute address into the //! address table. Inserting address into address table without creating a particula relocation entry makes no sense. ASMJIT_API Error addAddressToAddressTable(uint64_t address) noexcept; //! \} //! \name Labels & Symbols //! \{ //! Returns array of `LabelEntry*` records. inline const ZoneVector& labelEntries() const noexcept { return _labelEntries; } //! Returns number of labels created. inline uint32_t labelCount() const noexcept { return _labelEntries.size(); } //! Tests whether the label having `id` is valid (i.e. created by `newLabelEntry()`). inline bool isLabelValid(uint32_t labelId) const noexcept { return labelId < _labelEntries.size(); } //! Tests whether the `label` is valid (i.e. created by `newLabelEntry()`). inline bool isLabelValid(const Label& label) const noexcept { return label.id() < _labelEntries.size(); } //! \overload inline bool isLabelBound(uint32_t labelId) const noexcept { return isLabelValid(labelId) && _labelEntries[labelId]->isBound(); } //! Tests whether the `label` is already bound. //! //! Returns `false` if the `label` is not valid. inline bool isLabelBound(const Label& label) const noexcept { return isLabelBound(label.id()); } //! Returns LabelEntry of the given label `id`. inline LabelEntry* labelEntry(uint32_t labelId) const noexcept { return isLabelValid(labelId) ? _labelEntries[labelId] : static_cast(nullptr); } //! Returns LabelEntry of the given `label`. inline LabelEntry* labelEntry(const Label& label) const noexcept { return labelEntry(label.id()); } //! Returns offset of a `Label` by its `labelId`. //! //! The offset returned is relative to the start of the section. Zero offset is returned for unbound labels, //! which is their initial offset value. inline uint64_t labelOffset(uint32_t labelId) const noexcept { ASMJIT_ASSERT(isLabelValid(labelId)); return _labelEntries[labelId]->offset(); } //! \overload inline uint64_t labelOffset(const Label& label) const noexcept { return labelOffset(label.id()); } //! Returns offset of a label by it's `labelId` relative to the base offset. //! //! \remarks The offset of the section where the label is bound must be valid in order to use this function, //! otherwise the value returned will not be reliable. inline uint64_t labelOffsetFromBase(uint32_t labelId) const noexcept { ASMJIT_ASSERT(isLabelValid(labelId)); const LabelEntry* le = _labelEntries[labelId]; return (le->isBound() ? le->section()->offset() : uint64_t(0)) + le->offset(); } //! \overload inline uint64_t labelOffsetFromBase(const Label& label) const noexcept { return labelOffsetFromBase(label.id()); } //! Creates a new anonymous label and return its id in `idOut`. //! //! Returns `Error`, does not report error to `ErrorHandler`. ASMJIT_API Error newLabelEntry(LabelEntry** entryOut) noexcept; //! Creates a new named \ref LabelEntry of the given label `type`. //! //! \param entryOut Where to store the created \ref LabelEntry. //! \param name The name of the label. //! \param nameSize The length of `name` argument, or `SIZE_MAX` if `name` is a null terminated string, which //! means that the `CodeHolder` will use `strlen()` to determine the length. //! \param type The type of the label to create, see \ref LabelType. //! \param parentId Parent id of a local label, otherwise it must be \ref Globals::kInvalidId. //! \retval Always returns \ref Error, does not report a possible error to the attached \ref ErrorHandler. //! //! AsmJit has a support for local labels (\ref LabelType::kLocal) which require a parent label id (parentId). //! The names of local labels can conflict with names of other local labels that have a different parent. In //! addition, AsmJit supports named anonymous labels, which are useful only for debugging purposes as the //! anonymous name will have a name, which will be formatted, but the label itself cannot be queried by such //! name. ASMJIT_API Error newNamedLabelEntry(LabelEntry** entryOut, const char* name, size_t nameSize, LabelType type, uint32_t parentId = Globals::kInvalidId) noexcept; //! Returns a label by name. //! //! If the named label doesn't a default constructed \ref Label is returned, //! which has its id set to \ref Globals::kInvalidId. inline Label labelByName(const char* name, size_t nameSize = SIZE_MAX, uint32_t parentId = Globals::kInvalidId) noexcept { return Label(labelIdByName(name, nameSize, parentId)); } //! Returns a label id by name. //! //! If the named label doesn't exist \ref Globals::kInvalidId is returned. ASMJIT_API uint32_t labelIdByName(const char* name, size_t nameSize = SIZE_MAX, uint32_t parentId = Globals::kInvalidId) noexcept; //! Tests whether there are any unresolved label links. inline bool hasUnresolvedLinks() const noexcept { return _unresolvedLinkCount != 0; } //! Returns the number of label links, which are unresolved. inline size_t unresolvedLinkCount() const noexcept { return _unresolvedLinkCount; } //! Creates a new label-link used to store information about yet unbound labels. //! //! Returns `null` if the allocation failed. ASMJIT_API LabelLink* newLabelLink(LabelEntry* le, uint32_t sectionId, size_t offset, intptr_t rel, const OffsetFormat& format) noexcept; //! Resolves cross-section links (`LabelLink`) associated with each label that was used as a destination in code //! of a different section. It's only useful to people that use multiple sections as it will do nothing if the code //! only contains a single section in which cross-section links are not possible. ASMJIT_API Error resolveUnresolvedLinks() noexcept; //! Binds a label to a given `sectionId` and `offset` (relative to start of the section). //! //! This function is generally used by `BaseAssembler::bind()` to do the heavy lifting. ASMJIT_API Error bindLabel(const Label& label, uint32_t sectionId, uint64_t offset) noexcept; //! \} //! \name Relocations //! \{ //! Tests whether the code contains relocation entries. inline bool hasRelocEntries() const noexcept { return !_relocations.empty(); } //! Returns array of `RelocEntry*` records. inline const ZoneVector& relocEntries() const noexcept { return _relocations; } //! Returns a RelocEntry of the given `id`. inline RelocEntry* relocEntry(uint32_t id) const noexcept { return _relocations[id]; } //! Creates a new relocation entry of type `relocType`. //! //! Additional fields can be set after the relocation entry was created. ASMJIT_API Error newRelocEntry(RelocEntry** dst, RelocType relocType) noexcept; //! \} //! \name Utilities //! \{ //! Flattens all sections by recalculating their offsets, starting at 0. //! //! \note This should never be called more than once. ASMJIT_API Error flatten() noexcept; //! Returns computed the size of code & data of all sections. //! //! \note All sections will be iterated over and the code size returned would represent the minimum code size of //! all combined sections after applying minimum alignment. Code size may decrease after calling `flatten()` and //! `relocateToBase()`. ASMJIT_API size_t codeSize() const noexcept; //! Relocates the code to the given `baseAddress`. //! //! \param baseAddress Absolute base address where the code will be relocated to. Please note that nothing is //! copied to such base address, it's just an absolute value used by the relocator to resolve all stored relocations. //! //! \note This should never be called more than once. ASMJIT_API Error relocateToBase(uint64_t baseAddress) noexcept; //! Copies a single section into `dst`. ASMJIT_API Error copySectionData(void* dst, size_t dstSize, uint32_t sectionId, CopySectionFlags copyFlags = CopySectionFlags::kNone) noexcept; //! Copies all sections into `dst`. //! //! This should only be used if the data was flattened and there are no gaps between the sections. The `dstSize` //! is always checked and the copy will never write anything outside the provided buffer. ASMJIT_API Error copyFlattenedData(void* dst, size_t dstSize, CopySectionFlags copyFlags = CopySectionFlags::kNone) noexcept; //! \} }; //! \} ASMJIT_END_NAMESPACE #endif // ASMJIT_CORE_CODEHOLDER_H_INCLUDED