// This file is part of AsmJit project // // See asmjit.h or LICENSE.md for license and copyright information // SPDX-License-Identifier: Zlib #include "../core/api-build_p.h" #if !defined(ASMJIT_NO_X86) #include "../x86/x86func_p.h" #include "../x86/x86emithelper_p.h" #include "../x86/x86operand.h" ASMJIT_BEGIN_SUB_NAMESPACE(x86) namespace FuncInternal { static inline bool shouldThreatAsCDeclIn64BitMode(CallConvId ccId) noexcept { return ccId == CallConvId::kCDecl || ccId == CallConvId::kStdCall || ccId == CallConvId::kThisCall || ccId == CallConvId::kFastCall || ccId == CallConvId::kRegParm1 || ccId == CallConvId::kRegParm2 || ccId == CallConvId::kRegParm3; } ASMJIT_FAVOR_SIZE Error initCallConv(CallConv& cc, CallConvId ccId, const Environment& environment) noexcept { constexpr uint32_t kZax = Gp::kIdAx; constexpr uint32_t kZbx = Gp::kIdBx; constexpr uint32_t kZcx = Gp::kIdCx; constexpr uint32_t kZdx = Gp::kIdDx; constexpr uint32_t kZsp = Gp::kIdSp; constexpr uint32_t kZbp = Gp::kIdBp; constexpr uint32_t kZsi = Gp::kIdSi; constexpr uint32_t kZdi = Gp::kIdDi; bool winABI = environment.isPlatformWindows() || environment.isMSVC(); cc.setArch(environment.arch()); cc.setSaveRestoreRegSize(RegGroup::kVec, 16); cc.setSaveRestoreRegSize(RegGroup::kX86_MM, 8); cc.setSaveRestoreRegSize(RegGroup::kX86_K, 8); cc.setSaveRestoreAlignment(RegGroup::kVec, 16); cc.setSaveRestoreAlignment(RegGroup::kX86_MM, 8); cc.setSaveRestoreAlignment(RegGroup::kX86_K, 8); if (environment.is32Bit()) { bool isStandardCallConv = true; cc.setSaveRestoreRegSize(RegGroup::kGp, 4); cc.setSaveRestoreAlignment(RegGroup::kGp, 4); cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(Gp::kIdBx, Gp::kIdSp, Gp::kIdBp, Gp::kIdSi, Gp::kIdDi)); cc.setNaturalStackAlignment(4); switch (ccId) { case CallConvId::kCDecl: break; case CallConvId::kStdCall: cc.setFlags(CallConvFlags::kCalleePopsStack); break; case CallConvId::kFastCall: cc.setFlags(CallConvFlags::kCalleePopsStack); cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx); break; case CallConvId::kVectorCall: cc.setFlags(CallConvFlags::kCalleePopsStack); cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx); cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5); break; case CallConvId::kThisCall: // NOTE: Even MINGW (starting with GCC 4.7.0) now uses __thiscall on MS Windows, so we won't bail to any // other calling convention if __thiscall was specified. if (winABI) { cc.setFlags(CallConvFlags::kCalleePopsStack); cc.setPassedOrder(RegGroup::kGp, kZcx); } else { ccId = CallConvId::kCDecl; } break; case CallConvId::kRegParm1: cc.setPassedOrder(RegGroup::kGp, kZax); break; case CallConvId::kRegParm2: cc.setPassedOrder(RegGroup::kGp, kZax, kZdx); break; case CallConvId::kRegParm3: cc.setPassedOrder(RegGroup::kGp, kZax, kZdx, kZcx); break; case CallConvId::kLightCall2: case CallConvId::kLightCall3: case CallConvId::kLightCall4: { uint32_t n = uint32_t(ccId) - uint32_t(CallConvId::kLightCall2) + 2; cc.setFlags(CallConvFlags::kPassFloatsByVec); cc.setPassedOrder(RegGroup::kGp, kZax, kZdx, kZcx, kZsi, kZdi); cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5, 6, 7); cc.setPassedOrder(RegGroup::kX86_K, 0, 1, 2, 3, 4, 5, 6, 7); cc.setPassedOrder(RegGroup::kX86_MM, 0, 1, 2, 3, 4, 5, 6, 7); cc.setPreservedRegs(RegGroup::kGp, Support::lsbMask(8)); cc.setPreservedRegs(RegGroup::kVec, Support::lsbMask(8) & ~Support::lsbMask(n)); cc.setNaturalStackAlignment(16); isStandardCallConv = false; break; } default: return DebugUtils::errored(kErrorInvalidArgument); } if (isStandardCallConv) { // MMX arguments is something where compiler vendors disagree. For example GCC and MSVC would pass first three // via registers and the rest via stack, however Clang passes all via stack. Returning MMX registers is even // more fun, where GCC uses MM0, but Clang uses EAX:EDX pair. I'm not sure it's something we should be worried // about as MMX is deprecated anyway. cc.setPassedOrder(RegGroup::kX86_MM, 0, 1, 2); // Vector arguments (XMM|YMM|ZMM) are passed via registers. However, if the function is variadic then they have // to be passed via stack. cc.setPassedOrder(RegGroup::kVec, 0, 1, 2); // Functions with variable arguments always use stack for MM and vector arguments. cc.addFlags(CallConvFlags::kPassVecByStackIfVA); } if (ccId == CallConvId::kCDecl) { cc.addFlags(CallConvFlags::kVarArgCompatible); } } else { cc.setSaveRestoreRegSize(RegGroup::kGp, 8); cc.setSaveRestoreAlignment(RegGroup::kGp, 8); // Preprocess the calling convention into a common id as many conventions are normally ignored even by C/C++ // compilers and treated as `__cdecl`. if (shouldThreatAsCDeclIn64BitMode(ccId)) ccId = winABI ? CallConvId::kX64Windows : CallConvId::kX64SystemV; switch (ccId) { case CallConvId::kX64SystemV: { cc.setFlags(CallConvFlags::kPassFloatsByVec | CallConvFlags::kPassMmxByXmm | CallConvFlags::kVarArgCompatible); cc.setNaturalStackAlignment(16); cc.setRedZoneSize(128); cc.setPassedOrder(RegGroup::kGp, kZdi, kZsi, kZdx, kZcx, 8, 9); cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5, 6, 7); cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(kZbx, kZsp, kZbp, 12, 13, 14, 15)); break; } case CallConvId::kX64Windows: { cc.setStrategy(CallConvStrategy::kX64Windows); cc.setFlags(CallConvFlags::kPassFloatsByVec | CallConvFlags::kIndirectVecArgs | CallConvFlags::kPassMmxByGp | CallConvFlags::kVarArgCompatible); cc.setNaturalStackAlignment(16); // Maximum 4 arguments in registers, each adds 8 bytes to the spill zone. cc.setSpillZoneSize(4 * 8); cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx, 8, 9); cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3); cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(kZbx, kZsp, kZbp, kZsi, kZdi, 12, 13, 14, 15)); cc.setPreservedRegs(RegGroup::kVec, Support::bitMask(6, 7, 8, 9, 10, 11, 12, 13, 14, 15)); break; } case CallConvId::kVectorCall: { cc.setStrategy(CallConvStrategy::kX64VectorCall); cc.setFlags(CallConvFlags::kPassFloatsByVec | CallConvFlags::kPassMmxByGp ); cc.setNaturalStackAlignment(16); // Maximum 6 arguments in registers, each adds 8 bytes to the spill zone. cc.setSpillZoneSize(6 * 8); cc.setPassedOrder(RegGroup::kGp, kZcx, kZdx, 8, 9); cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5); cc.setPreservedRegs(RegGroup::kGp, Support::bitMask(kZbx, kZsp, kZbp, kZsi, kZdi, 12, 13, 14, 15)); cc.setPreservedRegs(RegGroup::kVec, Support::bitMask(6, 7, 8, 9, 10, 11, 12, 13, 14, 15)); break; } case CallConvId::kLightCall2: case CallConvId::kLightCall3: case CallConvId::kLightCall4: { uint32_t n = uint32_t(ccId) - uint32_t(CallConvId::kLightCall2) + 2; cc.setFlags(CallConvFlags::kPassFloatsByVec); cc.setNaturalStackAlignment(16); cc.setPassedOrder(RegGroup::kGp, kZax, kZdx, kZcx, kZsi, kZdi); cc.setPassedOrder(RegGroup::kVec, 0, 1, 2, 3, 4, 5, 6, 7); cc.setPassedOrder(RegGroup::kX86_K, 0, 1, 2, 3, 4, 5, 6, 7); cc.setPassedOrder(RegGroup::kX86_MM, 0, 1, 2, 3, 4, 5, 6, 7); cc.setPreservedRegs(RegGroup::kGp, Support::lsbMask(16)); cc.setPreservedRegs(RegGroup::kVec, ~Support::lsbMask(n)); break; } default: return DebugUtils::errored(kErrorInvalidArgument); } } cc.setId(ccId); return kErrorOk; } ASMJIT_FAVOR_SIZE void unpackValues(FuncDetail& func, FuncValuePack& pack) noexcept { TypeId typeId = pack[0].typeId(); switch (typeId) { case TypeId::kInt64: case TypeId::kUInt64: { if (Environment::is32Bit(func.callConv().arch())) { // Convert a 64-bit return value to two 32-bit return values. pack[0].initTypeId(TypeId::kUInt32); pack[1].initTypeId(TypeId(uint32_t(typeId) - 2)); break; } break; } default: { break; } } } ASMJIT_FAVOR_SIZE Error initFuncDetail(FuncDetail& func, const FuncSignature& signature, uint32_t registerSize) noexcept { const CallConv& cc = func.callConv(); Arch arch = cc.arch(); uint32_t stackOffset = cc._spillZoneSize; uint32_t argCount = func.argCount(); // Up to two return values can be returned in GP registers. static const uint8_t gpReturnIndexes[4] = { uint8_t(Gp::kIdAx), uint8_t(Gp::kIdDx), uint8_t(BaseReg::kIdBad), uint8_t(BaseReg::kIdBad) }; if (func.hasRet()) { unpackValues(func, func._rets); for (uint32_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++) { TypeId typeId = func._rets[valueIndex].typeId(); // Terminate at the first void type (end of the pack). if (typeId == TypeId::kVoid) break; switch (typeId) { case TypeId::kInt64: case TypeId::kUInt64: { if (gpReturnIndexes[valueIndex] != BaseReg::kIdBad) func._rets[valueIndex].initReg(RegType::kX86_Gpq, gpReturnIndexes[valueIndex], typeId); else return DebugUtils::errored(kErrorInvalidState); break; } case TypeId::kInt8: case TypeId::kInt16: case TypeId::kInt32: { if (gpReturnIndexes[valueIndex] != BaseReg::kIdBad) func._rets[valueIndex].initReg(RegType::kX86_Gpd, gpReturnIndexes[valueIndex], TypeId::kInt32); else return DebugUtils::errored(kErrorInvalidState); break; } case TypeId::kUInt8: case TypeId::kUInt16: case TypeId::kUInt32: { if (gpReturnIndexes[valueIndex] != BaseReg::kIdBad) func._rets[valueIndex].initReg(RegType::kX86_Gpd, gpReturnIndexes[valueIndex], TypeId::kUInt32); else return DebugUtils::errored(kErrorInvalidState); break; } case TypeId::kFloat32: case TypeId::kFloat64: { RegType regType = Environment::is32Bit(arch) ? RegType::kX86_St : RegType::kX86_Xmm; func._rets[valueIndex].initReg(regType, valueIndex, typeId); break; } case TypeId::kFloat80: { // 80-bit floats are always returned by FP0. func._rets[valueIndex].initReg(RegType::kX86_St, valueIndex, typeId); break; } case TypeId::kMmx32: case TypeId::kMmx64: { // MM registers are returned through XMM (SystemV) or GPQ (Win64). RegType regType = RegType::kX86_Mm; uint32_t regIndex = valueIndex; if (Environment::is64Bit(arch)) { regType = cc.strategy() == CallConvStrategy::kDefault ? RegType::kX86_Xmm : RegType::kX86_Gpq; regIndex = cc.strategy() == CallConvStrategy::kDefault ? valueIndex : gpReturnIndexes[valueIndex]; if (regIndex == BaseReg::kIdBad) return DebugUtils::errored(kErrorInvalidState); } func._rets[valueIndex].initReg(regType, regIndex, typeId); break; } default: { func._rets[valueIndex].initReg(vecTypeIdToRegType(typeId), valueIndex, typeId); break; } } } } switch (cc.strategy()) { case CallConvStrategy::kDefault: { uint32_t gpzPos = 0; uint32_t vecPos = 0; for (uint32_t argIndex = 0; argIndex < argCount; argIndex++) { unpackValues(func, func._args[argIndex]); for (uint32_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++) { FuncValue& arg = func._args[argIndex][valueIndex]; // Terminate if there are no more arguments in the pack. if (!arg) break; TypeId typeId = arg.typeId(); if (TypeUtils::isInt(typeId)) { uint32_t regId = BaseReg::kIdBad; if (gpzPos < CallConv::kMaxRegArgsPerGroup) regId = cc._passedOrder[RegGroup::kGp].id[gpzPos]; if (regId != BaseReg::kIdBad) { RegType regType = typeId <= TypeId::kUInt32 ? RegType::kX86_Gpd : RegType::kX86_Gpq; arg.assignRegData(regType, regId); func.addUsedRegs(RegGroup::kGp, Support::bitMask(regId)); gpzPos++; } else { uint32_t size = Support::max(TypeUtils::sizeOf(typeId), registerSize); arg.assignStackOffset(int32_t(stackOffset)); stackOffset += size; } continue; } if (TypeUtils::isFloat(typeId) || TypeUtils::isVec(typeId)) { uint32_t regId = BaseReg::kIdBad; if (vecPos < CallConv::kMaxRegArgsPerGroup) regId = cc._passedOrder[RegGroup::kVec].id[vecPos]; if (TypeUtils::isFloat(typeId)) { // If this is a float, but `kFlagPassFloatsByVec` is false, we have to use stack instead. This should // be only used by 32-bit calling conventions. if (!cc.hasFlag(CallConvFlags::kPassFloatsByVec)) regId = BaseReg::kIdBad; } else { // Pass vector registers via stack if this is a variable arguments function. This should be only used // by 32-bit calling conventions. if (signature.hasVarArgs() && cc.hasFlag(CallConvFlags::kPassVecByStackIfVA)) regId = BaseReg::kIdBad; } if (regId != BaseReg::kIdBad) { arg.initTypeId(typeId); arg.assignRegData(vecTypeIdToRegType(typeId), regId); func.addUsedRegs(RegGroup::kVec, Support::bitMask(regId)); vecPos++; } else { uint32_t size = TypeUtils::sizeOf(typeId); arg.assignStackOffset(int32_t(stackOffset)); stackOffset += size; } continue; } } } break; } case CallConvStrategy::kX64Windows: case CallConvStrategy::kX64VectorCall: { // Both X64 and VectorCall behave similarly - arguments are indexed from left to right. The position of the // argument determines in which register the argument is allocated, so it's either GP or one of XMM/YMM/ZMM // registers. // // [ X64 ] [VecCall] // Index: #0 #1 #2 #3 #4 #5 // // GP : RCX RDX R8 R9 // VEC : XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 // // For example function `f(int a, double b, int c, double d)` will be: // // (a) (b) (c) (d) // RCX XMM1 R8 XMM3 // // Unused vector registers are used by HVA. bool isVectorCall = (cc.strategy() == CallConvStrategy::kX64VectorCall); for (uint32_t argIndex = 0; argIndex < argCount; argIndex++) { unpackValues(func, func._args[argIndex]); for (uint32_t valueIndex = 0; valueIndex < Globals::kMaxValuePack; valueIndex++) { FuncValue& arg = func._args[argIndex][valueIndex]; // Terminate if there are no more arguments in the pack. if (!arg) break; TypeId typeId = arg.typeId(); uint32_t size = TypeUtils::sizeOf(typeId); if (TypeUtils::isInt(typeId) || TypeUtils::isMmx(typeId)) { uint32_t regId = BaseReg::kIdBad; if (argIndex < CallConv::kMaxRegArgsPerGroup) regId = cc._passedOrder[RegGroup::kGp].id[argIndex]; if (regId != BaseReg::kIdBad) { RegType regType = size <= 4 && !TypeUtils::isMmx(typeId) ? RegType::kX86_Gpd : RegType::kX86_Gpq; arg.assignRegData(regType, regId); func.addUsedRegs(RegGroup::kGp, Support::bitMask(regId)); } else { arg.assignStackOffset(int32_t(stackOffset)); stackOffset += 8; } continue; } if (TypeUtils::isFloat(typeId) || TypeUtils::isVec(typeId)) { uint32_t regId = BaseReg::kIdBad; if (argIndex < CallConv::kMaxRegArgsPerGroup) regId = cc._passedOrder[RegGroup::kVec].id[argIndex]; if (regId != BaseReg::kIdBad) { // X64-ABI doesn't allow vector types (XMM|YMM|ZMM) to be passed via registers, however, VectorCall // was designed for that purpose. if (TypeUtils::isFloat(typeId) || isVectorCall) { RegType regType = vecTypeIdToRegType(typeId); arg.assignRegData(regType, regId); func.addUsedRegs(RegGroup::kVec, Support::bitMask(regId)); continue; } } // Passed via stack if the argument is float/double or indirectly. The trap is - if the argument is // passed indirectly, the address can be passed via register, if the argument's index has GP one. if (TypeUtils::isFloat(typeId)) { arg.assignStackOffset(int32_t(stackOffset)); } else { uint32_t gpRegId = cc._passedOrder[RegGroup::kGp].id[argIndex]; if (gpRegId != BaseReg::kIdBad) arg.assignRegData(RegType::kX86_Gpq, gpRegId); else arg.assignStackOffset(int32_t(stackOffset)); arg.addFlags(FuncValue::kFlagIsIndirect); } // Always 8 bytes (float/double/pointer). stackOffset += 8; continue; } } } break; } } func._argStackSize = stackOffset; return kErrorOk; } } // {FuncInternal} ASMJIT_END_SUB_NAMESPACE #endif // !ASMJIT_NO_X86