Defcon/hook_lib/asmjit/core/support.cpp

495 lines
17 KiB
C++
Raw Normal View History

2023-11-26 08:54:06 -05:00
// This file is part of AsmJit project <https://asmjit.com>
//
// See asmjit.h or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
#include "../core/api-build_p.h"
#include "../core/support.h"
ASMJIT_BEGIN_NAMESPACE
// Support - Tests
// ===============
#if defined(ASMJIT_TEST)
template<typename T>
static void testArrays(const T* a, const T* b, size_t size) noexcept {
for (size_t i = 0; i < size; i++)
EXPECT(a[i] == b[i], "Mismatch at %u", unsigned(i));
}
static void testAlignment() noexcept {
INFO("Support::isAligned()");
EXPECT(Support::isAligned<size_t>(0xFFFF, 4) == false);
EXPECT(Support::isAligned<size_t>(0xFFF4, 4) == true);
EXPECT(Support::isAligned<size_t>(0xFFF8, 8) == true);
EXPECT(Support::isAligned<size_t>(0xFFF0, 16) == true);
INFO("Support::alignUp()");
EXPECT(Support::alignUp<size_t>(0xFFFF, 4) == 0x10000);
EXPECT(Support::alignUp<size_t>(0xFFF4, 4) == 0x0FFF4);
EXPECT(Support::alignUp<size_t>(0xFFF8, 8) == 0x0FFF8);
EXPECT(Support::alignUp<size_t>(0xFFF0, 16) == 0x0FFF0);
EXPECT(Support::alignUp<size_t>(0xFFF0, 32) == 0x10000);
INFO("Support::alignUpDiff()");
EXPECT(Support::alignUpDiff<size_t>(0xFFFF, 4) == 1);
EXPECT(Support::alignUpDiff<size_t>(0xFFF4, 4) == 0);
EXPECT(Support::alignUpDiff<size_t>(0xFFF8, 8) == 0);
EXPECT(Support::alignUpDiff<size_t>(0xFFF0, 16) == 0);
EXPECT(Support::alignUpDiff<size_t>(0xFFF0, 32) == 16);
INFO("Support::alignUpPowerOf2()");
EXPECT(Support::alignUpPowerOf2<size_t>(0x0000) == 0x00000);
EXPECT(Support::alignUpPowerOf2<size_t>(0xFFFF) == 0x10000);
EXPECT(Support::alignUpPowerOf2<size_t>(0xF123) == 0x10000);
EXPECT(Support::alignUpPowerOf2<size_t>(0x0F00) == 0x01000);
EXPECT(Support::alignUpPowerOf2<size_t>(0x0100) == 0x00100);
EXPECT(Support::alignUpPowerOf2<size_t>(0x1001) == 0x02000);
}
static void testBitUtils() noexcept {
uint32_t i;
INFO("Support::shl() / shr()");
EXPECT(Support::shl(int32_t(0x00001111), 16) == int32_t(0x11110000u));
EXPECT(Support::shl(uint32_t(0x00001111), 16) == uint32_t(0x11110000u));
EXPECT(Support::shr(int32_t(0x11110000u), 16) == int32_t(0x00001111u));
EXPECT(Support::shr(uint32_t(0x11110000u), 16) == uint32_t(0x00001111u));
EXPECT(Support::sar(int32_t(0xFFFF0000u), 16) == int32_t(0xFFFFFFFFu));
EXPECT(Support::sar(uint32_t(0xFFFF0000u), 16) == uint32_t(0xFFFFFFFFu));
INFO("Support::blsi()");
for (i = 0; i < 32; i++) EXPECT(Support::blsi(uint32_t(1) << i) == uint32_t(1) << i);
for (i = 0; i < 31; i++) EXPECT(Support::blsi(uint32_t(3) << i) == uint32_t(1) << i);
for (i = 0; i < 64; i++) EXPECT(Support::blsi(uint64_t(1) << i) == uint64_t(1) << i);
for (i = 0; i < 63; i++) EXPECT(Support::blsi(uint64_t(3) << i) == uint64_t(1) << i);
INFO("Support::ctz()");
for (i = 0; i < 32; i++) EXPECT(Support::Internal::clzFallback(uint32_t(1) << i) == 31 - i);
for (i = 0; i < 64; i++) EXPECT(Support::Internal::clzFallback(uint64_t(1) << i) == 63 - i);
for (i = 0; i < 32; i++) EXPECT(Support::Internal::ctzFallback(uint32_t(1) << i) == i);
for (i = 0; i < 64; i++) EXPECT(Support::Internal::ctzFallback(uint64_t(1) << i) == i);
for (i = 0; i < 32; i++) EXPECT(Support::clz(uint32_t(1) << i) == 31 - i);
for (i = 0; i < 64; i++) EXPECT(Support::clz(uint64_t(1) << i) == 63 - i);
for (i = 0; i < 32; i++) EXPECT(Support::ctz(uint32_t(1) << i) == i);
for (i = 0; i < 64; i++) EXPECT(Support::ctz(uint64_t(1) << i) == i);
INFO("Support::bitMask()");
EXPECT(Support::bitMask(0, 1, 7) == 0x83u);
for (i = 0; i < 32; i++)
EXPECT(Support::bitMask(i) == (1u << i));
INFO("Support::bitTest()");
for (i = 0; i < 32; i++) {
EXPECT(Support::bitTest((1 << i), i) == true, "Support::bitTest(%X, %u) should return true", (1 << i), i);
}
INFO("Support::lsbMask<uint32_t>()");
for (i = 0; i < 32; i++) {
uint32_t expectedBits = 0;
for (uint32_t b = 0; b < i; b++)
expectedBits |= uint32_t(1) << b;
EXPECT(Support::lsbMask<uint32_t>(i) == expectedBits);
}
INFO("Support::lsbMask<uint64_t>()");
for (i = 0; i < 64; i++) {
uint64_t expectedBits = 0;
for (uint32_t b = 0; b < i; b++)
expectedBits |= uint64_t(1) << b;
EXPECT(Support::lsbMask<uint64_t>(i) == expectedBits);
}
INFO("Support::popcnt()");
for (i = 0; i < 32; i++) EXPECT(Support::popcnt((uint32_t(1) << i)) == 1);
for (i = 0; i < 64; i++) EXPECT(Support::popcnt((uint64_t(1) << i)) == 1);
EXPECT(Support::popcnt(0x000000F0) == 4);
EXPECT(Support::popcnt(0x10101010) == 4);
EXPECT(Support::popcnt(0xFF000000) == 8);
EXPECT(Support::popcnt(0xFFFFFFF7) == 31);
EXPECT(Support::popcnt(0x7FFFFFFF) == 31);
INFO("Support::isPowerOf2()");
for (i = 0; i < 64; i++) {
EXPECT(Support::isPowerOf2(uint64_t(1) << i) == true);
EXPECT(Support::isPowerOf2((uint64_t(1) << i) ^ 0x001101) == false);
}
}
static void testIntUtils() noexcept {
INFO("Support::byteswap()");
EXPECT(Support::byteswap16(int32_t(0x0102)) == int32_t(0x0201));
EXPECT(Support::byteswap32(int32_t(0x01020304)) == int32_t(0x04030201));
EXPECT(Support::byteswap32(uint32_t(0x01020304)) == uint32_t(0x04030201));
EXPECT(Support::byteswap64(uint64_t(0x0102030405060708)) == uint64_t(0x0807060504030201));
INFO("Support::bytepack()");
union BytePackData {
uint8_t bytes[4];
uint32_t u32;
} bpdata;
bpdata.u32 = Support::bytepack32_4x8(0x00, 0x11, 0x22, 0x33);
EXPECT(bpdata.bytes[0] == 0x00);
EXPECT(bpdata.bytes[1] == 0x11);
EXPECT(bpdata.bytes[2] == 0x22);
EXPECT(bpdata.bytes[3] == 0x33);
INFO("Support::isBetween()");
EXPECT(Support::isBetween<int>(10 , 10, 20) == true);
EXPECT(Support::isBetween<int>(11 , 10, 20) == true);
EXPECT(Support::isBetween<int>(20 , 10, 20) == true);
EXPECT(Support::isBetween<int>(9 , 10, 20) == false);
EXPECT(Support::isBetween<int>(21 , 10, 20) == false);
EXPECT(Support::isBetween<int>(101, 10, 20) == false);
INFO("Support::isInt8()");
EXPECT(Support::isInt8(-128) == true);
EXPECT(Support::isInt8( 127) == true);
EXPECT(Support::isInt8(-129) == false);
EXPECT(Support::isInt8( 128) == false);
INFO("Support::isInt16()");
EXPECT(Support::isInt16(-32768) == true);
EXPECT(Support::isInt16( 32767) == true);
EXPECT(Support::isInt16(-32769) == false);
EXPECT(Support::isInt16( 32768) == false);
INFO("Support::isInt32()");
EXPECT(Support::isInt32( 2147483647 ) == true);
EXPECT(Support::isInt32(-2147483647 - 1) == true);
EXPECT(Support::isInt32(uint64_t(2147483648u)) == false);
EXPECT(Support::isInt32(uint64_t(0xFFFFFFFFu)) == false);
EXPECT(Support::isInt32(uint64_t(0xFFFFFFFFu) + 1) == false);
INFO("Support::isUInt8()");
EXPECT(Support::isUInt8(0) == true);
EXPECT(Support::isUInt8(255) == true);
EXPECT(Support::isUInt8(256) == false);
EXPECT(Support::isUInt8(-1) == false);
INFO("Support::isUInt12()");
EXPECT(Support::isUInt12(0) == true);
EXPECT(Support::isUInt12(4095) == true);
EXPECT(Support::isUInt12(4096) == false);
EXPECT(Support::isUInt12(-1) == false);
INFO("Support::isUInt16()");
EXPECT(Support::isUInt16(0) == true);
EXPECT(Support::isUInt16(65535) == true);
EXPECT(Support::isUInt16(65536) == false);
EXPECT(Support::isUInt16(-1) == false);
INFO("Support::isUInt32()");
EXPECT(Support::isUInt32(uint64_t(0xFFFFFFFF)) == true);
EXPECT(Support::isUInt32(uint64_t(0xFFFFFFFF) + 1) == false);
EXPECT(Support::isUInt32(-1) == false);
}
static void testReadWrite() noexcept {
INFO("Support::readX() / writeX()");
uint8_t arr[32] = { 0 };
Support::writeU16uBE(arr + 1, 0x0102u);
Support::writeU16uBE(arr + 3, 0x0304u);
EXPECT(Support::readU32uBE(arr + 1) == 0x01020304u);
EXPECT(Support::readU32uLE(arr + 1) == 0x04030201u);
EXPECT(Support::readU32uBE(arr + 2) == 0x02030400u);
EXPECT(Support::readU32uLE(arr + 2) == 0x00040302u);
Support::writeU32uLE(arr + 5, 0x05060708u);
EXPECT(Support::readU64uBE(arr + 1) == 0x0102030408070605u);
EXPECT(Support::readU64uLE(arr + 1) == 0x0506070804030201u);
Support::writeU64uLE(arr + 7, 0x1122334455667788u);
EXPECT(Support::readU32uBE(arr + 8) == 0x77665544u);
}
static void testBitVector() noexcept {
INFO("Support::bitVectorOp");
{
uint32_t vec[3] = { 0 };
Support::bitVectorFill(vec, 1, 64);
EXPECT(vec[0] == 0xFFFFFFFEu);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0x00000001u);
Support::bitVectorClear(vec, 1, 1);
EXPECT(vec[0] == 0xFFFFFFFCu);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0x00000001u);
Support::bitVectorFill(vec, 0, 32);
EXPECT(vec[0] == 0xFFFFFFFFu);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0x00000001u);
Support::bitVectorClear(vec, 0, 32);
EXPECT(vec[0] == 0x00000000u);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0x00000001u);
Support::bitVectorFill(vec, 1, 30);
EXPECT(vec[0] == 0x7FFFFFFEu);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0x00000001u);
Support::bitVectorClear(vec, 1, 95);
EXPECT(vec[0] == 0x00000000u);
EXPECT(vec[1] == 0x00000000u);
EXPECT(vec[2] == 0x00000000u);
Support::bitVectorFill(vec, 32, 64);
EXPECT(vec[0] == 0x00000000u);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0xFFFFFFFFu);
Support::bitVectorSetBit(vec, 1, true);
EXPECT(vec[0] == 0x00000002u);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0xFFFFFFFFu);
Support::bitVectorSetBit(vec, 95, false);
EXPECT(vec[0] == 0x00000002u);
EXPECT(vec[1] == 0xFFFFFFFFu);
EXPECT(vec[2] == 0x7FFFFFFFu);
Support::bitVectorClear(vec, 33, 32);
EXPECT(vec[0] == 0x00000002u);
EXPECT(vec[1] == 0x00000001u);
EXPECT(vec[2] == 0x7FFFFFFEu);
}
INFO("Support::bitVectorIndexOf");
{
uint32_t vec1[1] = { 0x80000000 };
EXPECT(Support::bitVectorIndexOf(vec1, 0, true) == 31);
EXPECT(Support::bitVectorIndexOf(vec1, 1, true) == 31);
EXPECT(Support::bitVectorIndexOf(vec1, 31, true) == 31);
uint32_t vec2[2] = { 0x00000000, 0x80000000 };
EXPECT(Support::bitVectorIndexOf(vec2, 0, true) == 63);
EXPECT(Support::bitVectorIndexOf(vec2, 1, true) == 63);
EXPECT(Support::bitVectorIndexOf(vec2, 31, true) == 63);
EXPECT(Support::bitVectorIndexOf(vec2, 32, true) == 63);
EXPECT(Support::bitVectorIndexOf(vec2, 33, true) == 63);
EXPECT(Support::bitVectorIndexOf(vec2, 63, true) == 63);
uint32_t vec3[3] = { 0x00000001, 0x00000000, 0x80000000 };
EXPECT(Support::bitVectorIndexOf(vec3, 0, true) == 0);
EXPECT(Support::bitVectorIndexOf(vec3, 1, true) == 95);
EXPECT(Support::bitVectorIndexOf(vec3, 2, true) == 95);
EXPECT(Support::bitVectorIndexOf(vec3, 31, true) == 95);
EXPECT(Support::bitVectorIndexOf(vec3, 32, true) == 95);
EXPECT(Support::bitVectorIndexOf(vec3, 63, true) == 95);
EXPECT(Support::bitVectorIndexOf(vec3, 64, true) == 95);
EXPECT(Support::bitVectorIndexOf(vec3, 95, true) == 95);
uint32_t vec4[3] = { ~vec3[0], ~vec3[1], ~vec3[2] };
EXPECT(Support::bitVectorIndexOf(vec4, 0, false) == 0);
EXPECT(Support::bitVectorIndexOf(vec4, 1, false) == 95);
EXPECT(Support::bitVectorIndexOf(vec4, 2, false) == 95);
EXPECT(Support::bitVectorIndexOf(vec4, 31, false) == 95);
EXPECT(Support::bitVectorIndexOf(vec4, 32, false) == 95);
EXPECT(Support::bitVectorIndexOf(vec4, 63, false) == 95);
EXPECT(Support::bitVectorIndexOf(vec4, 64, false) == 95);
EXPECT(Support::bitVectorIndexOf(vec4, 95, false) == 95);
}
INFO("Support::BitWordIterator<uint32_t>");
{
Support::BitWordIterator<uint32_t> it(0x80000F01u);
EXPECT(it.hasNext());
EXPECT(it.next() == 0);
EXPECT(it.hasNext());
EXPECT(it.next() == 8);
EXPECT(it.hasNext());
EXPECT(it.next() == 9);
EXPECT(it.hasNext());
EXPECT(it.next() == 10);
EXPECT(it.hasNext());
EXPECT(it.next() == 11);
EXPECT(it.hasNext());
EXPECT(it.next() == 31);
EXPECT(!it.hasNext());
// No bits set.
it.init(0x00000000u);
ASMJIT_ASSERT(!it.hasNext());
// Only first bit set.
it.init(0x00000001u);
EXPECT(it.hasNext());
EXPECT(it.next() == 0);
ASMJIT_ASSERT(!it.hasNext());
// Only last bit set (special case).
it.init(0x80000000u);
ASMJIT_ASSERT(it.hasNext());
ASMJIT_ASSERT(it.next() == 31);
ASMJIT_ASSERT(!it.hasNext());
}
INFO("Support::BitWordIterator<uint64_t>");
{
Support::BitWordIterator<uint64_t> it(uint64_t(1) << 63);
ASMJIT_ASSERT(it.hasNext());
ASMJIT_ASSERT(it.next() == 63);
ASMJIT_ASSERT(!it.hasNext());
}
INFO("Support::BitVectorIterator<uint32_t>");
{
// Border cases.
static const uint32_t bitsNone[] = { 0xFFFFFFFFu };
Support::BitVectorIterator<uint32_t> it(bitsNone, 0);
EXPECT(!it.hasNext());
it.init(bitsNone, 0, 1);
EXPECT(!it.hasNext());
it.init(bitsNone, 0, 128);
EXPECT(!it.hasNext());
static const uint32_t bits1[] = { 0x80000008u, 0x80000001u, 0x00000000u, 0x80000000u, 0x00000000u, 0x00000000u, 0x00003000u };
it.init(bits1, ASMJIT_ARRAY_SIZE(bits1));
EXPECT(it.hasNext());
EXPECT(it.next() == 3);
EXPECT(it.hasNext());
EXPECT(it.next() == 31);
EXPECT(it.hasNext());
EXPECT(it.next() == 32);
EXPECT(it.hasNext());
EXPECT(it.next() == 63);
EXPECT(it.hasNext());
EXPECT(it.next() == 127);
EXPECT(it.hasNext());
EXPECT(it.next() == 204);
EXPECT(it.hasNext());
EXPECT(it.next() == 205);
EXPECT(!it.hasNext());
it.init(bits1, ASMJIT_ARRAY_SIZE(bits1), 4);
EXPECT(it.hasNext());
EXPECT(it.next() == 31);
it.init(bits1, ASMJIT_ARRAY_SIZE(bits1), 64);
EXPECT(it.hasNext());
EXPECT(it.next() == 127);
it.init(bits1, ASMJIT_ARRAY_SIZE(bits1), 127);
EXPECT(it.hasNext());
EXPECT(it.next() == 127);
static const uint32_t bits2[] = { 0x80000000u, 0x80000000u, 0x00000000u, 0x80000000u };
it.init(bits2, ASMJIT_ARRAY_SIZE(bits2));
EXPECT(it.hasNext());
EXPECT(it.next() == 31);
EXPECT(it.hasNext());
EXPECT(it.next() == 63);
EXPECT(it.hasNext());
EXPECT(it.next() == 127);
EXPECT(!it.hasNext());
static const uint32_t bits3[] = { 0x00000000u, 0x00000000u, 0x00000000u, 0x00000000u };
it.init(bits3, ASMJIT_ARRAY_SIZE(bits3));
EXPECT(!it.hasNext());
static const uint32_t bits4[] = { 0x00000000u, 0x00000000u, 0x00000000u, 0x80000000u };
it.init(bits4, ASMJIT_ARRAY_SIZE(bits4));
EXPECT(it.hasNext());
EXPECT(it.next() == 127);
EXPECT(!it.hasNext());
}
INFO("Support::BitVectorIterator<uint64_t>");
{
static const uint64_t bits1[] = { 0x80000000u, 0x80000000u, 0x00000000u, 0x80000000u };
Support::BitVectorIterator<uint64_t> it(bits1, ASMJIT_ARRAY_SIZE(bits1));
EXPECT(it.hasNext());
EXPECT(it.next() == 31);
EXPECT(it.hasNext());
EXPECT(it.next() == 95);
EXPECT(it.hasNext());
EXPECT(it.next() == 223);
EXPECT(!it.hasNext());
static const uint64_t bits2[] = { 0x8000000000000000u, 0, 0, 0 };
it.init(bits2, ASMJIT_ARRAY_SIZE(bits2));
EXPECT(it.hasNext());
EXPECT(it.next() == 63);
EXPECT(!it.hasNext());
}
}
static void testSorting() noexcept {
INFO("Support::qSort() - Testing qsort and isort of predefined arrays");
{
constexpr size_t kArraySize = 11;
int ref_[kArraySize] = { -4, -2, -1, 0, 1, 9, 12, 13, 14, 19, 22 };
int arr1[kArraySize] = { 0, 1, -1, 19, 22, 14, -4, 9, 12, 13, -2 };
int arr2[kArraySize];
memcpy(arr2, arr1, kArraySize * sizeof(int));
Support::iSort(arr1, kArraySize);
Support::qSort(arr2, kArraySize);
testArrays(arr1, ref_, kArraySize);
testArrays(arr2, ref_, kArraySize);
}
INFO("Support::qSort() - Testing qsort and isort of artificial arrays");
{
constexpr size_t kArraySize = 200;
int arr1[kArraySize];
int arr2[kArraySize];
int ref_[kArraySize];
for (size_t size = 2; size < kArraySize; size++) {
for (size_t i = 0; i < size; i++) {
arr1[i] = int(size - 1 - i);
arr2[i] = int(size - 1 - i);
ref_[i] = int(i);
}
Support::iSort(arr1, size);
Support::qSort(arr2, size);
testArrays(arr1, ref_, size);
testArrays(arr2, ref_, size);
}
}
INFO("Support::qSort() - Testing qsort and isort with an unstable compare function");
{
constexpr size_t kArraySize = 5;
float arr1[kArraySize] = { 1.0f, 0.0f, 3.0f, -1.0f, std::numeric_limits<float>::quiet_NaN() };
float arr2[kArraySize] = { };
memcpy(arr2, arr1, kArraySize * sizeof(float));
// We don't test as it's undefined where the NaN would be.
Support::iSort(arr1, kArraySize);
Support::qSort(arr2, kArraySize);
}
}
UNIT(support) {
testAlignment();
testBitUtils();
testIntUtils();
testReadWrite();
testBitVector();
testSorting();
}
#endif
ASMJIT_END_NAMESPACE